

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous) (ISO/IEC - 27001 - 2005 Certified) SUMMER – 15 EXAMINATION Model Answer

Subject Code: 17536

Important Instructions to examiners:

1) The answers should be examined by keywords and not as word-to-word as given in the model answer scheme.

2) The model answer and the answer written by candidate may vary but the examiner may try to assess the understanding level of the candidate.

3) The language errors such as grammatical, spelling errors should not be given more Importance. (Not applicable for subject English and Communication Skills.)

4) While assessing figures, examiner may give credit for principal components indicated in the figure. The figures drawn by candidate and model answer may vary. The examiner may give credit for any equivalent figure drawn.

5) Credits may be given step wise for numerical problems. In some cases, the assumed constant values may vary and there may be some difference in the candidate's answers and model answer.

6) In case of some questions credit may be given by judgments on part of examiner of relevant answer based on candidate's understanding.

7) For programming language papers, credit may be given to any other program based on equivalent concept.

Q. No.	Question & Model Answer	Remark	Total Mar ks
1.A	Attempt any Three:		12
a)	Define stability and locate stable and unstable system poles on s- plane.		04
Ans:	Stability: The system is said to be stable if it produces bounded output for a bounded input. It is used to define usefulness of the system. The stability implies that the system performance should not change even if there are small changes in system input. Any control system must be stable.	2 marks	
	The system is said to be stable if poles of closed loop the system lies on left half of s-plane	1 mark	
	The system is said to be unstable if poles closed loop of the system lies on right half of s-plane	1 mark	
	OR		
	STABILITY : A linear time invariant system is said to be stable if		
	following conditions are satisfied:		
	1.) When the system is excited by a bounded input, output is also bounded and controllable.		

	2.) In the absence of the input, output must tend to zero irrespective of the initial condition.		
b)	 UNSTABLE: A linear time invariant system is said to be unstable if following conditions are satisfied: 1.) If for a bonded input it produces unbounded output. 2.) In absence of the input, output may not return to zero it shows certain output without input. Note: 3 marks for stability and 1 mark for unstable system. List various input/output modules of PLC. 		04
Ans:	i) Digital input cardii) Analog input card	Any 4 i/p	
	iii) Digital output card	& any 4	
	iv) Analog output card	0/p	
	v) Solenoid Valve	module 2	
	vi) Relays	marks	
	vii) Limit switches	each	
	viii) Contractors		
	ix) Pressure switch		
	x) Level switch		
	xi) Float (liquid level) switches		
	xii) Hall devices		
	xiii) Magnetic sensitive switches		
	xiv) Photo electric system		
	xv) Inductive sensitive switches		
	xvi) Single pole single throw switches		
	xvii) Single pole double throw switches		
	xviii) double pole double throw switches		
	xix) Push buttonxx) Proximity switches		
	xx) Proximity switchesxxi) Selector switches		
c)	Differentiate between open loop and close loop system.		04
Ans:	N Open loop Control System Closed Loop Control System		
	0.		

(Autonomous)

(ISO/IEC - 27001 - 2005 Certified) SUMMER – 15 EXAMINATION

. .----

Subject Code: 17536

Model Answer

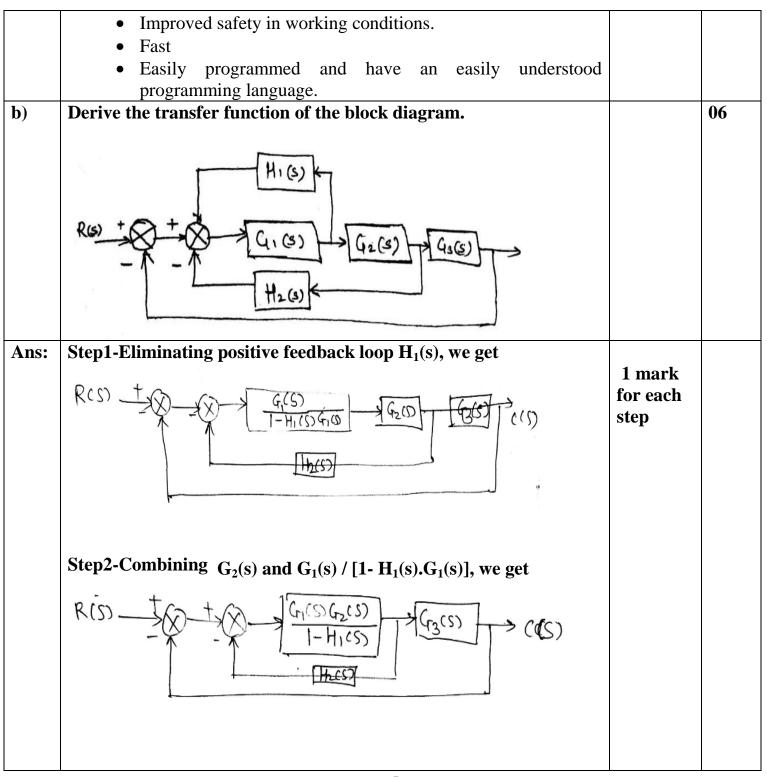
		1	Т		1	
	1		is simple and economical	It is complex and costlier		
	2	It	is easier to construct, as it	It is not easy to construct, as it		
		rec	quires less number of	requires more number of	points – 1	
		co	mponents	components	mark	
	3	It o	consumes less power	It consumes more power	each	
	4	It i	is more stable	It is less stable		
	5	It	does not require feedback	It requires feedback path element		
		pat	th element			
	6	It l	has poor accuracy	It has better accuracy		
	7	It	does not give automatic	It give automatic correction for		
			rrection for any external	-		
			sturbances	•		
	8	It i	s more sensitive to noise	It is less sensitive to noise		
	9	It	is dependent on operating	It is not dependent on operating		
			nditions	conditions		
	10	Its	operation is degraded if	Its operation is independent on		
		no	n linearity are present	conditions		
	11	It l	has slow response	It has fast response		
	12	It l	has low bandwidth	It has high bandwidth		
d)	Co	npa	re between PI and PD contr	coller(any 4 points).		04
Ans:		-	PI Controllers	PD controllers	Any four	
		1	It is combination of	of It is combination of	points-1	
			proportional control an	d proportional control and	Mark	
			integral control action	derivative control action	each	
		2		er The proportional controller		
				es stabilizes gain but produces		
			• •	d steady state error and		
			integral controller minimiz	e derivative controller		
			steady state error	minimize steady state error		
		3	\int_{t}^{t}	$P = K_n \cdot e_n + K_n K_D \frac{d}{d} (e \rho) +$		
			$\begin{vmatrix} P = K_p \cdot e_p + K_p K_i \end{bmatrix}_0 e_p(t)$ dt + P _I (0)). $P_{(0)}$		

(Autonomous)

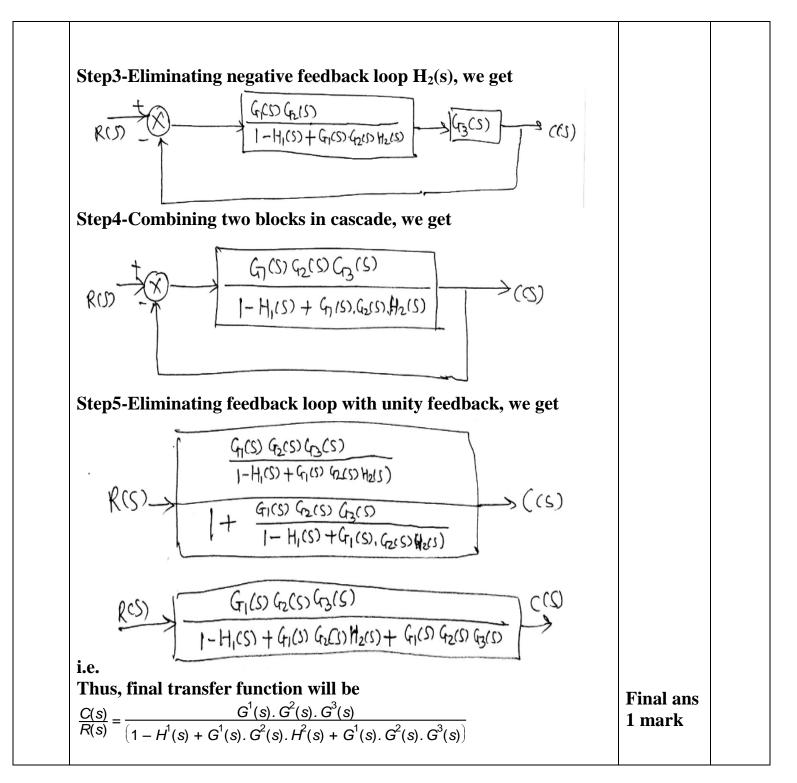
(ISO/IEC - 27001 - 2005 Certified)

SUMMER – 15 EXAMINATION

Subject Code: 17536


<u>Model Answer</u>

		4	₽%	Adjustment of correcting unit		
			100 % 50 % 1 Integral 1 Due to 1 action 50 % 1 action 1 Due to 1 P action 1 P action 1 P action 1 T action P action 1 action 1 Due to 1 P action 1 Due to 1 P action 1 Control action 1 Control action	Adjustment due to P unit Adjustment due to D unit Adjustment due to D unit Derivative action time ti Relation between P & D control action		
		5	It eliminate steady state error	It compensate rapidly changing error		
		6	It stabilizes controller gain	It increases controller gain during error change		
		7	It require expensive stabilization when process has many energy storage elements	It can not eliminate offset of proportional controller		
		8	It is used in control system with large load changes	It is used in temperature cascade system and batch neutralization.		
1.B		-	ot any One:			06
a)	Ex	-	the need and benefits of PLC	C in automation.		06
Ans:		N	leed of PLC in automation		Any 3	
		•	To reduce human efforts.		points – 1	
		•	To get maximum efficiency with human logic	from machine and control them	Mark each	
		•	To reduce complex circuitry of	of entire system		
		•	To eliminate the high costs a controlled systems.	ssociated with inflexible, relay-		
		•		s (Dangerous Environments &		
		_	Beyond Human Capabilities)		Any 3	
		B	senefits of PLC in automation		points – 1	
		•	Higher productivity.		Mark	
		•	Superior quality of end produ		each	
		•	Efficient usage of energy and	raw inateriais		


MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous) (ISO/IEC - 27001 - 2005 Certified) SUMMER – 15 EXAMINATION

Model Answer

Model Answer

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous) (ISO/IEC - 27001 - 2005 Certified)

Subject Code: 17536

SUMMER – 15 EXAMINATION Model Answer

2.	Attempt any Two:	16
a)	A unity feedback system, the open loop T.F. $G(s) = \frac{25}{S(S+6)}$	08
	Find out:	
	a) Rise time	
	b) Peak time	
	c) Max- overshoot	
	d) Settling time	
Ans:	The open loop transfer function for unity feedback system is	
	given by	
	$\frac{C(s)}{R(s)} = \frac{G(s)}{1+G(s)} = \frac{\frac{25}{s(s+6)}}{1+\left(\frac{25}{s(s+6)}\right)} = \frac{25}{s^2+6s+25} \dots \dots$	1 Mark
	Wn^2	
	Comparing equation 1 with standard equation, $\frac{Wn^2}{s^2 + 2\xi Wn. s + Wn^2}$, we	
	get	1 Mark
	$W_n^2 = 25;$ So $W_n = 5 \text{ rad /sec}$	
	$2\zeta W_n = 6;$ So $\zeta = 0.6 \text{ rad/sec}$	
	$W_d = W_n \sqrt{1 - \xi}$ So, $W_d = 5 \ge 0.632$ i.e. $W_d = 3.16$	
	rad/sec	
	i) Rise time is given by $t_r = \frac{\pi - \beta}{Wd}$ where $\beta = \frac{\sqrt{1 - \zeta^2}}{\zeta} =$	-
	$\frac{0.8}{5} = 1.33$	
	Thus $\mathbf{t_r} = \frac{3.14 - 1.33}{3.16} = 0.572$ sec	1 Mark
	3.10	
	ii) Peak Time is given by $t_{p=} \frac{\pi}{wd} = \frac{3.14}{3.16} = 0.993$ sec	1 Mark
	iii) Max overshoot is given by	
		1 Mark

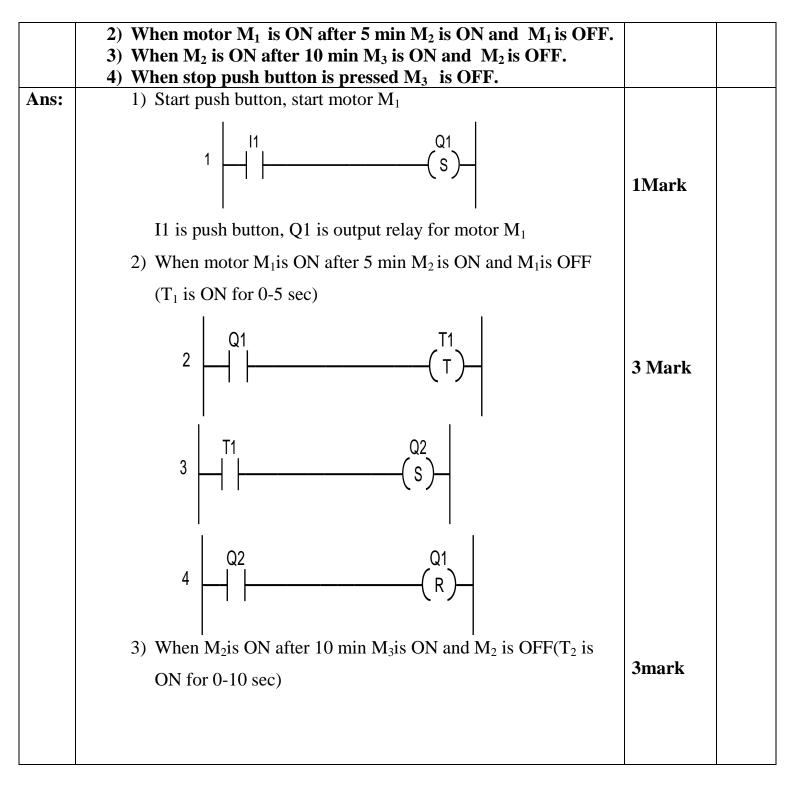
(Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

SUMMER – 15 EXAMINATION

<u>Model Answer</u>

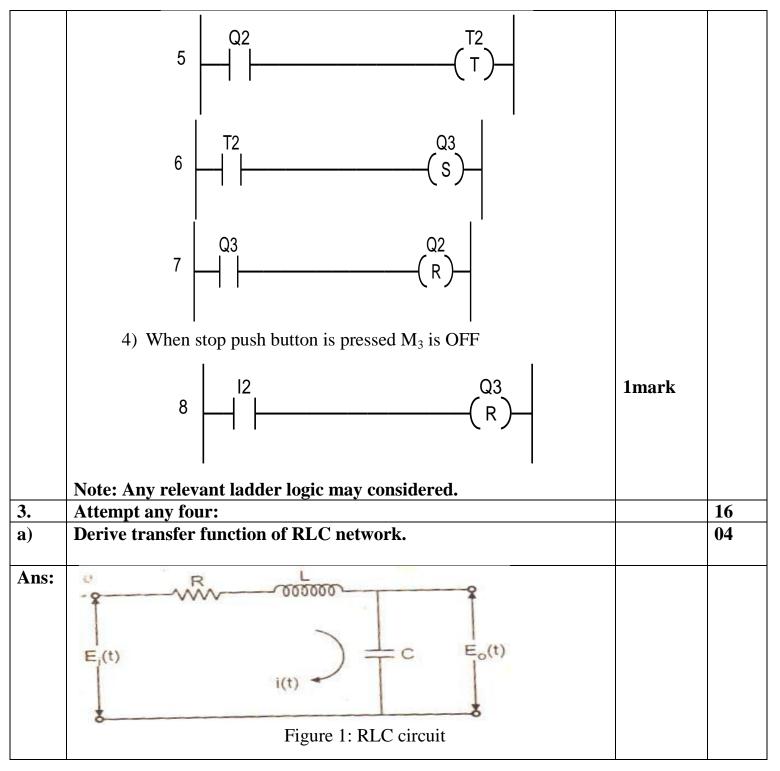
	$Mp\% = 100 \text{ x } e^{-\frac{\pi\xi}{\sqrt{1-\zeta^2}}} = 100 \text{ x } e^{-\left(3.14 \text{ x} \frac{0.6}{\sqrt{1-(0.6)}^2}\right)} = 100 \text{ x } e^{-2.355}$ $Mp\% = 9.48\%$	2 Mark	
	iv) Settling time is given by $ts = \frac{4}{\zeta Wn} = \frac{4}{0.6 \times 5} = 1.33 \text{ sec}$	1 Mark	
b)	A unity feedback system, having $G(s) = \frac{5(s+1)}{s^2(s+3)(s+10)}$ determine		08
	type of system, error coefficient and steady state error for I/P		
	$r(t)=1+3t+\frac{t}{2}$		
Ans:	$\frac{\mathbf{r}(t) = 1 + 3t + \frac{t^2}{2}}{\text{Given } G(s) = \frac{5(s+1)}{s^2(s+3)(s+10)}}(1)$		
	The standard equation is		
	$G(s) = \frac{k^{1}(s+z^{1})(s+z^{2})}{s^{n}(s+p^{1})(s+p^{2})}$ (2)		
	Comparing equation (1) with equation (2) we get $n = 2$.		
	This indicates that the given system is type 2 system	2 Mark	
	i) Positional error coefficient is given by $Kp = \lim_{s \to 0} G(s)H(s)$ Here $H(s) = 1$		
	$Kp = \lim_{s \to 0} \frac{5(s+1)}{s^2(s+3)(s+10)} = \infty$		
	ii) Velocity error coefficient is given by $Kv = \lim_{s \to 0} S. G(s)H(s)$ Here $H(s) = 1$ $Kv = \lim_{s \to 0} \frac{5(s+1)}{s(s+3)(s+10)} = \infty$	1 Mark	
	iii) Positional error coefficient is given by		



SUMMER – 15 EXAMINATION

Model Answer

		$Kp = \lim_{s \to 0} S^2. G(s)H(s)$ Here $H(s) = 1$	1 Mark	
		$Kv = \lim_{s \to 0} \frac{5(s+1)}{(s+3)(s+10)} = \frac{5(0+1)}{(0+3)(0+10)} = 0.166$		
	iv)	Steady state error is given by		
		ess(t)= $\lim_{s\to 0} \frac{s.R(s)}{1+s.G(s).H(s)}$ Here H(S)=1 &	1 Mark	
		R(s) = L[1+3t+t ² /2] = $\frac{1}{s} + \frac{3}{s^2} + \frac{1}{s^3}$ So,		
		ess(t)= $\lim_{s \to 0} \frac{s.(\frac{1}{s^3} + \frac{3}{s^2} + \frac{1}{s})}{1 + s.\frac{5(s+1)}{s^2(s+3)(s+10)}}$ &	1 Mark	
		After solving equation we get, $ess(t) = \lim_{s \to 0} \frac{(s^2 + 3s + 1)(s + 3)(s + 10)}{s(s + 3)(s + 1) + 5(s + 1)} =$		
		$\frac{(0+0+1)(0+3)(0+10)}{0(0+3)(0+1)+5(0+1)} = \frac{30}{5} = 6$	2 Mark	
c)	condition:	ess (t) = 6 er diagram for 3 motor operation for following t push button, start motor $M_{1.}$		08



MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous)

(ISO/IEC - 27001 - 2005 Certified) SUMMER – 15 EXAMINATION

Model Answer

	Vi = iR + Ldi / dt + 1 / c idt. Take Laplace transform, Vi(s) = I (s) [R + SL + 1 / SC] I(s) / Vi (s) = 1 / [R + SL + 1 / SC] (1) Vo = 1 /C (idt) Hence, Vo (s) = 1 / SC x I(s) I(s) = SC Vo(s)(2) Substituting value of I (s) in equation 1 SC Vo(s) / Vi(s) = 1 / [R + SL + 1 / SC] Vo(s) / Vi(s) = 1 / SC[R + SL + 1 / SC] $Vo(s) / Vi(s) = 1 / S^{2} LC + SRC + 1$	2 marks For Vi(s) and Vo(s) 2 marks for transfer function	
b) Ans:	Define scan cycle. Explain its significance in PLC. Scan cycle: It is number of states/steps which the controller follows when it is put in RUN mode. Significance in PLC : The loaded program is kept in memory of PLC and every time the program will be scan by the PLC. It has four states which are shown in fig. below. Sector Figure Scan Cycle	Definitio n- 01 mark , Significa nce- 03mark	04

	Diffe	erentiate between AC and DC serv	vo system(4 points)		04
ns:	Sr.	AC servo system	DC servo system	Any 4	
	1	Low power o/p	High power o/p	points-04 marks	
	2	Maintenance is less	More maintenance		
	3	Efficiency is low	Efficiency is high		
	4	Stable and smooth operation	Noisy operation		
	5	Less problem of stability	More problem of stability		
	6	Non – linear characteristics	Linear characteristics		
l)		Non – linear characteristics out the range of K for the given s			(

(Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

SUMMER – 15 EXAMINATION

Subject Code: 17536

Model Answer

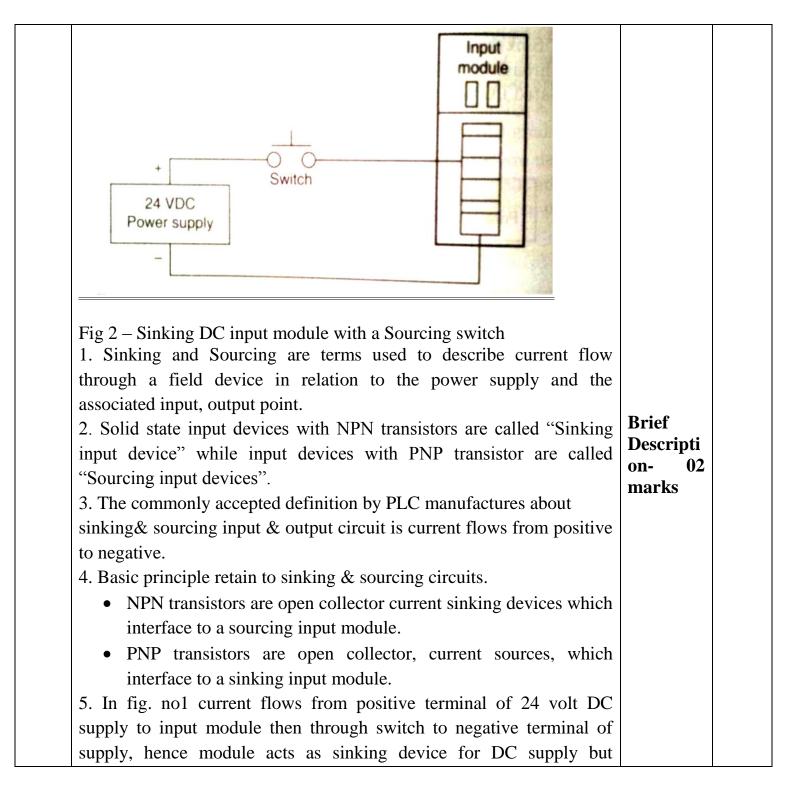
Ans:	$G(s)H(s) = \frac{k}{S(s+4)(s^2+2s+2)}$	Char. Equation -01 mark	
	$1 + G(S) + (S) = 0 \longrightarrow \text{characteristics eq}^{n}$ $1 + \frac{K}{S(S+4)(S^{2}+2S+2)} = 0$ $S(S+4)(S^{2}+2S+2) + K = 0$ $(S^{2}+4S)(S^{2}+2S+2) + K = 0$ $S^{4}+2S^{3}+2S^{2}+4S^{3}+8S^{2}+8S+K = 0$ $S^{4}+6S^{2}+10S^{2}+8S+K = 0$ $\frac{S^{4}}{S^{4}} + \frac{1}{10} - \frac{K}{S^{3}} + \frac{1}{8\cdot64} + \frac{1}{6\cdot6} - \frac{1}{6\cdot6} + \frac{1}{8\cdot64} + \frac{1}{6\cdot64} +$	Routh's array- 2marks	
	11.556>K Range of K is O <k<11.556< th=""><th>Range- 01mark</th><th></th></k<11.556<>	Range- 01mark	
e)	Define the term scanning cycle, speed of execution in PLC		04
Ans:	Scanning cycle : It is also called as operating cycle and is defined as "the number of states through which the controller scan the program before execution" Speed of execution: The speed at which PLC scans memory and executes the program is referred as a speed of execution.	Definitio n- 02 mark each	

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous) (ISO/IEC - 27001 - 2005 Certified) SUMMER – 15 EXAMINATION

Subject Code: 17536

Model Answer

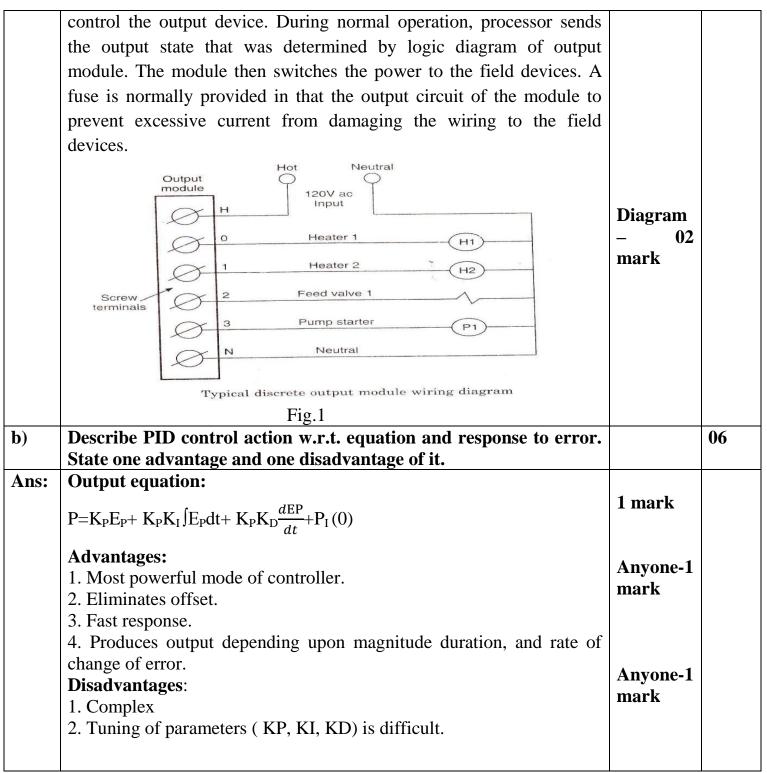
4. A.	Attempt any three:		12
a)	Explain why derivative action is not alone. State its one advantage		04
	and disadvantage.		
Ans:	Derivative control action responds to the rate at which the error is		
	changing.		
	$P = K_D \frac{dEp}{dt}$		
	where, P-controller output		
	K _D -Derivative gain	2 Mark	
	Ep-error		
	Derivative action is not used alone because it provides no output when		
	error is constant.		
	Advantages:	Any one	
	1. It improves damping and reduces maximum overshoot.	1 Mark	
	2. Reduces rise time and settling time.		
	3. Increases bandwidth.		
	Disadvantages:		
	 Note effective for lightly damped or initially unstable system. May produce noise at higher frequency. 	Any one	
	2. Way produce holse at higher frequency.	1 Mark	
b)	Explain memory function an organization of ROM and RAM in		04
	PLC.		
Ans:	In PLC program instructions are stored in the memory. An internal		
	communication high way also known as a bus system carries	Descripti	
	information to and fro from the CPU, Memory and I/O units under the	on- 04	
	control of CPU Memory unit for storage of program. The user ladder	mark	
	logic program is in the memory of PLC.		
	The main program and other programs are necessary for operation		
	of PLC. The organization of the data and information in the memory is		
	called memory map. There are two types of memory used in PLC:		
	Volatile and nonvolatile memory, in nonvolatile memories are		
	generally used for storing user program so that the programs can return		
	during power failure.		
	Different types of memory that are generally used in PLC s are as		



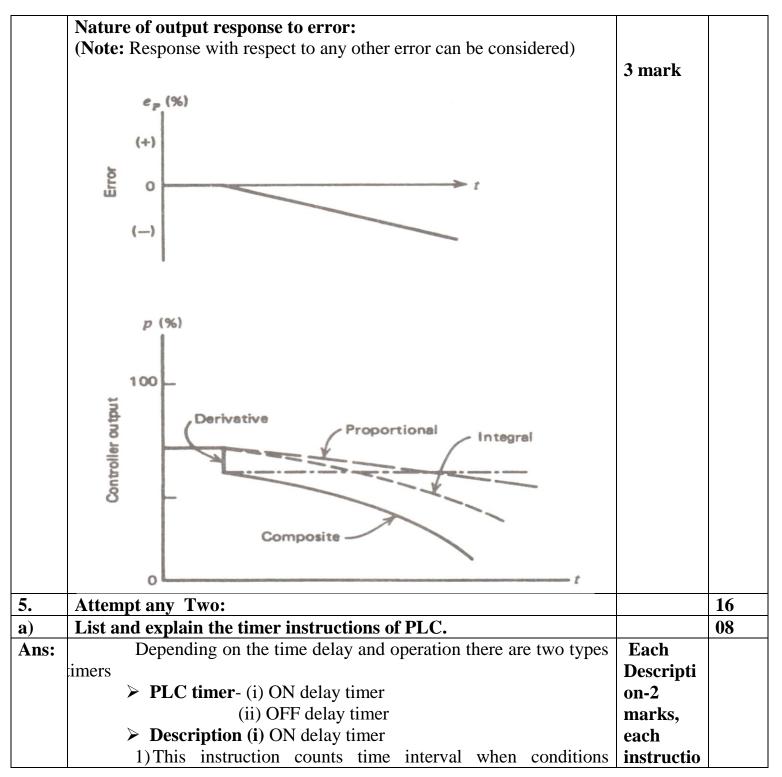
Model Answer

AIIS:	Fig 1 – Sourcing DC input Module with a sinking switch	01mark for Each diagram	
c) Ans:	Explain with diagram sinking and sourcing concept in DCI/P modules.		04
	out and stored. User memory consists of program files or register table and holds the complete operation.		
	2. User memory: in this memory, ladder logic programming is carried		
	the form of 1's and 0's is unique bit of memory.		
	Status is stored in the form of ON or OFF and numbers are stored in		
	stores information in two types: status and numbers,.		
	mathematical functions, this is called a data table or register table and		
	1. Storage memory: in storage memory store information on the status of i/o devices, pre assigned value of internal relay status and values for		
	Memory is classified into two types:		
	OR		
	B.)EEPROM		
	A.)EPROM		
	2. ROM:		
	1. RAM:		
	follows:		

Model Answer



MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous) (ISO/IEC - 27001 - 2005 Certified) SUMMER – 15 EXAMINATION <u>Model Answer</u>


<u>d)</u> Ans: 4.B.	 G(s) becomes infinite after substitution in the denominator of system are called as poles of transfer function. The poles are denoted with cross (x) on S-plane. Zeros: The value of 'S' for which the magnitude of transfer function G(s) becomes 'Zero' after substitution in the numerator of system are called as Zeros of transfer function. The Zeros are denoted with small circle '0' on S-plane. s-plane representation: Zeros 	Definitio n- 1mark each represent stion-02 marks	04
a)	Describe the wiring details of AC output modules of PLC.		06
	The below fig 1 show the basic field wiring for digital 120V AC output	Descripti	
Ans:		04	
· ·	module. The Wiring diagrams show how wires of output devices are	on- 04 mark	
· ·	connected to screw terminals of PLC modules. As per the wiring	on- 04 mark	
· ·			

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous) (ISO/IEC - 27001 - 2005 Certified) SUMMER – 15 EXAMINATION Model Answer

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous) (ISO/IEC - 27001 - 2005 Certified) SUMMER – 15 EXAMINATION <u>Model Answer</u>

	accumulated 2) Use Ton in timer has to instruction to conditions b 3) The accumut false regardless the timer ha	lated value is reset when the rung con s of whether	after the The Ton the rung dition go	n paramete r-1 mark, each status bit explanati on-1 mark
	1.5	14 13 12 11 10 9 8 7 6 5 4 3		
word	15	210	16	
	TT\EN	TT\EN DN	bit	
word			16	
1	preset value		bit	
word	Accumulato		16	
2	r value		bit	
Status k i) ii) iii	 value is ea when rung Timer en are true. It Timer tin are true value. It 	ne bit (bit13)- DN is set when the acc qual to or greater than the preset value. g condition become false. able bit (bit 14)- EN is set when rung is reset when rung condition become fa ning bit (bit15)- TT is set when rung c & the accumulated value is less than t is reset when the rung conditions go done bit is set.	It is reset condition alse. onditions the preset	
] precedir	l) This instrung it in the	(ii) OFF delay timer action counts time interval when c rung are false. Produces low outp ches the preset value.		

		· · ·			
			to turn an output on or of timer has been off for a p		
	rvals when				
the rung					
3	-	-	conditions remains false		
incremen	its its accumu	lated valu	e each scan until it reaches	s the preset	
value.Th	e accumulated	value is r	reset when the rung condition	ons go true	
regardles	s of whether the	ne timer h	as timed out.		
Instructi	ion parameter	- Timer T	FOFF is 3 word element.		
	1	1.4	12 12 11 10 0 0 7 6 5 4		
	1.5	14	13 12 11 10 9 8 7 6 5 4		
	15	3210			
word			5.11	16	
0	TT\EN	TT\EN	DN	bit	
word				16	
1	preset value			bit	
word	Accumulat			16	
2	or value			bit	
Status bi	it explanation	-			
i)	Timer done	bit(bit13))-DN is reset when the ac	cumulated	
va	lue is equal to	or greate	er than the preset value.It i	s set when	
rui	ng condition a	e true.			
ii)	Timer enable	e bit(bit 1	14)-EN is set when rung co	ndition are	
tru	e. It is reset w	hen rung o	condition become false.		
iii)) Timer timin	g bit(bit1	5)- TT is set when rung con	ditions are	
		-	value is less than the preset		
			itions go true or when the		
	set.	2	2		
Explain	with Laplace	represent	tation standard test inputs	. State its	08
	l significance.		-		
	0				

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

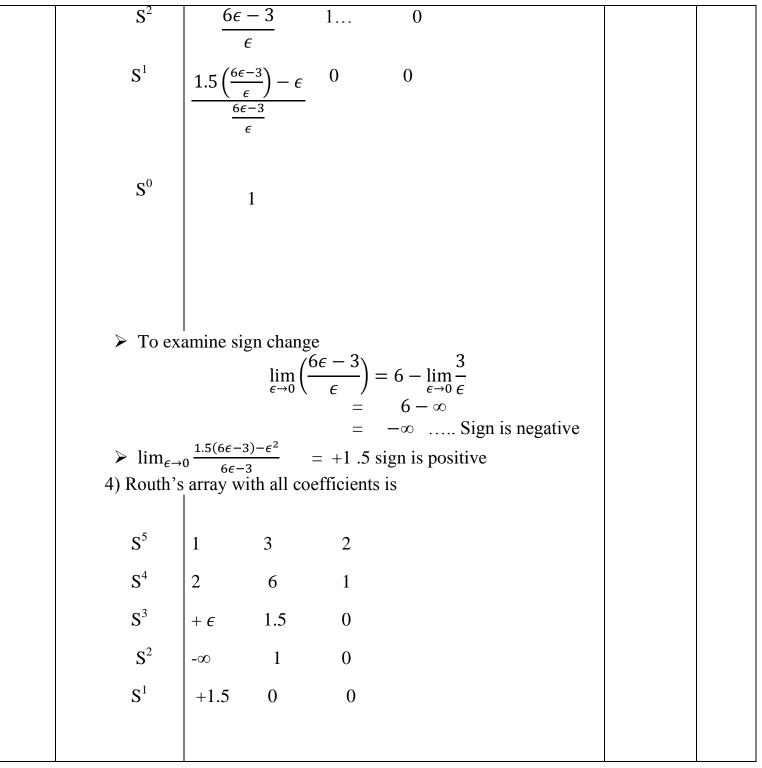
SUMMER – 15 EXAMINATION

Subject Code: 17536

Model Answer

Standard test input	Laplace	Waveforms	laplace
	Representation		represent ation-04
Step input(position function) r(t)	L.T of $r(t) = R(s) = A/s$		mark
Rampinput(Velocity function) r(t)	L.T of $r(t) = R(s)=A/s^2$	Slope = A	
Parabolic input(Acceleration r(t) function)	L.T of $r(t) = R(s) = A/s^3$	Slope = At	
Impulse input r(t)	L.T of $r(t) = R(s)= 1$ if A=1		

2) These signals are step, ramp, impulse, parabolic, sawtooth, square wave, triangular etc.But while analysing the systems, it is highly impossible to consider each and every signal as an input and study the response.


	3) Hence from commonly used	• •		•			
c)	Consider the sy		-		a test inputs.		08
0)	$s^{5} + 2s^{4} + 3s^{3}$			-	bility of the		00
	system using R						
Ans:	(1) Find even &	codd coefficier	nt from chara		ation		
	F (s	$s = s^5 + 2s^4 + 3s^3$	$3+6s^2+2s+1=0$	0			
		.1.2				Making 3	
	(2) Makes Rou S^5	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	2			Routh's	
	3	1 5	Z			array-6 marks	
	\mathbf{S}^4	2 6	1			marias	
	S^3	0 1.5	0 →	Sp.case I			
	S^2	∞	····· →	Routh test fa	ail		
	\mathbf{S}^1			L]		
	\mathbf{S}^{0}	1					
		a mathed is	used to man	ova abova a	aid difficulty		
	(3) Followin stitute a small po	ng method is	used to reli	iove above sa	aid difficulty-		
	-	of a zero occur	red as a first	element in a	row .complete		
	array with this n				F		
	-	amine the si	gn change	by taking	$\lim_{\epsilon \to 0}$		
	C ⁵		2	2			
	S^5	1	3	2			
	\mathbf{S}^4	2	6	1			
	S^3	ϵ	1.5	0			

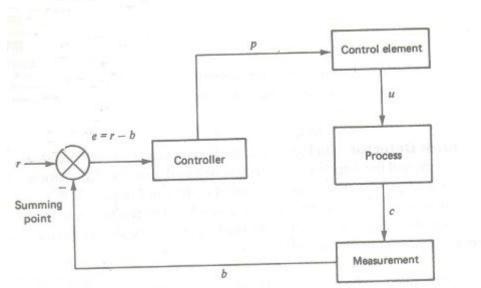
(Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

SUMMER – 15 EXAMINATION Model Answer

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous)

(ISO/IEC - 27001 - 2005 Certified)


SUMMER – 15 EXAMINATION Model Answer

	S ⁰ 1 Conclusion – As in the first column of Routh's array there is two n changes hence system is unstable.	Conclusi on-2 mark	
6.	Attempt any four:		16
a)	Draw and explain block diagram of process control system.		04
Ans:	 R(t)	Diagram 2-mark Explanat ion- 2 mark	

5) <u>Actuator or control element</u> – Actuator is nothing but pneumatic motor or valve, a hydraulic motor or an electric motor, which produces an input to the plant according to the control signal getting from controller.

Explanation :

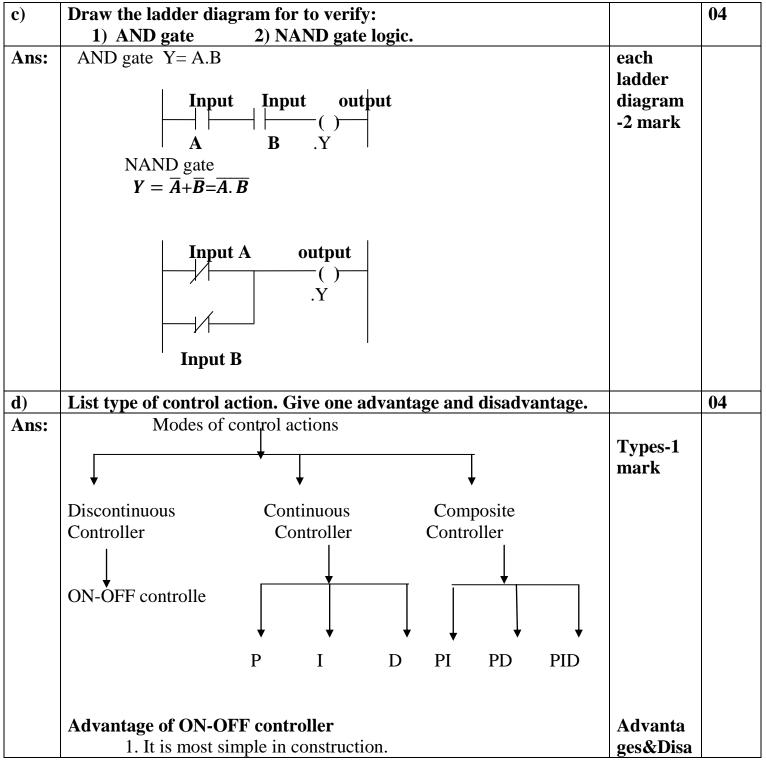
The block diagram of process control system consists of the following blocks:-

1) <u>Measuring element</u>: It measures or senses the actual value of controlled variable 'c' and converts it into proportional feedback variable b.

2) <u>Error detector</u> : It receives two inputs: set point 'r' and controlled variable 'p'. The output of the error detector is given by e= r-b. 'e' is applied to the controller.

3) <u>Controller</u>: It generates the correct signal which is then applied to the final control element. Controller output is denoted by 'p'.

4) <u>Final control element</u>: It accepts the input from the controller which is then transformed into some proportional action performed by the process. Output of control element is denoted by 'u'.


5) <u>Process</u>: Output of control element is given to the process which changes the process variable. Output of this block is denoted by 'u'.

b)	State Routh's stability criteria. Describe different cases to find		04
	stability of a system.		
Ans:	Statement - The necessary & sufficient condition for system to be stable is "All the terms in the first column of array must have same sign. There should not be any sign change in the first column of	statemen t-1 mark	
	 Routh's array". If there are any sign changes existing then, (1)System is unstable (2)The no of sign changes equal the no of roots lying in the right half of the S- plane. 		
	 Special case 1 Statement – First element of any of the rows of Routh's array is zero & the same remaining rows contains at least one non zero element. Effect-The terms in the next row become infinite and Routh's test fails. Solution for this said difficulty-Substitute a small positive number 'ε' in place of a zero occured as a first element in a row and complete the array with this number 'ε'. Then examine the 	case one - $1\frac{1}{2}$ mark	
	 sign change by taking lim_{e→0}. Special case 2 Statement-All the elements of a row in a Routh's array are zero. Effect-The terms of the next row cannot be determined &Routh's test fails. Solution for this said difficulty- Form an equation by using the coefficients of a row which is just 	case-two $1\frac{1}{2}$ mark	
	 above the row of zeros. Such an equation is called as auxiliary equation denoted as A(s). b) Take the derivative of an auxiliary equation with respect to 's' c) Replace row of zeros by the coefficients of dA(s)/ds d) Complete the array in terms of these new coefficients & & by observing the first column of Routh's array state the stability of the system. 		

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous) (ISO/IEC - 27001 - 2005 Certified) SUMMER – 15 EXAMINATION Model Answer

(Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

SUMMER – 15 EXAMINATION

Subject Code: 17536

<u>Model Answer</u>

	2. It is most economical &cheapest	dvantage	
	Disadvantage of ON-OFF controller	s-3	
	1. It is not very suitable for complex system	marks	
	2. It has a slow response		
	Advantage of PI mode		
	1. It eliminates offset error i.e improves the steady state		
	accuracy.		
	2. It decreases bandwidth of the system.		
	Disadvantage of PI model		
	1. It takes the longer time to stabilize controller gain.		
	2.It makes the response more oscillatory		
	Advantage of PD mode		
	1. It improves the damping & reduces overshoot.		
	2. It reduces the rise time.		
	Disadvantage of PD mode		
	1. It cannot eliminate offset error.		
	2. It is not very effective for lightly damped system.		
	Advantage of PID mode		
	1. It reduce the overshoot which often occurs when integral		
	control action is added		
	to proportional control action.		
	2. It eliminates the offset introduced by proportional control		
	action.		
	Disadvantage of PID mode		
	1. Some what complexity in design.		
	Note: Any four relevant control action/mode with advantages and		
	disadvantages may considered.		
)	List any two rules of block diagram of reduction technique.		04
ns:			

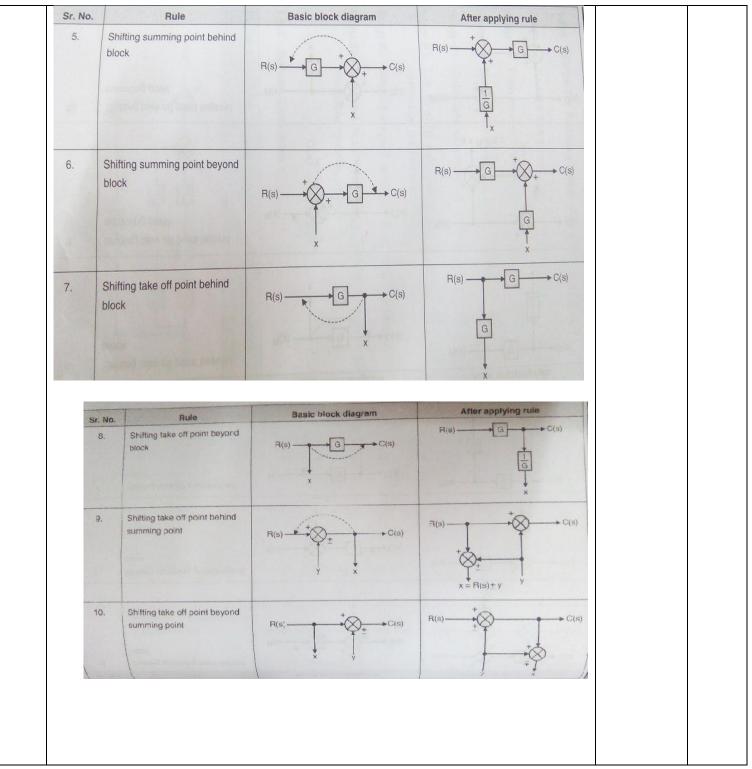
(Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

SUMMER – 15 EXAMINATION

<u>Model Answer</u>

Sr. No.	Rule	Basic block diagram	After applying rule	Any one rules-
1.	Blocks in series	$P(n) \longrightarrow G_1 \longrightarrow G_2 \longrightarrow C(n)$	$R(n) \longrightarrow G_1, G_2 \longrightarrow C(n)$	2marks
2	Blocks in parallel		$P(n) \longrightarrow C(n)$	
	Removal of minor feedback loop		$R(n) \longrightarrow 0$ $17 \text{ Q.H} \longrightarrow C(n)$	
	Interchange of summing points or associative taw	$PI(n) \longrightarrow \bigoplus_{i=1}^{n} \bigoplus_{i=1}^{n} \bigoplus_{i=1}^{n} \bigoplus_{i=1}^{n} C(n)$	$P(v) \longrightarrow \bigoplus_{i=1}^{n} \bigoplus_{j=1}^{n} \bigoplus_{i=1}^{n} C(v)$	


(Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

SUMMER – 15 EXAMINATION

Subject Code: 17536

Model Answer

(Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

SUMMER – 15 EXAMINATION

Subject Code: 17536

Model Answer