

SUMMER-15 EXAMINATION <u>Model Answer</u>

Subject code :(17560)

Page **1** of **23**

Important Instructions to examiners:

1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme.

2) The model answer and the answer written by candidate may vary but the examiner may try to assess the understanding level of the candidate.

3) The language errors such as grammatical, spelling errors should not be given more

Importance (Not applicable for subject English and Communication Skills.

4) While assessing figures, examiner may give credit for principal components indicated in the

figure. The figures drawn by candidate and model answer may vary. The examiner may give credit for any equivalent figure drawn.

5) Credits may be given step wise for numerical problems. In some cases, the assumed constant values may vary and there may be some difference in the candidate's answers and model answer.

6) In case of some questions credit may be given by judgement on part of examiner of relevant answer based on candidate's understanding.

7) For programming language papers, credit may be given to any other program based on equivalent concept.

Subject code :(17560)

Page 2 of 23

Q No.	Answer	marks	Total marks
1A-a	Thermal insulators: These are substances having low value of thermal	1	4
	conductivities.		
	Use: to minimize the rate of heat flow.	1	
	Example: Asbestos, glass wool, cork	1 mark	
		each for	
		any 2	
1A-b	Fouling factor: When heat transfer equipment is put into service, after	3	4
	sometime, scale, dirt and other solids deposit on both sides of pipe wall,		
	providing two more resistance to heat transfer. The added resistance must be		
	taken into account in calculation of overall heat transfer coefficient. The		
	additional resistance reduces the original value of overall heat transfer		
	coefficient and required amount of heat is no longer transferred by original heat		
	transfer surface. Hence heat transfer equipments are designed by taking into		
	account the deposition of dirt and scale by introducing a resistance known as		
	fouling factor.		
	Effect: It offers additional resistance to heat transfer; reduces the heat transfer	1	
	coefficient.		
1A-c	Radiation: It is the transport of energy through space by electromagnetic	2	4
	waves. It depends upon the electromagnetic waves as a means for transfer of		
	energy from a source to receiver.		
	Stefan- Boltzman law:	2	
	It states that the total energy emitted (emissive power) per unit area per unit		
	time by a black body is proportional to fourth power of its absolute		

Subject

ect code :(17560)	Page	e 3 of 23
temperature. $W_b \alpha T^4$ Or $W_b = \sigma T^4$ where σ is Stefan Boltzman constant=5.67*10 ⁻⁸ (W/m ² K ⁴)	⁺)	
1A-d 1-2 shell and tube heat exchanger:	4	4
1B-aHeat loss through a composite wall:Consider a flat wall constructed of a series of layers of thickness x1, respectively. Let the thermal conductivities of layers be K_1, K_2, K_3 . L $\Delta T2, \Delta T3$ be the temperature drop across the layers. Let ΔT be t temperature drop across the entire wall. $\Delta T = \Delta T1 + \Delta T2 + \Delta T3$ $\Delta T_1 = q_1 * B_1 / K_1 * A \Delta T_2 = q_2 * B_2 / K_2 * A \Delta T_3 = q_3 * B_3 / K_3 * A$ Where A is the area of the wall at right angle to the plane 	, x2, x3 .et Δ T1, he total 2 e should	6
pass through second and third. So $q_1 = q_2 = q_3$ $\Delta T = q[B_1/K_1*A + B_2/K_2*A + B_3/K_3*A]$ $= q[R_1+R_2+R_3]$ OR $q = \Delta T/[R_1+R_2+R_3]$	2	

ject cod	e :(17560)		Page 4 of 23
	But $q = \Delta T/R$		
	Therefore : $R = R_1 + R_2 + R_3$	2	
	In heat flow through a series of layers the over all resistance is equal to the sum		
	of individual resistances.		
1B-b	Forced circulation evaporator:		6
	-> vapour	5	
	steam / deflection		
	V TI		
	events.		
	body		
	1-2 shell condensate		
	& terbe heat		
	exchanger.		
	parup beed		
	Application: used for crystalline products, viscous, salting, scaling and	1 mark	
	corrosive and foaming solutions.	for any 1	
2-a	Thermal conductivity: It is a measure of the ability of the substance to	2	4
	conduct heat. It is the amount of heat passing through a material of a unit		
	thickness with a unit heat flow area in unit time when a unit temperature		
	difference is maintained across the opposite faces of the material.		
	Unit: W/ (m.K)	1	
	Relation between temperature and thermal conductivity:		

ect cod	le :(17560)	I	Page 5 of 23
	For small temperature ranges, thermal conductivity is taken as constant but for	1	
	large temperature changes, it varies linearly with temperature and is given by		
	$K = a+bT+cT^2+$ where a,b and c are constants and T is temperature in K		
2-b	Basis: 1 meter length of pipe	1	4
	Inner radius r_1 = 12.5 mm= 0.0125 m		
	Outer radius $r_2 = 12.5 \text{ mm} + 10 \text{ mm} = 0.0225 \text{ m}$		
	$Ti = 273 + 140 = 413 \text{ K} T_2 = 273 + 35 = 308 \text{ K}$	1	
	K=0.04 W/mK		
	$r_{LM} = (r_2 - r_1) / \ln(r_2/r_1) = 0.0225 - 0.125 / \ln(0.0225/0.0125)$	1	
	= 0.017		
	Heat loss $Q = 2\Pi r_{LM} Lk(T_1-T_2)/(r_2-r_1)$		
	= 2 Π*0.017 *1*0.04(413-308)/ (0.0225-0.0125)	1	
	= 44.84 W		
2-c	Black body: It is the substance which absorbs all the radiation falling on it. For	2	4
	a black body, absorptivity $\alpha = 1$ and transmissivity = reflectivity= 0.		
	Examples: lampblack, cosmic background radiation,	2	
2-d	Application of finned tube heat exchanger: When the heat transfer	2	4
	coefficient of one of the process fluids is very low as compared to the other, the		
	overall heat transfer coefficient becomes approximately equal to the lower		
	coefficient. This reduces the capacity per unit area of the heat transfer surface		
	and thus make it necessary to provide very large heat transfer area. The heat		
	transfer area of a pipe or or tube is increased by attaching metal pieces called		
	fins.		
	Used in: Automobile radiator, air cooled steam condensers for turbine and	1 mark	
	engine works, economiser	each for	
		any2	

2-е	 Use of baffle: 1. To increase the rate of heat tr turbulence of the shell side fluid. 2. Structural support for the tubes a Square pitch Permits external cleaning of the tubes Causes low pressure drop on the shell	ransfer by increasing the velocity and and dampers against vibration. Triangular pitch Difficult to clean	1 mark each 1 mark each for	
	 To increase the rate of heat tr turbulence of the shell side fluid. Structural support for the tubes a Square pitch Permits external cleaning of the tubes Causes low pressure drop on the shell 	ransfer by increasing the velocity and and dampers against vibration. Triangular pitch Difficult to clean	1 mark each 1 mark each for	
	turbulence of the shell side fluid. 2. Structural support for the tubes a Square pitch Permits external cleaning of the tubes Causes low pressure drop on the shell	nd dampers against vibration. Triangular pitch Difficult to clean	each 1 mark each for	
	 2. Structural support for the tubes a Square pitch Permits external cleaning of the tubes Causes low pressure drop on the shell 	and dampers against vibration. Triangular pitch Difficult to clean	1 mark each for	
	Square pitchPermits external cleaning of the tubesCauses low pressure drop on the shell	Triangular pitch Difficult to clean	1 mark each for	
	Permits external cleaning of the tubes Causes low pressure drop on the shell	Difficult to clean	each for	
	Causes low pressure drop on the shell		cucii ioi	
		Causes more pressure drop	any2	
	side fluid			
	Less no. of tubes can be	Larger no. of tubes can be		
	accommodated than with triangular	accommodated in a given shell		
	pitch	diameter		
	Creates comparatively less	Creates large turbulence in the shell		
	turbulence	side fluid		
	Can be used for dirty fluids also	Used for clean fluid		
3-a	To derive Q=UA ΔT _{lm}			
	$dA = Bdx \qquad Area = A = BL$ $T_{h} \qquad H_{h} \qquad H$). The rate of heat transfer across it is	1	

Subject code :(17560)	Page 7 of 23
given by	
dq = U (Th-Tc) B dx(1)	1
Since there are no losses to the surroundings, the heat transfer rate is also equal	
to the rate of change of enthalpy on either side. Therefore,	
dq = -mh Cph dTh(2)	
$= \operatorname{mc} \operatorname{Cpc} \operatorname{dTc} \operatorname{(3)}$	
Now $\Delta T = Th-Tc$ (4)	1
On differentiating	
$d(\Delta T) = dTh - dTc(5)$	
substituting for dq, dTh and dTc from equations (1), (2) and (3) into equation	
(5), we obtain	1
$d(\Delta T)/\Delta T$ = - (1/(mh Cph) + 1/(mc Cpc)) U B dx	
ΔTe	
$\int_{\Delta Ti} d(\Delta T) / \Delta T = - (1/(mh Cph) + 1/(mc Cpc)) U B \int_0^L dx$	
$\ln (\Delta Te / \Delta Ti) = - (1/(mh Cph) + 1/(mc Cpc)) U A(6)$	1
where $\Delta Te = T_{he} - T_{ce}$	
$\Delta T i = T_{hi} - T_{ci}$	
Now if q is the total rate of heat transfer in the heat exchanger, then	
$q = m_h C p_h (T_{hi} - T_{he})$ (7)	1
$= mc Cpc (T_{ce} - T_{ci})(8)$	

Subject	code :(17560)		P	age 8 of 23
	Substituting equations (7) and (8) into e	equation (6),		
	$\ln (\Delta Te/\Delta Ti) = -1/q[(T_{hi}-T_{he}) + (T_{ce}-T_{he})]$			
	$q=$ U A (Δ Ti- Δ Te)/ ln (Δ Ti/ Δ Te)	1		
	Equation (9) is the performance equation	on for a parallel-flow heat exchanger.		
	Q= U A ΔTlm		1	
	Where $\Delta T \ln = (\Delta T i - \Delta T e) / \ln (\Delta T i / \Delta T)$	e)		
3-1	Co current and counter current flow:	:	2 marks	8
	Co current flow	Counter current flow	each for	
	i) Both hot fluid & cold fluid enter at	i) Both hot fluid & cold fluid enter at	any 4	
	same end & come out from other end	different ends & come out from		
		Different ends.		
	ii) Both fluid flow in the same	ii) Both fluid flow in opposite		
	direction.	direction.		
	iii) LMTD is low iii)) LMTD is more.		

SUMMER-15 EXAMINATION Model Answer

Subject code :(17560)

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous) (ISO/IEC - 27001 - 2005 Certified)

ject code :(17560)		I	Page 10 of 23
	Advantages of it over Shell & Tube Heat Exchanger :	2	
	i)Rate of Heat transfer is very High.		
	ii) It can be used for handling corrosive liquids		
	Applications of graphite block h.e.		
	i) It is used for very explosive liquid.	2	
	ii) ii) It can be used for Corrosive Fluid.		
4A-a	Optimum thickness of insulation:		4
	The optimum thickness of an insulation is obtained by purely economic	2	
	approach. The greater the thickness, the lower the heat loss & the greater the		
	initial cost of insulation & the greater the annual fixed charges.		
	It is obtained by purely economic approach. Increasing the thickness of an		
	insulation reduces the loss of heat & thus gives saving in operating costs but at		
	the same time cost of insulation will increase with thickness. The optimum		
	thickness of an insulation is the one at which the total annual cost (the sum		
	values of heat lost and annual fixed charges) of the insulation is minimum.		
	Total cost Total cost Total cost Thickness of insulation -	2	
	Optimum Thickness Of Insulation		

ject cod	e :(17560)	Page 11 of 2	23
4A-b	Kirchhoff's Law :		2
	Consider that the two bodies are kept into a furnace held at constant		
	temperature of T K. Assume that, of the two bodies one is a black body& the	1	
	other is a non-black body i.e. the body having 'a' value less than one. Both the		
	bodies will eventually attain the temperature of T K & the bodies neither		
	become hotter nor cooler than the furnace. At this condition of thermal		
	equilibrium, each body absorbs and emits thermal radiation at the same rate.		
	The rate of absorption & emission for the black body will be different from that		
	of he non-black body.		
	Let the area of non-black body be A_1 and A_2 respectively. Let 'I' be the rate at		
	which radiation falling on bodies per unit area and E_1 and E_2 be the emissive		
	powers (emissive power is the total quantity of radiant energy emitted by a	1	
	body per unit area per unit time)of non-black & black body respectively.		
	At thermal equilibrium, absorption and emission rates are equal, thus,		
	$ a_1 A_1 = A_1 E_1$ (1.1)		
	$\therefore \mathbf{a}_1 = \mathbf{E}_1 \qquad \dots $		
	And $la_b A_2 = A_2 E_b$ (1.3)		
	$ \mathbf{a}_{\mathbf{b}} = \mathbf{E}_{\mathbf{b}} \qquad \dots \dots$		
	From equation (1.1) and (1.4).we get	1	
	$\frac{E1}{a1} = \frac{Eb}{ab} \qquad \dots $		
	Where $a_1a_b =$ absorptivity of non-black & black bodies respectively.		
	If we introduce a second body (non-black) then for the second non-black		
	body, we have :		
	$ A_3 a_2 = E_2 A_3$ (1.6)		

ect cod	e :(17560)	F	'age 12 of 23
	$\therefore \mathbf{a}_2 = \mathbf{E}_2 \qquad \dots $		
	Where $a_1 = E_2$ are the absorptivity and emissive power of the second non-black		
	body.		
	Combining equations (1.2) , (1.4) and (1.7) we get,		
		1	
	$\frac{E_1}{a_1} = \frac{E_2}{a_2} = \frac{E_3}{a_3} = E_b \qquad \dots $		
4A-c	Parts of Shell & Tube heat Exchanger :	1 mark	4
	i)Shell – to transfer the hot liquid	each	
	ii) Tube – to hold the liquid to be heated		
	iii) Baffles – To increase turbulence on shell side		
	iv) Tube Sheet – to hold the tubes		
1A-d	Basis : 10,000 kg/hr of solution.	1	4
	Amount of NaOH in Solution		
	= 10,000 x 0.1		
	= 1000 kg	1	
	\therefore Amount of H ₂ O = 9000 kg		
	Find concentration of solution = 50%		
	Let 'x' is amount of find solution		
	$\therefore 0.5 = \frac{1000}{x}$		
	$\therefore \chi = \frac{1000}{0.5}$		
	= 2000 kg	1	
	\therefore H ₂ Oevaporated =10,000 – 2000		

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous) (ISO/IEC - 27001 - 2005 Certified)

- -

ect cod	e :(1/560)			Page 13 of 23
	= 9000-1000			
	= 8000		1	
	∴ Capacityof Evapo	$\mathbf{pration} = 8000 \frac{\mathbf{kg}}{\mathbf{hr}}$		
4B-a	Forward feed	Backward feed	1.5	6
	Flow of solution to be concentrated is	Flow of solution to be	marks	
	parallel to steam flow.	concentrated is in	each for	
		opposite direction to steam flow.	any 4	
	Does not need pump for moving the solution from effect to effect	Need pump for moving the solution from effect to		
		effect.		
	As all heating of cold feed solution is	Solution is heated in each		
	done in first effect , less vapour is produced , so lower economy.	effect , result in better economy.		
	The most concentrated liquor is in the	The most concentrated		
	last effect where temperature is lowest	liquor is in the first effect		
	and viscosity is highest , leads to	where temperature is		
	reduction in capacity.	highest and viscosity is		
		lowest, Thus high overall		
		coefficient.		
	Maintenance charges and power cost	Maintenance charges and		
	are low	power cost are more.		
	Most common as it is simple to	Not very common as it		
	operate	need pump.		
	More economical in steam.	At low values of feed		

Page 14 of 23

SUMMER-15 EXAMINATION Model Answer

Subject code :(17560)

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous) (ISO/IEC - 27001 - 2005 Certified)

ubject co	de :(17560)	l	Page 15 of 23
	Assume, $L = 1m$	1	
	$Q = \frac{2\prod (235-38)}{\frac{\ln (\frac{0.11}{0.06})}{0.062} + \ln (\frac{(\frac{0.140}{0.11})}{0.872})}$		
		1	
	= 123.162 W/m		
	Let T be the temperature between two layers of Insulation.		
	$\therefore Q = (T_1 - T)/R_1$	1	
	$123.16 = (508 - T_0) / 1.56$		
	T = 315.93 K	1	
5-a	Wilson Plot:		8
	The Wilson plot method was developed by Wilson in 1915 to evaluate the convection	2	
	coefficients in shell and tube condensers for the case of a vapour condensing outside		
	by means of a cool liquid flow inside. It is based on the separation of the overall		
	thermal resistance into the inside convective thermal resistance and the remaining		
	thermal resistances participating in the heat transfer process.		

SUMMER-15 EXAMINATION Model Answer

Subject code :(17560)

Page 16 of 23

ject code :(17560)		Page 17 of 23		
	a straight	t line with the slope equal to $1/a$ and intercept equal to $Xw/K + 1/h0$.	2	
	The value	es of h0 is obtained from the intercept and a represents the value of		
	film coef	ficient hi for a unit velocity of cold fluid.		
5-b	mass flow	w rate= 1kg/s		
	density o	f water(ρ)=980kg/m ³		
	volumetr	ic flow rate(Q)= $1/980 \text{ m}^3/\text{s} = 1.02 \text{x} 10^{-3} \text{ m}^3/\text{s}$		
	velocity($u) = Q/A = 1.02 \times 10^{-3} \times 4/3.14 (0.025 \times 0.025) = 0.519 \times 4 \text{ m/s} = 2.078 \text{ m/s}$	1	
	NRe= Du	$\mu = 15894.38x4 = 63577.52$		
	Flow is t	urbulent. Thus We have to use Dittus Bolter equation.	1	
	Npr= 5.32(Cp μ/K)			
	$NNu = 0.023 (NRe)^{0.8x} (Npr)^{0.3}$			
	hid/k= 26	54.32		
	i)	hi=6661.08 w/m ² k	2	
	overall h	eat transfer coefficient(U)=		
	I/U= 1/h	0+1/hi		
	$=2.167x^{1}$	10 ⁻⁴		
	ii)	$U = 4612.7 \text{ W/m}^2 \text{k}$	2	
	T1(393k)→T2(393k)		
	t2(358k)←t1(298k)			
		$\Delta T1 = T1 - t2 = (393 - 358) = 35K$		
		$\Delta T2 = t1 - T2 = (393 - 298) = 95k$		
		Δ Tlm= (95-35)/ln(95/35)=60 k		
	iii)	Q=UA ΔTlm		

ject code :(17560)		Page 18 of 23	
	Q=m.cp. ΔT=251220 W		
	251220= 4612.7 x 3.14x0.025xLx60	2	
	L=11.56m		
5-c			8
	Two methods for increasing the economy of evaporation	2	
	1) Use of Multiple effect evaporators		
	2) Vapour recompression		
	Multiple effect evaporators:		
	An evaporator is essentially a heat exchanger in which a liquid is boiled to give		
	a vapour, so that it is also, simultaneously, a low pressure steam generator. It	3	
	may be possible to make use of this, to treat an evaporator as a low pressure		
	boiler, and to make use of the steam thus produced for further heating in		
	another following evaporator called another effect.		
	Consider two evaporators connected so that the vapour line from one is		
	connected to the steam chest of the other as shown in Fig, making up a two		
	effect evaporator.		
		1	1

SUMMER-15 EXAMINATION Model Answer

Subject code :(17560)

Page 19 of 23

	(1/300)		Page 20 of 23
	effect three, and so on, as in these cir	cumstances the feed will flow without	
	pumping. This is called forward feed	. It means that the most concentrated	
	liquids will occur in the last effect. Alto		
	direction, starting in the last effect and	proceeding to the first, but in this case	
	the liquid has to be pumped from one	effect to the next against the pressure	
	drops. This is called backward feed	and because the concentrated viscous	
	liquids can be handled at the highest te	mperatures in the first effects it usually	
	offers larger evaporation capacity than	n forward feed systems, but it may be	
	disadvantageous from the viewpoint of	product quality.	
	distribution.		
6-a	Drop wise and film wise condensation		4 8
6-a	Drop wise and film wise condensation Drop-wise condensation	Film-wise condensation	4 8
6-a	Drop wise and film wise condensation Drop-wise condensation 1. In case of drop-wise aondensation	Film-wise condensation 1. In case of film-wise condensation	4 8
6-a	Drop wise and film wise condensation Drop-wise condensation 1. In case of drop-wise condensation the condensate (condensed liquid) does not	Film-wise condensation 1. In case of film-wise condensation the condensed liquid wats the surface and	4 8
6-a	Drop wise and film wise condensation Drop-wise condensation 1. In case of drop-wise condensation the condensate (condensed liquid) does not wet the surface and collects to	Film-wise condensation 1. In case of film-wise condensation the condensed liquid wets the surface and forms a continuous film of	4 8
6-a	Drop wise and film wise condensation Drop-wise condensation 1. In case of drop-wise condensation the condensate (condensed liquid) does not wet the surface and collects to grow for a while and then fall	Film-wise condensation 1. In case of film-wise condensation the condensed liquid wets the surface and forms a continuous film of condensate through	4 8
6-a	Drop wise and film wise condensation Drop-wise condensation 1. In case of drop-wise condensation the condensate (condensed liquid) does not wet the surface and collects to grow for a while and then fall from the surface leaving bare [condensed liquid]	Film-wise condensation 1. In case of film-wise condensation the condensed liquid wets the surface and forms a continuous film of condensate through which heat transfer takes place. This	4 8
6-a	Drop wise and film wise condensation Drop-wise condensation 1. In case of drop-wise condensation the condensate (condensed liquid) does not wet the surface and collects to grow for a while and then fall from the surface, leaving bare metal surface for	Film-wise condensation 1. In case of film-wise condensation the condensed liquid wets the surface and forms a continuous film of condensate through which heat transfer takes place. This condensate flows down due to	4 8
6-a	Drop wise and film wise condensation Drop-wise condensation 1. In case of drop-wise condensation the condensate (condensed liquid) does not wet the surface and collects to grow for a while and then fall from the surface, leaving bare metal surface for further	Film-wise condensation 1. In case of film-wise condensation the condensed liquid wets the surface and forms a continuous film of condensate through which heat transfer takes place. This condensate flows down due to action of gravity	4 8
б-а	Drop wise and film wise condensation Drop-wise condensation 1. In case of drop-wise condensation the condensate (condensed liquid) does not wet the surface and collects to grow for a while and then fall from the surface, leaving bare metal surface for further condensation.	Film-wise condensation 1. In case of film-wise condensation the condensed liquid wets the surface and forms a continuous film of condensate through which heat transfer takes place. This condensate flows down due to action of gravity 2. Heat transfer coefficients are	4 8
6-a	Drop wise and film wise condensation Drop-wise condensation 1. In case of drop-wise condensation the condensate (condensed liquid) does not wet the surface and collects to grow for a while and then fall from the surface, leaving bare metal surface for further condensation. 2. Heat transfer coefficient are werv high in and of drop	Film-wise condensation 1. In case of film-wise condensation the condensed liquid wets the surface and forms a continuous film of condensate through which heat transfer takes place. This condensate flows down due to action of gravity 2. Heat transfer coefficients are relatively very low in case of	4 8
6-a	Drop wise and film wise condensation Drop-wise condensation 1. In case of drop-wise condensation the condensate (condensed liquid) does not wet the surface and collects to grow for a while and then fall from the surface, leaving bare metal surface for further condensation. 2. Heat transfer coefficient are very high in case of drop-wise condensation since the	Film-wise condensation 1. In case of film-wise condensation the condensed liquid wets the surface and forms a continuous film of condensate through which heat transfer takes place. This condensate flows down due to action of gravity 2. Heat transfer coefficients are relatively very low in case of film wise condensation since	4 8

SUMMER-15 EXAMINATION Model Answer

Subject code :(17560)

Page 21 of 23

Sub	Subject code :(17560)		Page 22 of 23	
	Heat is given by hot water available at 90°C (363k)			
	Rate of heat loss by hot water			
	Q2= m.Cp.(t2-t1)=30x4.187x(363-t1)			
	As per energy balance			
	Q1=Q2			
	30x4.187x(363-t2)= 3140.2			
	(363-t2)= 20			
	t2=363-20=338k			
	i) For counter current flow			
	(209k)T1 ->T2(229k)			
	$(230k) + 2 \checkmark + 1 (262k)$			
	(330k) (2 ((1 (303k)			
	ΔT1= t2-T1=(343-298)=40K			
	∆T2=t1-T2 = (363-328)=35k			
	ΔTIm= (40-35)/In(40/35) = 37.44k	1		
	ii) For Co current flow			
	ΔT1= t1-T1=(363-298)=65K			
	ΔT2=t2-T2 = (338-328)=10k			
	$\Delta T Im (45.10) / ln (45.(10)) 20.29 /$			
	$\Delta \Pi \Pi = (05 - 10)/\Pi (05 - 10) = 29.30K$	1		
	The rate of heat transfer is given by			
		2		

ect code :(17560)		I	Page 23 of 23	
	Q= U A ΔTIm			
	$3140.2 \times 10^3 = 1500 \times A \times 37.44$	1		
	A= 55.91m ²			
б-с	Basis: 30000 kg/hr feed is fed to the evaporator.		8	
	Material balance of solids:			
	Solids in feed= solids in the thick liquor			
	0.10x30000=0.05xm'			
	m'=6000kg/h.	1		
	overall Material balance:			
	kg/h feed= kg/h water evaporated + kg/h thick liquor			
	water evaporated= mv=30000-6000=24000kg/h	1		
	enthalpy balance over evapoprator(assuming no heat loss)			
	Q=ms λ s= mf.Cpf.(T-Tf)+ mv λ			
	msx2202=30000x4x(323-293)+24000x2383	2		
	ms=27599kg/h.			
	steam consumption= 27599kg/h			
	steam economy= kg/h water evaporated/kg/h steam consumed			
	= 24000/27599.5 = 0.87	2		
	Heat load= Q= ms λ s= 27599.5x2202=16881694 w	1		
	$\Delta T = Ts - T = 393 - 323 = 70K$			
	$A = 0/11$ $AT = 16881604/2000 \times 70 = 82.16 \text{ m}^2$	1		