

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

SUMMER-15 EXAMINATION <u>Model Answer</u>

Subject code: (17562) Page **1** of **26**

Important Instructions to examiners:

- 1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme.
- 2) The model answer and the answer written by candidate may vary but the examiner may try to assess the understanding level of the candidate.
- 3) The language errors such as grammatical, spelling errors should not be given more Importance (Not applicable for subject English and Communication Skills.
- 4) While assessing figures, examiner may give credit for principal components indicated in the figure. The figures drawn by candidate and model answer may vary. The examiner may give credit for any equivalent figure drawn.
- 5) Credits may be given step wise for numerical problems. In some cases, the assumed constant values may vary and there may be some difference in the candidate's answers and model answer.
- 6) In case of some questions credit may be given by judgement on part of examiner of relevant answer based on candidate's understanding.
- 7) For programming language papers, credit may be given to any other program based on equivalent concept.

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

SUMMER-15 EXAMINATION <u>Model Answer</u>

Subject code : (17562) Page **2** of **26**

Q No.	Answer	Marks	Total
			marks
1A-a	Factors affecting the rate of a chemical reaction :	1 mark	4
	1. In homogeneous system temperature, pressure and composition are the	each for	
	variables.	any 4	
	2. In heterogeneous system , since more than one phase is involved, material	points.	
	have to move from phase to phase during reaction, hence the rate of mass	Γ · · · · ·	
	transfer is important.		
	3. rate of heat transfer		
	4. Catalyst		
	5. Nature of reactants		
	6. Surface area available.		
	7. Intensity of light if reaction is light sensitive.		
1A-b	Internal energy(U): It is the energy stored in the system by virtue of the	1	4
	configuration and motion of the molecules constituting the system.		
	Unit: Joules, Calories	1	
	Enthalpy: Enthalpy(H) is a measure of the total heat content of the substance	1	
	or system.		
	Unit: Joules, Calories	1	
1A-c	Autocatalytic reaction: A reaction in which one of the products of the reaction	2	4
	acts as a catalyst is called autocatalytic reaction.		
	Eg $CH_3COOC_2H_5 + H_2O \rightarrow CH_3COOH + C_2H_5OH$	2	
	Here CH ₃ COOH acts as catalyst		

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

SUMMER-15 EXAMINATION Model Answer

Subject code: (17562) Page **3** of **26**

	(17302)			raye 3 01 20
A-d	Difference between batch and contin	uous reactors:	1 mark	
	Batch reactor	Continuous reactor	each for	
	1.Reactants are fed at	Feeding of the reactants,	any 4	
	beginning, left to react for a	chemical reaction &removal	points	
	certain time &products are	of product mixture occur		
	discharged after that time.	simultaneously in a		
		continuous manner.		
	2.Used when relatively small	used for higher production		
	amount of material are to be	rates		
	treated			
	3.Poor quality control of	Good quality control of		
	products	products		
	4. Simple in construction	Complicated.		
	5. Needs less supporting	Needs more supporting		
	equipments	equipments		
	6 initial cost is relatively low	Initial cost is relatively high		
	and operating cost is high.	and operating cost is low.		
	7.Considerable time is	No such problem		
	required to empty, clean and			
	refill.			
3-a	Derivation:			

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

SUMMER-15 EXAMINATION Model Answer

Subject code: (17562) Page **4** of **26**

J	. (17302)		age 4 01 20
	2A → product		
	In terms of concentration		
	$-r_A = -d_{CA}/dt = kC_A^2$		
	$-d_{CA}/C_A^2 = kdt$	2	
	On integration		
	$K=1/t(1/C_A-1/C_{A0})$		
	In terms of conversion		
	$-r_A = -d_{CA}/dt = kC_A^2$		
	$C_A = C_{A0}(1-X_A)$		
	$d_{CA} = -C_{A0}.d_{XA}$	2	
	$-d_{CA} = C_{A0}. d_{XA}$	2	
	$C_{A0}(d_{XA}/dt)=k. C_{A0}^2(1-X_A)^2$		
	On integrating		
	$1/C_{A0}\{X_A/(1-X_A)\}=kt$		
	Graphical representation:		
	TCA Slope + K Slope = CAok 1/CAS E	2	
1B-b	$k_1 = 1.6 * 10^{-3} S^{-1}$		6
	$k_2 = 1.625 * 10^{-2} S^{-1}$		
	$T_1 = 10^{\circ}c = 283 \text{ K}$	2	
	$T_2 = 30^{\circ}c = 303 \text{ K}$		
	$\ln \frac{k_2}{k_1} = \frac{-E}{R} \left(\frac{1}{T_2} - \frac{1}{T_1} \right)$	2	

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

SUMMER-15 EXAMINATION Model Answer

Subject code: (17562) Page **5** of **26**

		J
$\ln \frac{1.625 * 10 - 2}{1.6 * 10 - 3} = \frac{-E}{1.987} \left(\frac{1}{303} - \frac{1}{283} \right)$	2	
E= 19748.18 cal/mol		
2-a Arrhenius law		8
The temperature dependence of the reaction rate constant k is given by	4	
$\mathbf{k} = \mathbf{k}_0 \mathbf{e}_{RT}^{-E}$		
Where k_0 - frequency factor or pre exponential factor		
E - activation energy in J/ mol or cal/ mol		
R – universal gas constant		
T – temperature in Kelvin		
Finding out activation energy graphically		
Activation energy of a reaction can be determined if rate constant is measured		
at a number of different temperatures.	2	
$k = k_0 e^{-E}/RT$		
Taking ln, $\ln k = \ln k_o - (E / RT)$		
Plot a graph with (1 / T) on x axis and ln k on y axis. Slope is -E / R and y		
$\begin{array}{c} \text{In } k \\ \uparrow \\ \end{array}$ intercept is lnk_o . Activation energy = slope * R	2	

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

SUMMER-15 EXAMINATION Model Answer

Subject code: (17562) Page **6** of **26**

2-b	Given:		8
	$X_A = 0.70$, $t = 13 \text{ min}$		
	For batch reactor, in which first order chemical reaction is taking place		
	$-\mathbf{r}_{A} = \mathbf{k}.\mathbf{C}_{A}$		
	$-\ln(1 - X_A) = kt$		
	$-\ln(1-0.70) = k * 13$		
	$k = 0.0926 \text{ min}^{-1}$	2	
	For Plug flow reactor (constant –density system):		
	$\frac{V}{F_{A0}} = \int_0^{X_A} \frac{dX_A}{-r_A} = \frac{\tau}{C_{A0}}$		
	$\tau = C_{A0} \int_0^{x_A} \frac{dx_A}{k \cdot C_{A0.(1-X_A)}}$		
	$\tau = \int_0^{X_A} \frac{dX_A}{k. (1 - X_A)}$		
	Space time $\tau = \frac{1}{k}(-\ln(1-X_A)) = \frac{1}{0.0926}(-\ln(1-0.7)) = 13 min.$	2	
	Space velocity = $s = 1/\tau = 1/13 = 0.07692 \text{ min}^{-1}$	1	
	For Mixed flow reactor : $\tau = \frac{C_{A0} \cdot X_A}{(-r_A)}$		
	$\tau = \frac{C_{A0} \cdot X_A}{-r_A} = \frac{C_{A0} \cdot X_A}{k C_{A0} (1 - X_A)}$		
	Space time $\tau = \frac{0.70}{0.0926(1-0.7)} = 25.2 \text{ min.}$	2	
	Space velocity = $s = 1/\tau = 1/25.2 = 0.03968 \text{ min}^{-1}$	1	
2-c	Methods of catalyst Preparation:		8
	1. Precipitation	2	
	2. Gel formation		

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

SUMMER-15 EXAMINATION <u>Model Answer</u>

Subject code: (17562) Page **7** of **26**

- 3. Simple mixing
- 4. Impregnation method

1.Precipitation method:

This method produces catalyst in porous form. It consists of adding a precipitating agent to the solution of the desired component. The precipitation is followed by washing, drying, calcinations & activation(or pretreatment) Eg. Magnesium oxide catalyst is prepared by this method. It is prepared by precipitating MgCO₃ from magnesium nitrate solution by adding sodium carbonate. The magnesium carbonate precipitate is washed, dried & calcined to obtain magnesium oxide.

2.Gel formation: If the precipitate formed in the above method is colloidal, then gel is formed.

Eg Catalyst containing silica and alumina are suitable for gel formation because their precipitates are colloidal in nature.

3. Simple mixing: Some porous materials are obtained by mixing the components with water, milling to the desired grain size, drying and calcining. Such materials may be ground and sieved to obtain the particle size.

Eg Mixed Mg and Ca oxide catalyst is prepared by this method

4. Impregnation method:

This method is used for the preparation of expensive catalysts like platinum, palladium, silver etc. A catalyst carrier provides a means of obtaining a large surface area with a small amount of catalyst. The steps in the preparation of a catalyst impregnated on a carrier include evacuating the carrier, contacting the carrier with the impregnating solution, removing the excess solution, drying, calcining and activation.

Eg Nickel catalyst is prepared on alumina by soaking the evacuated alumina particles with nickel nitrate solution, draining to remove the excess solution and

3marks
each for
any 2
methods.

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

SUMMER-15 EXAMINATION <u>Model Answer</u>

Subject code: (17562) Page **8** of **26**

			· ·
	heating in an oven to decompose the nitrate to nickel oxide. The final step is		
	activation in which nickel oxide is reduced to nickel.		
	Any other appropriate method should also be given due consideration.		
3-a	1. Thermodynamics tells whether a given process or a chemical reaction is	1 mark	4
	feasible /possible or not, under the given set of condition (e.g.	each for	
	temperature, pressure etc.)	any 4	
	2. Thermodynamic provides information regarding how far a given	points	
	process may proceed and also gives the maximum possible extent to		
	which a given process can proceed.		
	3. It gives the degree to which the energy present in a system can be		
	utilized to cause a given process to occure /takes place.		
	4. It help to make the preliminary choice of the process variable.		
	5. It helps to find out the effect of process variable on the extent of a		
	reaction.		
	6. It give the thermal effect involved in a chemical process or reaction.		
3-b	i) Constant volume System	2	4
	$C_{A}=C_{A0}(1-X_{A})$		
	ii) Variable volume system	2	
	C_{A} (1- X_{A})		
	$C_{A0}(1+\mathcal{E}_{\mathbf{A}}X_{\mathbf{A}})$		
3-с	for the reaction:		4
	co2 + H2 === co + H20		
	Kp is given by		
L			

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

SUMMER-15 EXAMINATION Model Answer

Page **9** of **26** Subject code: (17562)

Equillibrium partial pressures are: $P_{co_{2}} \times P_{H_{2}}$ $P_{co_{2}} \times P_{H_{2}}$ $P_{co_{2}} = 0.272 \text{ atm.} P_{co_{2}} = 0.218 \text{ atm.}$ $P_{H_{2}} = 0.258 \text{ atm.}$ $P_{H_{2}} = P - (P_{co} + P_{H_{2}} + P_{co_{2}})$ $= 1.02 - (0.272 + 0.258 + 0.218)$ $= 0.272 \text{ atm.}$ $K_{p} = \frac{(0.272 \text{ atm.}) \times (0.272 \text{ atm.})}{(0.218 \text{ atm.}) \times (0.258 \text{ atm.})}$	
$P_{co} = 0.272 \text{ adm}, P_{co_2} = 0.218 \text{ adm}$ $P_{H_2} = 0.258 \text{ adm}$ $P_{H_2O} = P - (P_{co} + P_{H_2} + P_{co_2})$ $= 1.02 - (0.272 + 0.258 + 0.218)$ $= 0.272 \text{ adm}$ $\therefore K_p = (0.272 \text{ adm}) \times (0.272 \text{ adm})$	
$P_{H_2} = 0.258 \text{ atm}$ $P_{H_20} = P - (P_{co} + P_{H_2} + P_{co_2})$ $= 1.02 - (0.272 + 0.258 + 0.218)$ $= 0.272 \text{ atm}$ $K_p = (0.272 \text{ atm}) \times (0.272 \text{ atm})$	
$P_{H_2O} = P - (P_{CO} + P_{H_2} + P_{CO_2})$ $= 1.02 - (0.272 + 0.258 + 0.218)$ $= 0.272 \text{ atm}$ $K_P = (0.272 \text{ atm}) \times (0.272 \text{ atm})$	
$= 0.272 \text{ atm}$ $\therefore K_p = (0.272 \text{ atm}) \times (0.272 \text{ atm})$	
$= 0.272 \text{ atm}$ $\therefore K_p = (0.272 \text{ atm}) \times (0.272 \text{ atm})$	
$\therefore K_p = (0.272 \text{ atm}) \times (0.272 \text{ atm})$	
$\therefore K_{p} = \frac{(0.272 \text{ atm}) \times (0.272 \text{ atm})}{(0.272 \text{ atm}) \times (0.272 \text{ atm})}$	
(0,2/K atro) > (0,25K 0,7fb)	
= 1.32	
3-d Difference between molecularity and order: 1 mark	4
each for	·
ORDER OF A REACTION MOLECULARITY OF A any 4	
REACTION points	
1. It is sum of the concentration It is the number of atoms, ions or	
terms on which the rate of reaction molecules that must collide with one	
actually depends or it is the sum of another simultaneously so as to result	
the exponents of the into a chemical reaction.	
concentrations in the rate law	
equation.	
2. It need not be a whole number i.e. It is always a whole number.	
it can be frectional as well as zero	
it can be fractional as well as zero.	

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

SUMMER-15 EXAMINATION <u>Model Answer</u>

Subject code : (17562) Page **10** of **26**

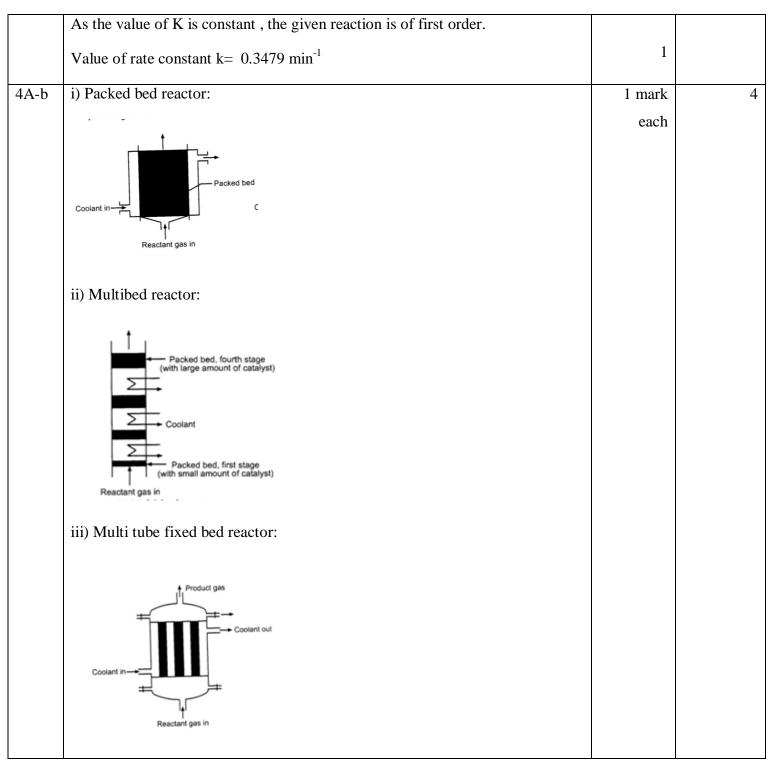
experimentally only and cannot be the molecules of the slowest step. 4. It is for the overall reaction and no separate steps are written to obtain it. 5. Even the order of a simple reaction For simple reactions, the molecularity may not be equal to the number of molecules of the reactants as seen from the unbalance equation. 6. Catalyst Deactivation 1. Deactivation by Fouling 2. Chemical Deactivation - Poisoning 3. Deactivation by Thermal Degradation and Sintering Deactivation by Fouling Generally fouling covers all phenomena where the surface is covered with a deposit. The most widely known form of fouling of catalysts is coke	
separate steps are written to obtain reaction has no significance. It is only slowest step whose molecularity has significance for the overall reaction. 5. Even the order of a simple reaction For simple reactions, the molecularity can usually be obtained from the molecules of the reactants as seen from the unbalance equation. 3-e Catalyst Deactivation 1. Deactivation by Fouling 2. Chemical Deactivation - Poisoning 3. Deactivation by Thermal Degradation and Sintering Deactivation by Fouling Generally fouling covers all phenomena where the surface is covered with a deposit. The most widely known form of fouling of catalysts is coke	
it. slowest step whose molecularity has significance for the overall reaction. 5. Even the order of a simple reaction For simple reactions, the molecularity may not be equal to the number of molecules of the reactants as seen from the unbalance equation. 3-e Catalyst Deactivation 1. Deactivation by Fouling 2. Chemical Deactivation - Poisoning 3. Deactivation by Thermal Degradation and Sintering Deactivation by Fouling Generally fouling covers all phenomena where the surface is covered with a deposit. The most widely known form of fouling of catalysts is coke	
significance for the overall reaction. 5. Even the order of a simple reaction For simple reactions, the molecularity may not be equal to the number of molecules of the reactants as seen from the unbalance equation. 3-e Catalyst Deactivation 1. Deactivation by Fouling 2. Chemical Deactivation - Poisoning 3. Deactivation by Thermal Degradation and Sintering Deactivation by Fouling Generally fouling covers all phenomena where the surface is covered with a deposit. The most widely known form of fouling of catalysts is coke	
5. Even the order of a simple reaction For simple reactions, the molecularity may not be equal to the number of molecules of the reactants as seen from the unbalance equation. 3-e Catalyst Deactivation 1. Deactivation by Fouling 2. Chemical Deactivation - Poisoning 3. Deactivation by Thermal Degradation and Sintering Deactivation by Fouling Generally fouling covers all phenomena where the surface is covered with a deposit. The most widely known form of fouling of catalysts is coke	
may not be equal to the number of molecules of the reactants as seen from the unbalance equation. 3-e Catalyst Deactivation 1. Deactivation by Fouling 2. Chemical Deactivation - Poisoning 3. Deactivation by Thermal Degradation and Sintering Deactivation by Fouling Generally fouling covers all phenomena where the surface is covered with a deposit. The most widely known form of fouling of catalysts is coke	
molecules of the reactants as seen from the unbalance equation. 3-e Catalyst Deactivation 1. Deactivation by Fouling 2. Chemical Deactivation - Poisoning 3. Deactivation by Thermal Degradation and Sintering Deactivation by Fouling Generally fouling covers all phenomena where the surface is covered with a deposit. The most widely known form of fouling of catalysts is coke	
from the unbalance equation. 3-e Catalyst Deactivation 1. Deactivation by Fouling 2. Chemical Deactivation - Poisoning 3. Deactivation by Thermal Degradation and Sintering Deactivation by Fouling Generally fouling covers all phenomena where the surface is covered with a deposit. The most widely known form of fouling of catalysts is coke	
3-e Catalyst Deactivation 1. Deactivation by Fouling 2. Chemical Deactivation - Poisoning 3. Deactivation by Thermal Degradation and Sintering Deactivation by Fouling Generally fouling covers all phenomena where the surface is covered with a deposit. The most widely known form of fouling of catalysts is coke	
1. Deactivation by Fouling 2. Chemical Deactivation - Poisoning 3. Deactivation by Thermal Degradation and Sintering Deactivation by Fouling Generally fouling covers all phenomena where the surface is covered with a deposit. The most widely known form of fouling of catalysts is coke	
1. Deactivation by Fouling 2. Chemical Deactivation - Poisoning 3. Deactivation by Thermal Degradation and Sintering Deactivation by Fouling Generally fouling covers all phenomena where the surface is covered with a deposit. The most widely known form of fouling of catalysts is coke	4
3. Deactivation by Thermal Degradation and Sintering Deactivation by Fouling Generally fouling covers all phenomena where the surface is covered with a deposit. The most widely known form of fouling of catalysts is coke	
3. Deactivation by Thermal Degradation and Sintering Deactivation by Fouling Generally fouling covers all phenomena where the surface is covered with a deposit. The most widely known form of fouling of catalysts is coke	
Generally fouling covers all phenomena where the surface is covered with a deposit. The most widely known form of fouling of catalysts is coke	
a deposit. The most widely known form of fouling of catalysts is coke	
formation There are many protions and the first first transfer.	
formation. There are many reactions and mechanisms of coke formation	
depending on the nature of the catalyst therefore it is not clearly defined. But	
one can say that for the most part coke formation arises as a result of	
carbonaceous residues covering the active sites of a heterogeneous catalyst	
surface, subsequently decreasing the active surface area of the catalyst. In	
addition the deposition of rust and scale from elsewhere in the catalytic system	
is not uncommon. Coke-forming processes also involve chemisorption of	
different kinds of carbons or condensed hydrocarbons that may act as catalyst	

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

SUMMER-15 EXAMINATION Model Answer

Subject code: (17562) Page **11** of **26**

,000 000	te . (17302)	•	age II of 20
	poisons causing the chemical deactivation of the catalyst. The fouling of zeolite		
	catalysts occurs in the form of coke molecules limiting the access of the		
	reactant to the active sites of a cavity or a pore intersection of the zeolite. The		
	pores in which the hexane molecules are rearranged to form the desired		
	products end up being filled with the coke molecules resulting in the zeolite's		
	deactivation.		
	Note: Description of the other two types should also be considered		
4A-a	$N_2O_5 \longrightarrow N_2O_4 + \frac{1}{2}O_2$		4
	N205 → Products		
	Let $N_2O_5 = A$, A \longrightarrow Paroducts		
	for a first order reaction, we have $-\ln\left[\frac{c_A}{c_{A_0}}\right] = \text{K-t}$	1	
	1) cA = 0.113 mod/2, at cAo = 0.16; t = 1min.		
	$k = \frac{-\ln (9/90)}{t} = -\ln (0.113/0.160) = 0.3478 \text{ min}^{-1}$		
	2) CA = 0.08 mod /2 at t = 2 min		
	$15 = \frac{-10 (0.08/0.160)}{2} = 0.3466 \text{ min}^{-1}$	2	
	9) CA = 0.056 mol/1 at t=8 min		
	$K = \frac{-\ln (0.056/0.160)}{3} = 0.3499 \text{min}^{-1}$		
	4) CA = 0.040 mod/d at t = 4 min		
	$K = \frac{-10 (0.040/0.160)}{4} = 0.8466 \text{ m/m}^{-1}$		



(Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

SUMMER-15 EXAMINATION Model Answer

Subject code: (17562) Page **12** of **26**

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

SUMMER-15 EXAMINATION Model Answer

Subject code: (17562) Page 13 of 26

	iv) Fluidised bed reactor: Product gas out Regenerator (operating as a fluidised bed) Reactant gas in Reactant gas in Regenerator (a) Without regenerator (b) With regenerator		
4A-c	Rate of reaction:	1	4
	Rate of a reaction is defined as change in moles of any reactant / product of the		
	reaction per unit time per unit volume of reacting fluid.		
	Rate constant:		
	Rate constant of a chemical reaction is a measure of the rate of the reaction	1	
	when all the reactants are at unit concentration.		
	Unit of Rate constant		
	for Zero order reaction:		
	(Mol/lit) / sec OR concentration /time	1	
	For First order reaction :		
	(Second) ⁻¹ OR (time) ⁻¹	1	
4A-d	Feasibility of a chemical reaction from Gibbs free energy change:	4	4

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

SUMMER-15 EXAMINATION <u>Model Answer</u>

Subject code : (17562) Page **14** of **26**

3			3
	At chemical equilibrium ΔG^0 = 0. For a chemical reaction at equilibrium at a given temperature &pressure, the free energy must be minimum.		
	If ΔG^0 < 0 i.e.it is negative ,the reaction can take place spontaneously.(reaction		
	is possible under a given set of reactions). For spontaneous reaction, there should		
	be decrease in Gibb's free energy change.		
	If ΔG^0 is positive ,the reaction cannot take place under these conditions.		
4B-a	Activation energy: Activation energy is the minimum energy that the reactants	2	6
	must acquire before reaction takes place to give the product.		
	For exothermic reaction		
	Activated complex, transition state Average energy of products Average energy of reaction: For endothermic reaction:	1	

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

SUMMER-15 EXAMINATION Model Answer

Subject code: (17562) Page **15** of **26**

oject code : ()	17302)	ľ	Page 15 of 26
	Activated complex, transition state Average energy of products Average energy of reactants Distance along reaction path	1	
co sur rea act ou	ole of Activation energy in Chemical reaction: Activation energy can be ensidered as a potential energy barrier. Only those molecules that have afficient energy to reach the top of the barrier and form activated complex fact. Smaller the activation energy (low barrier), greater will be the number of ctivated molecules and faster will be the rate of reaction. It will help to find at the nature of the reaction. (endothemic or exothermic). It will give the afference between activated complex and energy of reactant.	2	
4B-b R 6	elation between Gibb's free energy and equilibrium constant		6
we	e will consider a homogeneous chemical reaction of the form		
	A+B ⇌ C+D		
ΔΟ	$G = \sum G^{\circ}f$, products $-\sum G^{\circ}f$, reactants		
G	$_{A}=G^{\circ}{}_{A}+RTlnP_{A}$	2	
Th	he free energy change for the reaction is sum of the free energies of the	2	
pro	roducts, minus the sum of free energies of the reactants:		
ΔΟ	$G=G_C+G_D-G_A-G_B$		
ΔΟ	$G = (G \circ_{C} + RT \ln P_{C}) + (G \circ_{D} + RT \ln P_{D}) - (G \circ_{B} + RT \ln P_{B}) - (G \circ_{A} + RT \ln P_{A})$		
W	We can now express the Go terms collectively as Δ Go, and combine the	2	

SUMMER-15 EXAMINATION Model Answer

Subject code: (17562) Page **16** of **26**

logarithmic pressure terms into a single fraction

 $\Delta G = \Delta G^{\circ} + RT \ln(P_C P_D / P_A P_B)$

which is more conveniently expressed in terms of the reaction quotient Q

 $\Delta G = \Delta G \circ + RT \ln Q$

 $\Delta G = \Delta G \circ + RT \ln Q$

As the reaction approaches equilibrium, ΔG becomes less negative and finally reaches zero. At equilibrium ΔG =0 and Q=K,

ΔG∘=-RTlnKp

in which Kp, the equilibrium constant expressed in pressure units, is the special value of Q that corresponds to the equilibrium composition.

2

OR

Consider the reaction $aA + bB \rightarrow rR + sS$

 ΔG reaction = ΔG product - ΔG reactant.

= (r
$$\mu_R$$
 + s μ_S) -(a μ_A + b μ_B).

At equilibrium there is no Gibb's free energy change, $\Delta G = 0$

$$(r~\mu_R + s~\mu_S)$$
 -(a $\mu_A + b~\mu_B) = 0$

$$r(\mu_R^0 + RT \ln p_R) + s(\mu_S^0 + RT \ln p_S) = a(\mu_A^0 + RT \ln p_A) +$$

b(
$$\mu_B^0 + RT lnp_B$$
)

RT ln
$$(\frac{p_R^r}{p_A^n} \frac{p_S^s}{p_B^b})$$
 = $(a \mu_A^0 + b \mu_B^0)$ - $(r \mu_R^0 + s \mu_S^0)$

= - (ΔG product - ΔG reactant)

= - Δ G reaction.

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

SUMMER-15 EXAMINATION Model Answer

Page **17** of **26** Subject code: (17562)

	$\ln \left(\frac{p_R^r}{p_A^a} \frac{p_S^s}{p_B^b} \right) = \frac{-\Delta G \text{ reaction}}{RT} \text{ But } \left(\frac{p_R^r}{p_A^a} \frac{p_S^s}{p_B^b} \right) = K_p$		
	Therefore $\Delta G = -RT \ln K_p$		
5-a	Integrated form of rate expression For reversible first order reaction		8
	$A \rightleftharpoons B$ (Derivation)		
	Given reaction is A & B.		
	Kc = equilibration Constant = K1 k2		
	The Late equation is -dCA = dCB = k_1CA-k_2CB. But CA = CAO (1-XA) and CB = CBO (1+XB)		
	From the reaction stoichiomebry, When I make of A Reacts, I make of B is produced in CAOXA = CBOXB.		
	· D. I could be lovitted as		
	*dCA = k, CAO (1-XA) - k2 CBO (1+XB)	2	
	$\frac{1}{12} \left[\frac{1}{12} \left(\frac{1}{12} \right) \right) \right) \right) \right) \right) \right]}{1} \right] \right] \right] \right] \right] $		
	= KI [CAO CAO XA] - KZ (CBO + CAO XA)		
	Charling with a Concenteration Ratio, W= Con		
	$\frac{dC_A}{dt} = k_1 C_{A0} \left(1 - \chi_A\right) - k_2 \left(A_0 \left(\frac{C_{B0}}{C_{A0}} + \chi_A\right)\right)$		
	But d CA = - CAO dx A		
	$\frac{dC_A}{dt} = C_{A0} \frac{dX_A}{dt} = C_{A0} [k_1 (1 - X_A) - k_2 (M + X_A)] \qquad \dots \qquad \text{eq. } \mathbf{I}$		
	At equilibrium ,net rate is zero ,therefore $\frac{-dC_A}{dt} = 0$ and		

(Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

SUMMER-15 EXAMINATION Model Answer

Subject code: (17562) Page **18** of **26**

2

 $X_A = X_{Ae}$ (fractional conversion)

 $0 = C_{A0}[k_1(1 - X_{Ae}) - k_2(M + X_{Ae})]$

$$k_1(1-X_{Ae}) = k_2(M+X_{Ae})$$

eq.II

$$K_C = \frac{C_{Be}}{C_{Ae}} = \frac{k_1}{k_2} = \frac{(M + X_{Ae})}{(1 - X_{Ae})}$$
 eq.III

From eq. I, we have

$$\frac{dX_A}{dt} = [k_1(1 - X_A) - k_2(M + X_A)]$$

Substituting the value of k_2 from eq.III in above equation

$$\frac{dX_A}{dt} = k_1(1 - X_A) - \frac{k_1(1 - X_{Ae})}{(M + X_{Ae})} (M + X_A)$$

$$\frac{dX_A}{dt} = k_1 \left[\frac{(1 - X_A)(M + X_{Ae}) - (1 - X_{Ae})(M + X_A)}{(M + X_{Ae})} \right]$$

$$\frac{dX_A}{dt} = k_1 \left[\frac{(1 - X_A)(M + X_{Ae}) - (1 - X_{Ae})(M + X_A)}{(M + X_{Ae})} \right]$$

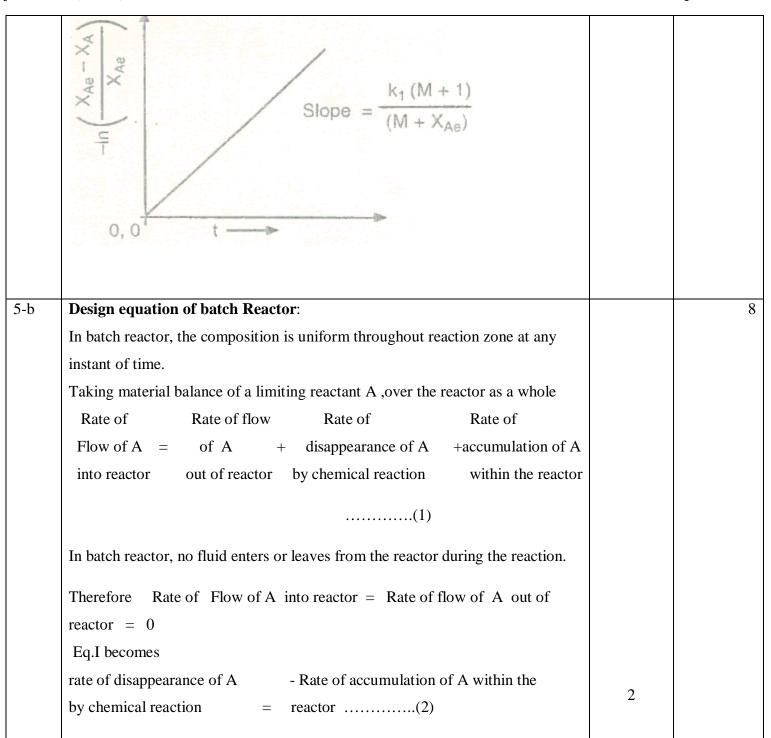
$$\frac{dX_A}{dt} = k_1 \left[\frac{M + X_{Ae} - MX_A - X_A X_{Ae} - M - X_A + MX_{Ae} + X_A X_{Ae}}{(M + X_{Ae})} \right]$$

Collecting the terms, we get

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

SUMMER-15 EXAMINATION Model Answer

Subject code: (17562) Page 10 of 24


bject cod	le: (17562)		Page 19 of 26
	$\frac{dX_A}{dt} = \frac{k_1[X_{Ae}(M+1) - X_A(M+1)]}{(M+X_{Ae})}$ $\frac{dX_A}{dt} = \frac{k_1(M+1)}{(M+X_{Ae})} (X_{Ae} - X_A)$	3	
	$\int_0^{X_A} \frac{dX_A}{X_{Ae} - X_A} = \frac{k_1(M+1)}{(M+X_{Ae})} \int_0^t dt$		
	$-ln\left(\frac{X_{Ae}-X_{A}}{X_{Ae}}\right) = \frac{(M+1)}{(M+X_{Ae})}k_{1.}t$ eq. IV		
	$-ln\left(\frac{X_{Ae}-X_{A}}{X_{Ae}}\right) = -ln\left(\frac{C_{A}-C_{A0}}{C_{A0}-C_{Ae}}\right) = \frac{(M+1)}{(M+X_{Ae})}k_{1}.t$ eq.V		
	Eq.V is the desired integrated rate equation for reversible first order r A plot of		
	$-\ln\left(\frac{X_{Ae}-X_{A}}{X_{Ae}}\right)$ vs time gives a straight line with slope equal to		
	$\frac{(M+1)}{(M+X_{Ae})}k_{1.}$		
		1	

(Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

SUMMER-15 EXAMINATION Model Answer

Subject code: (17562) Page **20** of **26**

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

SUMMER-15 EXAMINATION Model Answer

bject code: (17562)			Page 21 of 26
	Rate of disappearance of A in moles/time in the reaction volume		
	$V = (-r_A)V$		
	Moles of A fed = N_{A0}		
	$N_A = N_{A0}(1 - X_A)$ where X_A is the fractional conversion of A at time t		
	Rate of accumulation of A within reactor (moles/time) = $\frac{dN_A}{dt}$		
	$= \frac{d[N_{A0}(1-X_A)]}{dt} = -N_{A0} \frac{dX_A}{dt}$		
	Replacing the terms in eq(2)		
	$(-r_A)V = \left(N_{A0}\frac{dX_A}{dt}\right)$	2	
	Rearranging we get		
	$dt = N_{A0} \frac{dX_A}{(-r_A)V} \qquad \dots (3)$		
	Integrating eq.(3) within the limits		
	$\int_0^t dt = N_{A0} \int_0^{X_A} \frac{dX_A}{(-r_A).V}$		
	$t = N_{A0} \int_0^{X_A} \frac{dX_A}{(-r_A).V} \qquad \dots (4)$	2	
	Eq.(4) is the design equation for batch reactor ,which indicates the time needed		
	to achieve a conversion X_A . For either isothermal or non-isothermal operation,		
	the terms rate $-r_A$ & volume V are retained under the integral sign because they		
	both may change as the reaction proceeds.		
		2	

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

SUMMER-15 EXAMINATION Model Answer

Subject code: (17562) Page **22** of **26**

3	2. (17302)		age 22 of 20
	(RA)V Area to NAC)		
5-c	Comparison of mixed flow reactor(CSTR/ MFR) & plug flow	2 marks	8
	reactor(PFR):	each for	
	1) For any given duty & for all positive reaction orders, size of MFR is	any 4	
	always larger than that of PFR.the volume ratio Vm / Vp increases with	points	
	reaction order.		
	2) For low values of conversion, the reactor performance is only slightly		
	affected by type of flow, the volume ratio approaching unity as conversion		
	approaches zero. The size ratio increases very rapidly at high values of		
	conversion.		
	3) Design of reactor is affected by density variation during reaction.		
	Expansion(density decrease) during reaction increases the size ratio,but		
	decreases, the effectiveness of CSTR with respect to PFR. The density		
	increase during reaction has the opposite effect.		
	4) For a given space time , conversion in a PFR is higher than in MFR.		
	5) The performance equation for MFR is		
	$\tau_m \cdot C_{A0}^{n-1} = \left(\frac{C_{A0}V}{F_{A0}}\right)_m = \frac{X_A (1+\varepsilon_A \cdot X_A)^n}{k (1-X_A)^n}$		
	The performance equation of PFR is		

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

SUMMER-15 EXAMINATION Model Answer

Subject code: (17562) Page 23 of 26

sjeet co	de : (17302)		1 age 23 of 20
	$\tau_{p}. C_{A0}^{n-1} = \left(\frac{C_{A0}^{n} V}{F_{A0}}\right)_{p} = \frac{1}{K} \int_{0}^{XA} \frac{(1 + \varepsilon A X A)^{n}}{(1 - X_{A})^{n}} dX_{A}$		
	6) It is possible to operate MFR under isothermal conditions where as with		
	PFR it is difficult.		
	7) MFR have long residence time compared to PFR		
	8) MFR is not suitable for high pressure reactions where as PFR is suitable		
6-a	Plug flow reactors in Series : Assume two PFRs are placed in series as shown		4
	below		
	Let $X_1 \& X_2$ be the fractional conversions of a component A leaving reactors 1		
	&2.		
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		
	X ₁ : conversion of A from first reactor		
	X ₂ : overall conversion of A from entire system		
	The performance equation for PFR1 is $\frac{V_1}{F_0} = \int_0^{X_1} \frac{dX}{(-r)}$		
	The performance equation for PFR2 is $\frac{V_2}{F_0} = \int_{X_1}^{X_2} \frac{dX}{(-r)}$		
	Two PFRS in series	2	
	$\frac{V}{F_0} = \frac{V_1}{F_0} + \frac{V_2}{F_0} = \int_0^{X_1} \frac{dX}{(-r)} + \int_{X_1}^{X_2} \frac{dX}{(-r)}$ EqI		
	From eqI, it is clear that the total volume of two PFRs in series is identical to		
	that of one PFR(single reactor) for the same conversion. If the total volume of		
L			

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

SUMMER-15 EXAMINATION <u>Model Answer</u>

Subject code : (17562) Page **24** of **26**

4	DED a in soules in M. M M.	for V then the same some in (V) - 1		
are o	connected in series or one PFR	of same reactor volume.	2	
Che	emical Potential :It is defined	as the change in free energy of a substance	1 mark	4
whe	n one mole of it is added to su	ch a large quantity of the system that there is	each	
no a	ppreciable change in overall c	omposition of the system at constant		
tem	perature & pressure.			
Fug	acity: :It is defined as a therm	odynamic property of a real gas which if		
subs	stituted for the pressure or part			
give	s equations applicable to the r			
Gib	bs Free Energy :It is the the e			
Entropy(s): It is the measure of the total disorder or randomness of the system				
or it	is a measure of the unavailable	le energy to perform the useful work		
Elementary and non elementary reactions:				4
Sr	Elementary reactions	Non-elementary reactions		
n				
о.			1 mark	
1	These are single steps	These are multistep reactions.	each for	
	reactions.		any 4	
2	Simple in nature	Complex in nature		
3	Order of reaction agrees	Order of reaction does not agree with		
	with stoichiometry.	stoichiometry.		
4	For these reactions, order	Order may be an integer or fractional		
	must be an integer	value.		
	achi are of the wheeled the constant of the co	achieved using one PFR of volume are connected in series or one PFR Chemical Potential: It is defined when one mole of it is added to su no appreciable change in overall of temperature & pressure. Fugacity: :It is defined as a therm substituted for the pressure or part gives equations applicable to the results of the feasibility and equil constant temperature and pressure entropy(s): It is the measure of the or it is a measure of the unavailable. Elementary and non elementary Sr Elementary reactions n o. 1 These are single steps reactions. 2 Simple in nature 3 Order of reaction agrees with stoichiometry. 4 For these reactions, order	Fugacity: :It is defined as a thermodynamic property of a real gas which if substituted for the pressure or partial pressure in the equations for an ideal gas gives equations applicable to the real gas. Gibbs Free Energy:It is the the energy actually available to do useful workIt predicts the feasibility and equilibrium conditions for chemical reactions at constant temperature and pressure. Entropy(s):It is the measure of the total disorder or randomness of the system or it is a measure of the unavailable energy to perform the useful work Elementary and non elementary reactions: Sr Elementary reactions Non-elementary reactions n o. 1 These are single steps These are multistep reactions. 2 Simple in nature Complex in nature 3 Order of reaction agrees order of reaction does not agree with with stoichiometry. 4 For these reactions, order Order may be an integer or fractional	achieved using one PFR of volume V.Thus it makes no diffence if two PFRs are connected in series or one PFR of same reactor volume. Chemical Potential: It is defined as the change in free energy of a substance when one mole of it is added to such a large quantity of the system that there is no appreciable change in overall composition of the system at constant temperature & pressure. Fugacity: It is defined as a thermodynamic property of a real gas which if substituted for the pressure or partial pressure in the equations for an ideal gas gives equations applicable to the real gas. Gibbs Free Energy:It is the the energy actually available to do useful workIt predicts the feasibility and equilibrium conditions for chemical reactions at constant temperature and pressure. Entropy(s):It is the measure of the total disorder or randomness of the system or it is a measure of the unavailable energy to perform the useful work Elementary and non elementary reactions: St Elementary reactions Non-elementary reactions These are single steps reactions. 2 Simple in nature Order of reaction does not agree with with stoichiometry. 4 For these reactions, order Order may be an integer or fractional

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

SUMMER-15 EXAMINATION Model Answer

Subject code: (17562) Page **25** of **26**

$ \begin{array}{ c c c c }\hline S & \text{If } 2A \rightarrow R, \text{the rate law is} \\ \hline & -r_A = kC_A^2 \\ \hline & -r_B = kC_B^\infty \\ \hline & Where & \neq 2 \\ \hline & 6 & \text{Ex } C_2H_5\text{OH} + \text{CH}_3\text{COOH} \\ \hline & \rightarrow & \text{CH}_3\text{COOC}_2\text{H}_5 + \\ \hline & H_2\text{O} \\ \hline \\ \hline & 6\text{-d} \\ \hline & For second order reaction:} \\ \hline & k = \frac{1}{t} \left[\frac{1}{c_A} - \frac{1}{c_{Ao}} \right] \\ \hline & t = 50 \text{ min} \\ \hline & C_{Ao} = 5*10^4 \text{ mol/1} \\ \hline & Gas is 40\% \text{ decomposed } C_A = C_{A0}(1-X_A) = 0.6 \text{ x5x}10^4 = 3*10 \text{ mol/1} \\ \hline & k = \frac{1}{50} \left[\frac{1}{3*10^{-4}} - \frac{1}{5*10^{-4}} \right] \\ \hline & k = 26.67 \text{ Vmol.min}^{-1} \\ \hline & 6\text{-e} \\ \hline & \textbf{Space time } (\tau): \\ \hline & It is the time required to process one reactor volume of feed measured at specified condition.} \\ \hline & \textbf{Equation and} \\ \hline & \textbf{unit: Space time } \tau = \text{Reactor volume/volumetric flow rate} = \frac{\nu}{\nu_0} \\ \hline & \text{Unit is unit of time (seconds, minute, etc)} \\ \hline \\ \hline & \textbf{Space velocity(s)} \\ \hline \\ \hline & \textbf{It is the number of reactor volume of feed at specified conditions which can} \end{array}$						
$-r_{A} = kC_{A}^{2}$ $-r_{B} = kC_{B}^{\infty}$ $Where \alpha \neq 2 6 Ex C_{2}H_{5}OH + CH_{5}COOH \rightarrow CH_{3}COOC_{2}H_{5} + H_{2}O Ex. H_{2} + Br_{2} \rightarrow 2HBr 6-d For second order reaction: k = \frac{1}{t} \left[\frac{1}{L_{A}} - \frac{1}{c_{A0}} \right] t = 50 \text{ min} C_{A0} = 5*10^{4} \text{ moV}I Gas is 40\% decomposed C_{A} = C_{A0}(1 - X_{A}) = 0.6 \text{ x5x}10^{-4} = 3*10 \text{ moV}I k = \frac{1}{50} \left[\frac{1}{3*10^{-4}} - \frac{1}{5*10^{-4}} \right] k = 26.67 \text{ l/mol.min}^{-1} 2 6-e Space time (\tau): It is the time required to process one reactor volume of feed measured at specified condition. Equation \text{ and } unit: Space time \tau = \text{Reactor volume/volumetric flow rate} = \frac{\nu}{\nu_{0}} Unit is unit of time (seconds, minute, etc)$		5	If $2A \rightarrow R$, the rate law is	For nonelementary reaction		
$-r_{B} = kC_{B}^{\infty}$ $Where \propto \neq 2$ $6 Ex C_{2}H_{3}OH + CH_{3}COOH$ $\rightarrow CH_{3}COOC_{2}H_{5} + H_{2}O$ $Ex. H_{2} + Br_{2} \rightarrow 2HBr$ $\rightarrow CH_{3}COOC_{2}H_{5} + H_{2}O$ $1 t = 50 \text{ min}$ $C_{A0} = 5*10^{-4} \text{ mol/1}$ $Gas is 40\% decomposed C_{A} = C_{A0}(1 - X_{A}) = 0.6 \text{ x}5x10^{-4} = 3*10 \text{ mol/1}$ $k = \frac{1}{50} \left[\frac{1}{3*10^{-4}} - \frac{1}{5*10^{-4}} \right]$ $k = 26.67 \text{ l/mol.min}^{-1}$ $2 6-e \text{Space time } (\tau):$ It is the time required to process one reactor volume of feed measured at specified condition. $E\text{quation and}$ $\text{unit: Space time } \tau = \text{Reactor volume/volumetric flow rate} = \frac{\nu}{\nu_{0}}$ Unit is unit of time (seconds, minute, etc)				$2B \rightarrow S$,the rate law may be		
Where $\alpha \neq 2$ 6 Ex C ₂ H ₅ OH + CH ₃ COOH \rightarrow CH ₃ COOC ₂ H ₅ + \rightarrow H ₂ O 6-d For second order reaction: $k = \frac{1}{t} \left[\frac{1}{c_A} - \frac{1}{c_{A0}} \right]$ $t = 50 \text{ min}$ $C_{A0} = 5*10^4 \text{ mol/l}$ Gas is 40% decomposed $C_A = C_{A0}(1 - X_A) = 0.6 \text{ x}5\text{x}10^4 = 3*10 \text{ mol/l}$ $k = \frac{1}{10} \left[\frac{1}{3*10^{-4}} - \frac{1}{5*10^{-4}} \right]$ $k = 26.67 \text{ I/mol.min}^{-1}$ 2 6-e Space time (τ) : It is the time required to process one reactor volume of feed measured at specified condition. Equation and unit: Space time τ = Reactor volume/volumetric flow rate = $\frac{v}{v_0}$ Unit is unit of time (seconds, minute, etc)			$-r_A = kC_A^2$			
6 Ex C ₂ H ₅ OH + CH ₃ COOH \rightarrow CH ₃ COOC ₂ H ₅ + \rightarrow CH ₃ COOC ₃ = \rightarrow CH ₃ COOC ₄ = \rightarrow CH ₄ COOC ₄ = \rightarrow CH ₄				$-r_{\rm B} = kC_{\rm B}^{\alpha}$		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				Where $\alpha \neq 2$		
For second order reaction: $k = \frac{1}{t} \left[\frac{1}{C_A} - \frac{1}{C_{A0}} \right]$ 1 $t = 50 \text{ min}$ $C_{A0} = 5*10^4 \text{ mol/l}$ Gas is 40% decomposed $C_A = C_{A0}(1 - X_A) = 0.6 \text{ x5x}10^{-4} = 3*10 \text{ mol/l}$ 1 $k = \frac{1}{50} \left[\frac{1}{13*10^{-4}} - \frac{1}{5*10^{-4}} \right]$ 2 $k = 26.67 \text{ l/mol.min}^{-1}$ 2 $\frac{1}{1} \text{ is the time required to process one reactor volume of feed measured at specified condition.}$ Equation and unit: Space time τ = Reactor volume/volumetric flow rate = $\frac{v}{v_0}$ 1 Unit is unit of time (seconds, minute, etc)		6	Ex C ₂ H ₅ OH + CH ₃ COOH	Ex. $H_2 + Br_2 \rightarrow 2HBr$		
For second order reaction: $k = \frac{1}{t} \left[\frac{1}{C_A} - \frac{1}{C_{A0}} \right]$ 1 $t = 50 \text{ min}$ $C_{A0} = 5*10^4 \text{ mol/l}$ Gas is 40% decomposed $C_A = C_{A0}(1 - X_A) = 0.6 \text{ x}5\text{x}10^{-4} = 3*10 \text{ mol/l}$ 1 $k = \frac{1}{50} \left[\frac{1}{3*10^{-4}} - \frac{1}{5*10^{-4}} \right]$ 2 $k = 26.67 \text{ l/mol.min}^{-1}$ 2 $\frac{1}{3*10^{-4}} = \frac{1}{3*10^{-4}} = $			\rightarrow CH ₃ COOC ₂ H ₅ +			
$k = \frac{1}{t} \left[\frac{1}{C_A} - \frac{1}{C_{A0}} \right]$ $t = 50 \text{ min}$ $C_{A0} = 5*10^4 \text{ mol/1}$ Gas is 40% decomposed $C_A = C_{A0}(1 - X_A) = 0.6 \text{ x}5\text{x}10^{-4} = 3*10 \text{ mol/1}$ $k = \frac{1}{50} \left[\frac{1}{3*10^{-4}} - \frac{1}{5*10^{-4}} \right]$ $k = 26.67 \text{ l/mol.min}^{-1}$ 2 6-e Space time (τ) : It is the time required to process one reactor volume of feed measured at specified condition. Equation and unit: Space time τ = Reactor volume/volumetric flow rate = $\frac{\nu}{\nu_0}$ Unit is unit of time (seconds, minute, etc)			H ₂ O			
t = 50 min $C_{A0} = 5*10^{-4} \text{ mol/l}$ Gas is 40% decomposed $C_A = C_{A0}(1 - X_A) = 0.6 \text{ x}5\text{x}10^{-4} = 3*10 \text{ mol/l}$ $k = \frac{1}{50} \left[\frac{1}{3*10^{-4}} - \frac{1}{5*10^{-4}} \right]$ $k = 26.67 \text{ l/mol.min}^{-1}$ 2 6-e Space time (τ) : It is the time required to process one reactor volume of feed measured at specified condition. Equation and unit: Space time τ = Reactor volume/volumetric flow rate = $\frac{v}{v_0}$ Unit is unit of time (seconds, minute, etc)	6-d	For	second order reaction:			4
$C_{A0} = 5*10^4 \text{ mol/l}$ Gas is 40% decomposed $C_A = C_{A0}(1 - X_A) = 0.6 \text{ x}5\text{x}10^{-4} = 3*10 \text{ mol/l}$ $k = \frac{1}{50} \left[\frac{1}{3*10^{-4}} - \frac{1}{5*10^{-4}} \right]$ $k = 26.67 \text{ l/mol.min}^{-1}$ 2 6-e Space time (τ) : It is the time required to process one reactor volume of feed measured at specified condition. Equation and unit: Space time τ = Reactor volume/volumetric flow rate = $\frac{V}{v_0}$ Unit is unit of time (seconds, minute, etc)			$k = \frac{1}{t} \left[\frac{1}{C_A} - \frac{1}{C_{A0}} \right]$		1	
Gas is 40% decomposed $C_A = C_{A0}(1 - X_A) = 0.6 \text{ x}5\text{x}10^{-4} = 3*10 \text{ mol/l}$ $k = \frac{1}{50} \left[\frac{1}{3*10^{-4}} - \frac{1}{5*10^{-4}} \right]$ $k = 26.67 \text{ l/mol.min}^{-1}$ 2 6-e Space time (τ) : It is the time required to process one reactor volume of feed measured at specified condition. Equation and unit: Space time τ = Reactor volume/volumetric flow rate = $\frac{v}{v_0}$ Unit is unit of time (seconds, minute, etc)			t = 50 min			
$k = \frac{1}{50} \left[\frac{1}{3*10^{-4}} - \frac{1}{5*10^{-4}} \right]$ $k = 26.67 \text{ l/mol.min}^{-1}$ 2 6-e Space time (τ): It is the time required to process one reactor volume of feed measured at specified condition. Equation and unit: Space time τ = Reactor volume/volumetric flow rate = $\frac{v}{v_0}$ Unit is unit of time (seconds, minute, etc)			$C_{A0} = 5*10^{-4} \text{ mol/l}$			
$k = 26.67 \text{ l/mol.min}^{-1}$ $6-e \qquad \text{Space time } (\tau):$ It is the time required to process one reactor volume of feed measured at specified condition. Equation and unit: Space time $\tau = \text{Reactor volume/volumetric flow rate} = \frac{v}{v_0}$ Unit is unit of time (seconds, minute, etc)		Gas is 40% decomposed $C_A = C_{A0}(1 - X_A) = 0.6 \text{ x} 5 \text{x} 10^{-4} = 3*10 \text{ mol/l}$				
6-e Space time (τ): It is the time required to process one reactor volume of feed measured at specified condition. Equation and unit: Space time τ = Reactor volume/volumetric flow rate = $\frac{v}{v_0}$ Unit is unit of time (seconds, minute, etc)		$k = \frac{1}{50} \left[\frac{1}{3*10^{-4}} - \frac{1}{5*10^{-4}} \right]$				
It is the time required to process one reactor volume of feed measured at specified condition. Equation and unit: Space time τ = Reactor volume/volumetric flow rate = $\frac{v}{v_0}$ Unit is unit of time (seconds, minute, etc)		i	$\kappa = 26.67 \text{ l/mol.min}^{-1}$		2	
specified condition. Equation and unit: Space time τ = Reactor volume/volumetric flow rate = $\frac{v}{v_0}$ Unit is unit of time (seconds, minute, etc)	6-e	S	pace time (τ) :			4
Equation and unit: Space time τ = Reactor volume/volumetric flow rate = $\frac{v}{v_0}$ Unit is unit of time (seconds, minute, etc)		It i	s the time required to process of	one reactor volume of feed measured at	1	
unit: Space time τ = Reactor volume/volumetric flow rate = $\frac{v}{v_0}$ Unit is unit of time (seconds, minute, etc)		spe	cified condition.			
Unit is unit of time (seconds, minute, etc) Space velocity(s)		Eq	uation and			
Unit is unit of time (seconds, minute, etc) Space velocity(s)		uni	t: Space time $\tau = \text{Reactor}$	volume/volumetric flow rate = $\frac{v}{v_0}$	1	
		Un	it is unit of time (seconds, min	nute, etc)	1	
It is the number of reactor volume of feed at specified conditions which can		Spa	ace velocity(s)			
		It is	s the number of reactor volume	e of feed at specified conditions which can	1	

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

SUMMER-15 EXAMINATION Model Answer

Subject code: (17562)	Page 26 of 26	
be treated in unit time.		
Space time = volumetric flow rate / Reactor volume		
Equation and unit		
Space velocity $s = volumetric flow rate / Reactor volume = \frac{v_0}{V}$		
Unit is time ⁻¹ (ex.second ⁻¹ min ⁻¹)	1	