

SUMMER – 15 EXAMINATIONS

Subject Code: 17554

<u>Model Answer</u>

Page No: ____/ N

Important Instructions to examiners:

1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme.

2) The model answer and the answer written by candidate may vary but the examiner may try to assess the understanding level of the candidate.

3) The language errors such as grammatical, spelling errors should not be given more importance. (Not applicable for subject English and Communication Skills)

4) While assessing figures, examiner may give credit for principal components indicated in the figure. The figures drawn by candidate and model answer may vary. The examiner may give credit for any equivalent figure drawn.

5) Credits may be given step wise for numerical problems. In some cases, the assumed constant values may vary and there may be some difference in the candidate's answers and model answer.

6) In case of some questions credit may be given by judgment on part of examiner of relevant answer based on candidate's understanding.

7) For programming language papers, credit may be given to any other program based on equivalent concept.

Q.	MODEL ANSWER	MARKS	TOTAL
NO.			MARKS
1 A	Attempt any six	6 x 2m	12m
a)	Renewable source of energy :	2m	2m
	These are source of energy which are continuously produced by		
	nature. They never get exhausted by their use.		
	e.g. Solar, wind ,tidal, geothermal etc.		
b)	Advantages of bio gases:	2m(any	2m
	 Mythane gas has high calorific value 	two)	
	It has light and ordorless flame		
	3) Rigested liquid can be used as fertilizer		
c) i)	Intensive Properties:-	1m	1m
	An intensive property is a bulk property, meaning that it is a physical		
	property of a system that does not depend on the system size or the		
	amount of material in the system.		
	Examples of intensive properties include temperature, refractive index,		
	density, and hardness of an object.	1	1
11)	Extensive Properties:-	1m	1m
	by contrast, an extensive property is one that is additive for independent,		
	material in the system.		
	For example, both the mass and the volume of a diamond are directly		
	proportional to the amount that is left after cutting it from the raw mineral		
d)	Zeroth law of thermodynamic:	2m	2m
.,	The law states" when two system are each in thermal equilibrium separately		
	with a third system, then two systems are also in themal equilibrium in		
	each other."		
e)	Heat:		2m
	Heat is energy interaction due to temperature difference. Heat is low grade	1m	
	energy.Entire heat cannot be converted to work.Heat received by system is		
	positive and heat rejected by a system is negative.		
	Work:		
	Work is a product of force and displacement.Work is high grade		
	energy.Entire work can be converted to heat.Work done by a system is	1m	
	positive and work done on system is negative		
f)	Dryness fraction or quality of wet steam.	2m	2m
	It is the ratio of tfle mass of actual dry steam, to the mass of same quantity		
	of wet steam, and is generally denoted by 'x'. Mathematically,		
	x = mg/mg +mt =mg/mt		
	where mg = Mass of actual dry steam,		
	m = Mass of water in suspension, and $m = Mass of water in suspension, and$		
(n)	111 - 191855 UT WEL SLEATH - 1118 + 1111 TVDES OF STEAM NO771 ES:	3m	2m
B)	There are three important types:	2111	2111
	1 Convergent nozzie		
	2 Divergent nozzle		

3. Convergent - divergent nozzle.	
at formation at formation at a formation and a	
h) Classification of I.C. Engine: 2m(any 1) According to type of fuel used: four) a) Petrol engine b) b) Diesel engine c) c) Gas engine 2) 2) According to method of igniting the fuels: a) a) Spark ignition engine(S.I engine or petrol engine) b) b) Compression engine(C.I engine or diesel engine) 3) 3) According to number of stroke per cycle: a) Four stoke b) Two stoke b) Two stoke 4) According to the cycle: a) Otto cycle b) Diesel cycle c) Dual cycle 5) According to speed of engine: a) Low speed b) Medium speed c) High speed 6) According to cooling system: a) Air cooled b) Water cooled b) Water cooled 7) According to method of fuel injection: a) Carrborator engine b) Air injection engine b) Air injection engine <	2m
i) Type of fuel cell: 2m(any four)	2m
2) Fossil fuel cell	
3) Hydrocarbon fuel cell	
4) Alcohol fuel cell	
5) Hydrozeni fuel cell	
6) Polymer electrolyte membrane fuel cell/DEMEC)	
7) Alkali fuel cell/AEC)	

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous) (ISO/IEC - 27001 - 2005 Certified)

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous) (ISO/IEC - 27001 - 2005 Certified)

	is noted by the thermometer T_2 and manometer respectively.		
	Since the stream has undergone a throttling process, therefore		
	Total heat before throttling = Total heat after throttling		
	$H_{f1}+xh_{fg1} = h_{g2}+c_p(t_{sup}-t)$		
b)	Given data:		
5)	$m = 1 k \sigma$		
	n-10har	2m	4m
	$V_{a}=0.16321 \text{ m}^{3}/\text{kg}$ (from steam table at pressure 12 har)	2111	4111
	(1) When steam is dry saturated		
	(1) When steam is dry saturated, Volumo(V) = Va		
	$-0.16221 \text{ m}^3/\text{kg}$		
	-0.10321 m/kg		
	(2) When steam is wet		
	AL X = 0.8	2.00	
	volume(v) = x.vg	Zm	
	$=0.8 \times 0.16321$		
	=0.1305 m ² /kg		
	volume of 1Kg of steam		
	i) When steam is dry saturated, =0.16321 m ³ /kg		
	ii)When steam is wet =0.1305 m^3/kg		
c)	1. Natural draught:		
	The draught produced by means of a chimney alone is known as natural		
	draught. It is a natural draught and has induced effect. Since the	2m	4m
	atmospheric air (outside the chimney) is heavier than the hot gases (inside		
	the chimney), the outside air will flow through the furnace into the		
	chimney. It will push the hot gases to pass through the chimney. The		
	chimney draught varies with climatic conditions, temperature of furnace		
	gases and height of chimney.		
	2. Mechanical or fan draught:		
	The draught, produced by means of a fan or blower, is known as		
	mechanical draught or fan draught. The fan used is, generally, of centrifugal	2m	
	type and is driven by an elecvic motor		
	In an induced fan draught, a centrifugal fan is placed in the path of the flue		
	gases before they enter the chimney. It draws the flue gases from the		
	surface and forces them up through the chimney.		
	The action of this type of draught is similar to that of the natural draught.		
	In case oiforcedfan draught, the fan is placed before the grate, and air is		
	forced into the grate through the closed ash pit		
d)	Dalton'S Law of Partial Pressures		4m
	It states "The pressure of the mixture of air and steam is equal to the sum	3m	
	of the pressures which each constitutent would exert, if it occupied the		
	same space by itself." Mathematically, pressure in the condenser		
	containing mixture of air and steam,		
	Pc=Pa+Ps		

	Pa = Pa	rtial pressure of air, and			
	Ps = Partial pressure of steam.				
	Note: In most of the cases, we are required to find partial pressure of air,				
	therefore Dalton's law may also				
	used as	n. De			
		rs of Air into the Condensor			4m
e)	The fol	lowing are the main sources thro	hugh which the air may en r into the	/m	4111
	condenser.				
	1.The d	issolved air in the feed water en	ters into the boiler, whicfri rn enters		
	into the	condenser with the exhaust ste	am		
	2. The	air leaks into the condenser, t	hrough various joints, due to high		
	vacuum	pressure in the condenser.			
	3. In ca	ase of jet condensers, dissolved	air with the injection water enters		
	into the	e condenser			
f)	Sr	Two Stroke	Four Stroke		4m
	no				
	1	The two-stroke engine	completes one cycle of events	4m(any	
		completes one cycle of	with the two revolutions	four)	
		events for every revolution	required for the four-stroke		
		of the crankshaft	engine cycle.		
	2	Theoratical power	Theoratical power developed		
		developed is more	is less		
	3	There are fewer working	There are more working parts		
		parts in a two-stroke	in four-stroke engine.		
		engine			
	4	Cheap to manufacture	Expensive to manufacture.		
	5	Maintenance is less	Maintenance is more.		
	6	Self lubrication by mixing	Separate Iubrication is		
	7	With fuel.	required.		
	/	Need of Scavenging	No need of scavenging.		
	8	More Dollution	Uperation is not much smooth.		
	9	Light in weight	Less pollution.		
2	10		Heavier mail two stroke.	A	10.00
3	Dro ign	Attempt a		4m x 4	16m
a)	1) High	compression ratio	5015.	2m	4111
	2) Over	heated snark nlug noint		2111	
	3) Incar	idescent carbon deposit in cylind	der wall		
	4) Overheated exhaust valve				
	5) It ma	ay occur due to faulty timing of si	park production.		
		, , ,	· ·		
	Effect c	of pre-ignition			
	1. Redu	ice useful work per cycle		2m	
	2. Incre	ase heat losses from engine			

d)	 Supercharging: It is the process of increasing the mass of air fuel mixture or air induced into engine cylinder. This is done with the help of compressor or blower known as supercharger. Supercharging in necessary because of following point. To increase the power output of an engine when greater power is required. To reduce mass of the engine per brake power. To reduce space occupied by the engine. To reduce the consumption of lubricating oil. To maintain power of aircraft engine at high altitudes where less oxygen is available for combustion 	2m 2m	4m
e)	Parallel flow jet condenser.	4m(any one dia.)	4m

Counterflow jet condenser	
The second se	
Air pump	
The second secon	
- Pertorated	
Frank -	
Cooling water	
en einem ohn treising bestern it high einem	
Trays	
ATATA Condenser	
Exhaust E E Tarix	
steam	
inlet	
Condensate	
Condensate pump	
Hot well	
f) i Condenser efficiency: Condenser efficiency is defined as ratio of	4m
temperature rise of cooling water to the difference in vacuum temperature	,
n _c =Temperature rise of cooling water/Vacuum temperature inlet cooling	
water temperature	
$=t_0-t_i/t_v-t_i$ Where t_0 = outlet temperature of cooling water	
t _i = inlet temperature of cooling water	
t_v =Vacuum temperature or saturation temperature corresponding to	
ii Vacuum Efficiency: Vacuum efficiency is the ratio of actual vacuum at inlet 2m	1
to condenser to the maximum or ideal vacuum which can be obtained in a	
n _v =Actual vacuum/Ideal vacuum	
Actual vacuum = barometric pressure- Actual pressure	
Ideal vacuum =Barometric pressure- Ideal pressure (or pressure	

4	Attempt	any four	4m x 4	16m
a)	Applications of heat exchanger:		4m(any	4m
	(a) Dairy industry.		four)	
	(b) Food industries.			
	(c) Refrigeration and air-conditioning.			
	(d) Steam and gas turbine power plan	ts.		
	(e) Internal combustion engines.			
	(f) Milk chiller of pasteruzing plant			
b)	alles and and the	6. 13) POILLE1919		4m
	301 Stollar	- Bevel 0000 gear		
		NE	2m(dia.)	
	1 1 1000	10 301 44		
		Laborate - Manufactore		
	ATT			
		K-		
	Blades	DODGER THOSE		
	suaces U	Fill gournan.		
	Wind energy is kinetic energy associa	ated with movement of large mass of	2m(expl.)	
	air over the early's surface due to	non uniform heating of the earth's		
	surface.			
	1) Wind energy is converted to mec	hanical energy by wind mill.		
	2) The wind approaching the blad	le move the wind mill shaft, thereby		
	rotating the rotor of generator w	hich produces electricity.		
	3) It can also be used for water pum	ping,drinking in rural area.		
c)	PMM -1(Perpetual motion machine of	first kind)		4m
	A machine which violates the first	law of thermodynamics is known as		
	PMM -1. It is a machine which proc	duced a work without consuming an	4m	
	equivalent of energy in any other f	orm. Such machine is impossible to		
	construct.			
		and the second s		
		Contract of Contract		
	pmm-1	LU.		
	A CALLER AND	a start start st		
		Contraction of the local division of the loc		
d)	Open System	Closed system		4m
	1.Mass of the system does not	1.Mass of the system remains	4m(any	
	remains constant.	constant.	four)	
	2. Mass and energy tranferes across	2.Only energy tranferes across		
	control volume	sytem boudries.		

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous) (ISO/IEC - 27001 - 2005 Certified)

	3.It can be explain with concept of control volume and control	3.It can be explain with concept of the concept of boundries.		
	4.e.g. lurbine, Compressor, Boiler,	4.e.g.Piston and cylinder without		
	I.C.Engine.	valve.		
e)	Heat engine	Heat pump	4m(any	4m
	1. It is a work developing device.	1.It is a work absorbing or	four)	
		consuming device.		
	2. It obeys Kelvin-Plank's statement	2. It obeys Clausius statement of		
	of second law of thermodynamics.	second law of thermodynamics.		
	3. In heat engine, heat is supplied	3. In heat pump, heat is pumped		
	from heat source or a hot body and	from heat sink or a cold body and		
	work is produced with rejection of	is supplied to bot body and		
	some quantity of heat to the heat	consuming external work supplied		
	some quantity of heat to the heat	consuming external work supplied.		
	sink of a cold body.			
	4. Its performance is measured in	4. Its performance is measured in		
	terms of "efficiency".	terms of "coefficient of		
		performance".		
	5. ηE= Q2 – Q1 / Q2	5. (C.O.P)p= Q2/ Q2 – Q1		
	6. $\eta E = T2 - T1 / T2$ for carnot	6. (C.O.P)p = T2/ T2 – T1 for carnot		
	engine	pump		
	7. Efficiency is always less than	7. COP of heat pump is always		
	100%	greater than 1		
	100%.			
f)	100%.		4m	4m
f)		bot air	4m	4m
f)	induced A	hot aix	4m	4m
f)	induced A	hot aix outlets	4m	4m
f)	induced the	hot aix outlets	4m	4m
f)	Induced the far	bet aix outlets	4m	4m
f)	induced to	bet aix outlets	4m	4m
f)	induced the	hot aix outlets	4m	4m
f)	Induced the far	hot aix outlets	4m	4m
f)	induced to dralight fan to spray	hot aix outlets hot ucuter	4m	4m
f)	induced to draught fan to spray Nozie	hot aix outlets hot aix hot uater	4m	4m
f)	induced to dealight fan to spray negzie	hot aix outlets hot usuter	4m	4m
f)	induced the dealight fan the spray negzie	hot aix outlets hot ucuter	4m	4m
f)	induced to dralight fan to spray negzie	hot aix autlets hot uxter hot uxter	4m	4m
f)	induced to draught fan to spray Negzie	hot aix autlets hot autlets hot uvater	4m	4m
f)	induced to	hot aix autiets hot ucutet	4m	4m
f)	induced the draught fan the spray negzie	hot aix outlets hot uxutet	4m	4m
f)	induced for dralight fan spray negzie	hot aix autlets hot autlets hot uxuter	4m	4m
f)	induced to draught fan to spray nogzie	hot aix outlets hot aux hot uater	4m	4m
f)	induced to dealight fan to spray negzie	hot aix hot aix hot aix hot tuater	4m	4m
f)	induced for dralight fan for spray negzie	hot aix autlets hot autlets hot uxuter	4m	4m
f)	induced to dralight fan to spray negzie	hot aix hot aixtets hot autlets hot uater	4m	4m

5	Attempt any two	8m x 2	16m
a)	Kelvin - Planck Statement: According to Kelvin-Planck "It is impossible to construct an engine working on a cyclic process, whose sole purpose is to convert heat energy from a single thermal reservoir into an equivalent amount of work."	2m	8m
	Clausius Statement; According to Clausius statement "It is impossible for a self acting machine. working In a cyclicprocess, to transfer heat from a body at a lower temperature to a bodyat a higher temperature without the aid of an external agency. "	2m	
	Equivalence of Kelvin-Planck and Clausius Statements Though Kel vin-Planck and Clausius statements of the second law of thermodynamics appear to be different, from each other, but these two statements are virtually equivalent in all respects. The equivalence of the Kelvin-Planck and Clausius statements can be proved if it can be shown that the violation of Kel vin-Planck statement implies the violation of Clausius statement and vice versa. This is discussed as follows:		
	High temp. reservoir at T_1 Q_1 Heat engine E (PMM-II) $W = Q_1$ $W = Q_1$ P Heat pump $W = Q_1 - Q_2$ (PMM-II) $W = Q_1 - Q_2$	2m(dia.)	
	$\begin{array}{c c} & & & & & & & & & & & & & & & & & & &$		
	1.Consider a system as shown in fig.a.In this system a heat engine having 100percent efficiency (i.e. PMM-II) is violating the Kelvin-Planck statement as it converts the heat energy (Q1) from a single high temperature reservoir at T1 into an equivalent amount of work (i.e. $W = Q1$). This work output of the heat engine can be used to drive a heat pump (or refrigerator) which.; receives an amount of heat Q2 from a low temperature reservoir at T2 and rejects an amount of heat (Q1 + Q2) to a high temperature reservoir at T1. If the combination of a heat engine and a heat .pump (or refrigerator) is considered as a single system, as shown in Fig. (a), then the result is a device that operates in a cycle and has no effect on the surroundings other than the transfer of heat Q2 from a low temperature reservoir to a high temperature reservoir, thus violating the Clausius statement. Hence, a violation of Kelvin-Planck statement leads to a violation of Clausius statement.	2m(expl.)	
	refrigerator (i.e. PMM-II) is violating the Clausius statement as it transfers		

	heat from a low temperature reservoir at T2 to a high temperature reservoir at T1 without any expenditure of work. Now let a heat engine, operating between the same heat reservoirs, receives an amount of heat Q1 (as discharged by the heat pump) from the high temperature reservoir at T1' does work (WE = QI - Q2) and rejects an amount of heat Q2 to the low temperature reservoir at T2. If the combination of the heat pump (or refrigerator) and the heat engine is considered as a single system, as shown in Fig.(b), then the result is a device that operates in a cycle whose sole effect is to remove heat at the rate of (Q 1 - Q2) and convert it completely into an equivalent amount of work, thus violating the Kelvin-Planck statement. Hence, a violation of Clausius statement leads to a violation of Kelvin-Planck statement.		
b)	TEMP. VS TOLTOIL heat Graph:- T. Tsup. T. 1000 Watter a estam CTSat) O'C ice b conter L+V V -100 a the conter L+V V -100 b conter L+V V -100	4m(dia.)	8m
	 (i)Sensible heat (a-b): When heat is added to ice, temperature of ice will increase which can be sensed by a thermometer .Therefore it is called sensible heat. During this only solid phase will exist. It is denoted by h_i (ii) Latent heat(b-c): At point b ice is at saturation state, further addition of heat does not increase the temperature .But ice will start converting to water and at point c ice will change completely to water. Heat supplied is called latent heat. It is denoted by h_{if} (iii) Dryness fraction: 	4m(expl.)	

	It is the ratio of mass of actual dry steam in a quantity of wet steam to the mass of same quantity of wet steam and it is denoted by x Where x= mass of dry steam vapour /mass of wet steam mixture x=mg/mg+mf where mg= mass of actual dry steam mf = mass of water in suspension m= mass of wet steam (iv) Superheated steam: When stem is further heated at constant pressure. Thus raising its temperature.it is said to be superheated steam.		
c)	Classification of steam turbine. (i) According to working principles: (a) Impulse turbine (b) Reaction turbine (c) Impulse - reaction turbine (ii) According to no. of stages of expansion of steam. (a) Single stage turbine (b) Multi stage turbine (b) Multi stage turbine (iii) According to position of shaft axis (a) Horizontal axis turbine (b) Vertical axis turbine (b) Vertical axis turbine (iv) According to their nature of steam supply (a)High pressure turbine (b) Low pressure turbine (v) According to direction of steam flow (a)Axial flow turbine (b) Radial flow turbine (c) Tangential flow turbine (vi) According to exhaust steam pressure (a)Condensing type steam turbine (b)Non - Condensing type steam turbine Impulse turbine - Impulse turbine consists of one set of nozzle mounted on a stationary diaphragm which is followed by one set of moving blade ring for a single stage impulse turbine.	4m(any four) 2m(expl.)	8m
	- The high velocity steam jet are obtained by complete expansion of steam in the stationary nozzles fitted in diaphragm then this high velocity steam passes through moving blades with no drop in pressure but gradual reduction in velocity.		

ii)	 (2) Constant volume line:Constant volume line are drawn in both the wet and superheated region. This line are straight in the wet region and curved upwards above the saturation curve i.e.superheated region. (3) Consant pressure line: The constant pressure linrs are drawn in both the wet and superheated region. This lines are straight in the wet region andcurved upwards above the saturation curve i.e.superheated region. (4) Constant temperature line(Isothemal line):The isothemal lines are drawns only above the saturation line.This line represents the codition of superheated steam between various values of h and s Classification of calorimeter: Barrel calorimeter, Throttling calorimeter, and 	2m	
b)	4. Combined separating and throttling calorimeter. Image: A shell and tube heat exchanger is a class of heat exchanger designs. It is the most common type of heat exchanger in oil refineries and other large chemical processes, and is suited for higher-pressure applications. As its name implies, this type of heat exchanger consists of a shell (a large pressure vessel) with a bundle of tubes inside it. One fluid runs through the tubes, and another fluid flows over the tubes (through the shell) to transfer the tubes, and another fluid flows over the tubes (through the shell) to transfer	4m(dia.) 4m(expl.)	8m
	may be composed of several types of tubes is curica a tube build, and etc. Two fluids, of different starting temperatures, flow through the heat exchanger. One flows through the tubes (the tube side) and the other flows outside the tubes but inside the shell (the shell side). Heat is transferred from one fluid to the other through the tube walls, either from tube side to shell side or vice versa. The fluids can be either liquids or gases on either the shell or the tube side. In order to transfer heat efficiently, a large heat transfer area should be used, leading to the use of many tubes. In this way, waste heat can be put to use. This is an efficient way to conserve energy.		

c) i)	To improve the properties by addition of chemical of compound called additives The main additives as following:		4m(any two)	8m
	1)	Detergents- dispersant: These additives improve the detergent action of the lubricating oil by keeping the deposit in suspension form ads this additives are oil soluble.		
		E.g.Metalics salts or organic acids		
	2)	Pour point depressors:		
		Lubricant contain paraffin compound and form wax precipitates as		
		depressants are add to lower the pour points of lubrication oil		
		e.g. polymerized phenols , Easter , alkylated naphthalene oil		
	3)	Anti-foam agent:		
		This assistive prevent the formation of foam by reducing surface tension, which allow air bubble to separate from oil more rapidly.		
	4)	e.g. Silicoli polymers Bust inhibitors:		
	4)	These prevent rusting of ferrous engine parts during storage and		
		from acidic moisture accumulation during cold engine operation		
		e.g. Metal sulphates, fatty acid and amines.		
ii)	 Detonation:- The land pulsating noise heard within the engine cyiinder known as 'denotation' (also called knocking or pinking). It is, caused due the propagation of a high speed pressure wave created by the auto-ignition. of end portion of unbumt fuel. The blow of this pressure wave may be of sufficiea strength to break the piston. Thus,the denotation is harmful to the engine aed must be avoided. The following are certain factors which causes denotation The shape of the combustion chamber. The relativeposition of the sparking plugs in case of petrolengines. The chemical nature of the fuel. The rate of combustion' of that portion of the fuel which is the first to ignite. This portion of the- fuel in heating up, compresses the remaining unburnt fuel, thus producing the conditions for auto- ignition. 		4m	