

Diploma in Engineering Summer-2015 Examinations Subject Code :17506 (ECA) Model Answers Page No : 1 of 17

Important Instructions to examiners:

1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme.

2) The model answer and the answer written by candidate may vary but the examiner should assess the understanding level of the candidate.

3) The language errors such as grammatical, spelling errors should not be given importance (Not applicable for subject English and Communication Skills).

4) While assessing figures, examiner may give credit for principal components indicated in the figure. The figures drawn by candidate and model answer may vary. The examiner should give credit for any equivalent figure/figures drawn.

5) Credits to be given step wise for numerical problems. In some cases, the assumed constant values may vary and there may be some difference in the candidate's answers and model answer (as long as the assumptions are not incorrect).

6) In case of some questions credit may be given by judgment on part of examiner of relevant answer based on candidate's understanding.

7) For programming language papers, credit may be given to any other program based on equivalent concept

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous) (ISO/IEC-27001-2005 Certified)

	Diplom	a in Engineering Summer–2015 Exa	aminations	
Subject Code	:17506 (ECA)	Model Answers	Page No: 2 of	17
1 A Atter	mpt any Three of the	e following		12
1 A a) Writ	e meaning of each of	f the following abbreviations: NPC	C. MEDA. BEE.MNRE.	
1 A a) Ans.	6	8	-, , , ,	
1)	NPC: National Produ	uctivity Council;		
	It is a national level	tri-partite, non-profit autonomous	organisation consisting	
	of members from go	vernment as well as other technica	al & non-technical	
	organisations. It prov	vides services in the areas of training	ng, consultancy &	1
	research in the field	or energy and productivity.		1 mark
2)	MEDA: Maharashtra	a Energy Development Agency;		
	State level organisati	ion in Maharashtra constituted by	the government of	
	Maharashtra that wo	rks for the promotion of energy ef	ficiency in all sectors.	1 mark
3)	RFF: Bureau of Fne	ray Efficiency:		
5)	A national level orga	anisation constituted by the govern	ment of India to	
1	promote, disseminate	e energy efficient measures in all s	sectors including	
	industrial and all are	eas where energy is being used. It	achieves this by	1 mark
1	providing the proper	platform of training and evaluation	on of energy efficiency	
1	measures feasible for	r implementation to achieve major	savings in energy	
		t affecting the quality of the output		
4) [MNRE: Ministry of	New and Renewable Energy;		
	Promotes new energ	y conservation techniques in indus	stries etc. by giving	
	incentives, helping in	n design of new techniques in ener	rgy efficiency measures,	1 mark
1	transferring new ene	rgy efficient cost effective technol	logies etc.	
1 A b) State	recommended illun	nination level for each of the follow	wing:	
Non-	working area in a of	ffice,workshop, theater, godown.		
1 A b) Ans:	\ \ T 1			$1 \operatorname{each} = 4$
) Non-working area	a in a office: $30-50-100$ lux.		marks
2	b) Theater: $50-75-1($	00-300 lux.		figures may
4) Godown: 100-150	0-200 lux		be
				considered)
1 A c) Expl	ain how Variable Fr	equency Drive (VFD) can helps to	conserve electrical	
$1 \wedge c$ The	gy. variabla fraquanav d	rive helps to conserve electrical or	paray as follows:	
1 A C) The) Energy saving du	e to optimum use for applications	leigy as follows.	1 mark
2	2) Smooth starting.	Can start the motor under load smo	oothly hence losses	each any
	avoided.		5	four $=$ 4
3	6) Smooth speed con	ntrol: losses and shocks during spe	ed control & speed	marks.
	changing operation	ons are avoided as smooth increase	e (to 300%) or decrease	
Л	(to 11%) of the r	ated speed is possible.	GRT (Inculated Cate D:	
4	polar Transistor)	optimization of input variables to	op 1 (insulated Gate B1-	
_		optimization of input variables to	500 required outputs.	

5) Less maintenance cost due to optimum working.

	Diploma in Engineering Summer-2015 Examinations				
Subje	ct Code :1	7506 (ECA)	Model Answers	Page No : 3 of 17	
	6)	Higher life span with v have improved optima	very low losses for bearing & r ll output power quality.	notors due to which we	
1 A 1 A	d) Explai d) Ans:	n why frequent rewindi	ing of induction motors reduces	s its efficiency.	4 1
	Freque 1) 2) 3) 4)	Increase in eddy current leads to fall in the lam A change in the air gap increase in the reluctant parameters. Thus more If the rewound motor I increased copper losse Improperly sized/shap of heat in the motor, cl increase in the mechant	to the following: nt losses as heating the core for ination insulation resistance. p or fitting of the rotor in stator nce or uneven reluctance as core e magnetizing current is needed has a smaller conductor cross s es. ed fans used after rewinding ca hange in the operating character nical losses & hence decrease in	r stripping old coils r gap can lead to mpared to the original d. section it leads to an lead to accumulation eristics, that lead to n effficency.	1 mark each = 4 marks.
1 B	Attem	pt any one			6 marks
1 B	a) Write motors	any six techniques that s as compared to conver	are to be adapted while designing the set of	ing energy efficient	
1 B	a) Ans:				
18	 1) Ro to 2) Us flu hy 3) Lo cin 4) Us ba 5) Us wis 6) Us 7) Us he 	eduction in iron losses be thinner dimension. sing bigger length dime ux due to which the flux vsteresis losses. owering the air gap that rcuit & hence lower ma sing low resistance copp urs leading to reduction se very smooth surface indage losses se high quality bearings se smaller diameter fans eat production in motors	by using low loss silicon steel c ension (longer cores) to increase density is lowered to reduce t leads to reduction of the reluct gnetizing current to produce th per bars in rotors instead of hig in the copper losses in rotor. finishes of stator/rotor (air gap to reduce the frictional losses. to reduce fan load (as above r s & hence reduced cooling requ ct of Rs 5 lakbs saves 20 units	core material laminated e the area of magnetic he eddy currents & tance of the magnetic le same flux density. gh resistance aluminum) leading to low measures lead to lower urements).	1 mark each any six = 6 marks
ΙB	b) An end of elec Back H	ergy conservation project ctricity is Rs. 7 per unit, Period whether investme	ct of Rs. 5 lakhs saves 20 units calculate Pay Back Period. Co ent should be done or not. Also	or energy daily. If rate omment on this Pay o write risk involved in	

1 B b) Ans:

Assume that the given no. of days are the working days per year,

this investment. Assume no. of working days is 250.

	Diploma in Engineering Summer-2015 Examinations					
Subject	Code :17506 (ECA)	Model Answers	Page No: 4 of 17	,		
	Pay Back Period in years	$\frac{Capital}{investment} cost of the project/e$ Net annual savings (quipment (Rs) (Rs)	1 mark		
	Net annual savings per year	r = units saved per annually x (ta = 250 x 20 x 7 = Rs.35000/-	ariff rate per unit)	1 mark		
	Pay Back Period in years = = =	(5,00,000)/(35000) 14.2857 14 years, 3 months, 13 days.		1 mark		
	As the rate of energy charge Increased rates will lead to to increase in this period.	es vary progressively the paybac lowering of the period while dec	ek period will change. Prease in rates will lead	1 mark		
	This period seems to be too energy conservation project Hence investment can only of the energy rates coming advisable.	b much more as the life & cost of t seems to have been over looked be done if the above cost is low down. If these are not clear then	T maintenance of thed or has not been given.& there are no chancesthis investment is not	1 mark		
	The risk involved is already equipment; 14 years is too l maintenance expenses and the second	y spelt above: life & cost of energions a period. If the equipment fathe costs increase then this proje	gy conservation ails or incurs heavy ct will fail.	1 mark		
2	Attempt any four			16		
2 a) 2 a)	Explain how energy conser (lamps) only. Ans: While replacing the lamps b required color rendering (C	vation can be obtained by replac by higher energy efficient ones v RI) is maintained else it has an a	ing light sources we must ensure that the adverse effect on the	1 mark		
	 quality & rate of the work of Replacing Lamps as follow i) Replacing incandescer (CFL's) (70 to 90 lume ii) Replacing conventiona fluorescent lamp (70 to iii)Replacement of Mercuby Halides Lamps. iv)Replacing HPMV Lam Lamp(HPSV) (150 lum v) Replacing filament lam vi)Using LED lights in placest) 	output. Also the cost involved muss: It lamps (14 lumens/W) by Comms/W) I fluorescent lamp (50 lumens/W) 90 lumens/W) ry/Sodium Vapour Lamp (aroun aps (50 lumens/W) by High press hens/W). hps (10 to 15 W) on panels by LH ace of all other lamps above as functions of the second seco	ust also be considered. pact Fluorescent Lamps V) by energy efficient d 50 to 75 lumens/W) sure sodium Vapour EDs (< 1 W). easible (in terms of	¹ / ₂ mark each = 3 marks		

2b) Explain how energy conservation can be obtained by periodic survey of lights.

	Diploma in Engineering Summer-2015 Examinations					
Subject	Code :17506 (ECA)	Model Answers	Page No : 5 of 17	7		
2 b)	Ans: Periodic survey of lights: Illumination level reduces carrying periodic survey & of lamps and luminaries w As part of maintenance pro system with respect lamp p control gears should be con opportunities as user requi	due to accumulation of dirt on la c deciding/carrying the maintenan ill improve the light output / lum ogramme, periodic surveys of ins positioning and illumination leve nducted to take advantage of ene rements changes.	imps and luminaries. By nce i.e. cleaning, dusting inance. stallation, lightning ls, proper operation of rgy conservation	2 marks 2 marks		
2 c) 2 c)	A good quality core mater Ans: A good quality core mater laminated lead to reduction hysteresis losses). This lea transformers and 1 to 2 per	ial reduces core losses in IK and ial as high grade CRGO silicon s n of around 40 to 50 % in the iron ds to increase in the efficiency by rcent in induction motors.	transformers. Explain. teel when thinly n losses (eddy current & y about 2 to 4 percent in	2 marks		
	Use of amorphous cores for	or transformers has reduced iron l	losses by about 70 %.			
	 Due to lower iron l significant improve even at low loads. This material has h that of silicon steel losses. Amorphous steel h wasted in magnetiz current. The all day efficier energy savings. As losses get reduc problems are reduc 	osses the loss at all loads is reducement in the efficiency which making electrical resistivity. This is 2 . This is partially responsible for as lower hysteresis losses. So, the result of the transformers is increased cooling problems are reduced ed.	ced resulting in y increase upto 98.5 % 2-3 times higher than low core (eddy current) is means that less energy h cycle of supply ed that results in huge I and heat related	2 marks		
2 d)	With reference to Trans. A compensated for conservir	and Distr. systems explain why re	eactive power should be			
2 d)	Ans: Compensating reactive p Reactive power compensative which the inherent current leading to increase in the s Also as reactive power is co improved. Thus energy is of excess magnetizing current	ower flow: tion leads to reduction of line/sys related power losses (I ² R) in the system efficiency and improveme compensated (leading to its reduc conserved as the losses in the line it for increasing the voltage is ave	stem current due to system are reduced, ent in the power quality. etion) the power factor is es are minimized and the bided leading to savings.	2 marks 2 marks		
2e)	Write any six energy conse	ervation techniques that are to be	considered while			

2e) Write any six energy conservation techniques that are to be considered while designing lighting for an educational institute for energy conservation.

	Diploma i	in Engineering Summer–2015 Exa	minations	
Subject	t Code :17506 (ECA)	Model Answers	Page No: 6 of	17
2 e)	Ans: 1) Use natural light in a c halls workshops etc	diffused manner where ever possi	ble such as for drawing	Upto 2 pts = 1mark,
	 2) Use energy saving flue 3) Use the recommended 4) Sectionalize/group the they can be switched of 	orescent lamps/LED lamps witho optimal level of illumination lev load using proper switches by fu	ut disturbing the CRI. els at different places. inctional sections so that	3 to 4 points = 2 marks,
	 5) Use separate transform comprises of many sis reduction in voltage fl 	ner for lighting if the institute can ter institutes located therein. This uctuations due to other loads & h	npus is very large & s leads to a high ence constant rated	5 points = 3 marks,
	voltage to the lamps ir6) Locate switches converte to operate them.	ncreasing their life and maintainin eniently such that the people who	ng their rated light. are responsible are able	6 points = 4 marks
	(other valid options must b	be assessed accordingly)		
3	Attempt any four			16
3 a)	Explain how energy can be quality.	e conserved in induction motor by	improving power	
5 a)	 Power quality is defined by 1) Voltage 2) Frequency 3) Closeness of the su also is a means for 	y the closeness of the following to pply to sine waveform [form fact knowing the harmonic content of	to specified values: for $= \pi/(2\sqrt{2})$], which f the supply.	1 mark
	1) Voltage: Maintaining th properly expected torque s voltage leads to excessive machine copper losses incr above required value higher losses. These lead to decre maintained.	e voltage at the rated value for m peed characteristics available to c current drawn due to which the li rease, line voltage drops increase. er flux density results in motors th ase in efficiency. Hence proper v	otors results in the frive the load. Lower ne losses increase, Even if voltage is nat leads to higher iron oltage has to be	1 mark
	2) Frequency: It governs the than rated these losses incr the speed dependent friction efficiency. Lower value of power. Hence frequency has	ne speed related losses and iron lo rease as speed is directly proportion on & windage losses increase that frequency leads to lower speed th as to be maintained at rated value	osses. If its value is more onal to the frequency will decrease the hat affects the output c.	1 mark
	3) When the supply wavefer means no iron & copper lo harmonics even if very sm motors which need to be of the supply voltage must be	form is purely sinusoidal the harm asses due to harmonic voltage/cur all lead to production of unwante vercome & this requires energy w as near as possible to sine wave	onics are absent which rents. Also the d harmonic torques in which is wasteful. Hence in case of AC motors.	1 mark

3b) Explain how energy can be conserved by operating two transformers in parallel.

	Diploma in Engineering Summer-2015 Examinations				
Subject	Code :17506 (ECA)	Model Answers	Page No : 7 of 17	,	
3b)	Ans:				
50)	The transformers operate of their rated loads. For a different times supplying inefficient at low loads. Hence to operate the syst connected transformers a those in parallel will supp switched off thus saving the loads. When more po be put in service while th	near their maximum efficiency a huge load system drawing highl from single transformer will be em at highest efficiencies as muc re utilized such that at lower pow ply at around its maximum effici- its low load losses. This is done wer is needed the other transform e first one may be switched off.	at around 70 % to 100 % y varying powers at uneconomical and ch as possible parallel ver requirements one of ency while the other is as per the requirements of ner if of higher rating may If the load	2 marks 2 marks	
3 c)	Explain when induction a condition, how energy is	notors are run in star connection conserved?	under 30% load		
3 c)	Ans: In star mode operation of 1) Lesser than 30%	induction motors energy is cons load means torque required by lo	erved as follows: bad is less than 30 %.	1 mark	
	2) When connected delta mode. As th (applied voltage p required) compare	in star the phase voltage reduces e torque generated by motor is d per phase) ² the torque produced f ed to delta mode.	to $(1/\sqrt{3})$ times that in irectly proportional to the falls to 1/3 (which is	1 mark	
	3) Due to decreased total iron losses a saturation.	phase voltage the iron losses dec re proportional to (applied voltag	crease to nearly $1/3$ (as ge per phase) ² before	1 mark	
	4) Due to reduction leading to lower of	in phase voltage the current draw copper losses in motor and decrea	/n in the lines also reduces ased line losses.	1 mark	
3 d) 3 d)	Explain how amorphous transformers. Ans:	transformers are efficient as com	pared to conventional		
	The iron losses (hystseris the rated operating flux is conventional transformer laminations occur consta all loads: no load include alloy that have these loss	sis + eddy current) occur in the cost s maintained throughout the day. whose core is made of silicon all ntly during the time when the tra d.Amorphous cores are made of es lower by about 70 %.	These core losses in the lloyed grain oriented iron nsformer is working for metallic glass (iron alloy)	2 marks	
	 Due to lower iron significant improveven at low loads This material has that of silicon stee currents & hence Amorphous steel wasted in magnet 	losses the total loss at all loads i vement in the efficiency which m high electrical resistivity. This is el. This is partially responsible fo very low losses. has lower hysteresis losses. So, t izing & demagnetizing during ea	s reduced resulting in hay increase upto 98.5 % s 2-3 times higher than or very low core eddy this means that less energy ach cycle of supply	1 mark	

	Diploma	in Engineering Summer-2015 Ex	aminations	
Subject	Code :17506 (ECA)	Model Answers	Page No : 8 of 17	
	 current. The all day efficient energy savings. As losses get reduct problems are reduct. Hence the amorphous correct conventional transformers. 	ncy of the transformers is increas ced cooling problems are reduced ced. e transformers are more efficient	sed that results in huge d and heat related as compared to	1 mark
3 e)	Explain how balancing of	phase currents conserve energy	in transmission line.	
3 e)	 Ans: Balancing of phase current Proper (healthy balan lines but single phase between two phase lin circulating currents in increase. Hence baland feeder copper losses. As a result of unequal cause overheating of the losses and resulting in conditions. Due to unequal loadin system the voltage drop phase and line voltage Large ovens/furnaces Hence it becomes nector the supply terminals. For furnaces the Scotth phase supply from the equally over the three Unequal loading is also phases. Hence it is necessary to construct Balancing of phases tries the Make uniform phase Reduces reactive phase Improves voltage of The balancing of the are properly loaded an ideal balance construction 	ts: (ced) three phase loads always dr loads in the 3 phase 4 wire syste ies lead to unequal currents in the transformers/ neutral conductors cing of such feeder currents is ne loads on individual lines, sequer ransformers, cables, conductors, motor malfunctioning under un ag on the single phase lines of a 3 ops in lines are different that creates at the load leading to unhealth of the single phase and two phase essary to equate/balance the thre three phases which transforms to phases. so created due to unequal lengths obtain current balance to the max to: se loading. ower losses. quality on feeders. he loads has to be judiciously do d all along the lengths, though it ondition at every point along the	raw equal currents in all m or loads connected e lines. This leads to s due to which losses eeded to reduce the nce components in them motors. These increase balanced voltage 8 phase, 4 wire supply ate unequal (non-rated) y effects on the loads. e types are such loads. e phase/line currents at ployed to derive the two he two phase load a of feeders of the three timum.	1 mark 1 mark 1 mark
4 A)	Attempt any three:			12
4 A) a) Write meaning of each of t	the following terms with referen	ce to tariff: connected	

load, load factor, max. demand, average load.

	Diploma	in Engineering Summer-2015 Exa	aminations	
Subject Code :	17506 (ECA)	Model Answers	Page No: 9 of	17
4 A a) Ans: 1)	Connected load: sin the premises un	sum of the continuous ratings of a der consideration.	ıll loads (kW) installed	1 mark
2)	Load factor : ratio time) to the maxin be determined dail	of the average load (kW) (over a num load (kW) (in the same perio ly, monthly, yearly etc. or as need	specified period of d of time). Thus it may led.	1 mark
3)	Max. Demand: it consideration over charges in tariff.	is the highest demand (in kVA) o a specified period of time. Used	f the premises under to decide the demand	1 mark
4)	Average load: it i specified period of Daily average load Monthly average lo (u	s the average (kW) of the loads define determined by any recogniz = (units supplied in 24 hrs- kWh bad = nits supplied in one month- kWh	rawing power over a zed scientific method.)/ (24 hrs).)/ (24x days in month).	1 mark
4 A b) State	any four advantages	of co-generation system.		
4 A b) Ans:				
	 Advantages of co 1) Co-generation 2) A much more compared to se 3) Many times it 4) Increases over 5) Reduction in e 6) In this system process. 7) Helps to maint 8) Due to decentre makes system 	-generation system- can meet both power & heat need efficient use of primary energy ca eparate production of electricity & is implemented in a very cost effe all efficiency of the system. mission of pollutants due to reduc heat generated is the by-product of ain grid stability. alization of electricity it avoids tr more flexible.	ds. In be achieved as & heat. ective manner. ced fuel consumption. of electricity generating ransmission losses &	1 mark each any four = 4 marks (other valid parallel points may be considered)
4 A c) Expla 4 A c) Ans: opera more grade tariff peak	tin how TOD and pe Electric supply agen ting near full load for power when the load d such that, lower the rate to encourage the TOD tariff gives opp hours they provide a ds. The off peak hou	ak-off tariff can helps for energy cies always try to achieve high pl or as much time as possible. They d on their plants is low for which e demand on their plants/substatione e consumers draw power then. Fortunity for the user to reduce the n incentive to shift consumption to rs tariff charges are quite low in c	conservation. lant efficiency by encourage users to draw they keep tariff rates ons lower will be the eir billing. During off from peak to off peak comparison to peak	1 mark

			Diploma	in Engineering Summer-2015 E	xaminations	
Su	ıbje	ct Code :1	7506 (ECA)	Model Answers	Page No: 10 o	f 17
		load de	emands are very hig	gh.		
		times	As the supply ago of the day their over	encies get loaded as much near t rall efficiency gets higher helpin	to the rated load for longer ag to conserve energy.	2 marks
4	ŀΑ	d) State a	my four objectives	of tariff.		
4	A	d) Follow 1)	ving are the objectiv Recover capital in	ves of tariff of a supply agency: vestment made.		
		2) 3) 4)	Cost of operation, The cost incurred r Cost of metering, recovered.	supplies, maintenance & losses must be judiciously distributed a billing, collection & miscellaned	must be recovered. amongst the consumers. ous services must be	Any four points 1mark each = 4 marks
		5) 6) 7) 8)	Encourage consun plant efficiency & Discourage users f Should have a pro Gain suitable profi	hers for using power during the load factor are high. From drawing higher loads than vision of penalty for low power it on the capital investment.	off peak hours so that contracted. factor.	
4	В	Attem	pt any one:			6 marks
4	В	a) Explai follow imbala	n how losses are ind ing. Low power fac ance.	creased in Trans and distr. Syste etor, low transmission voltage, tr	em due to each of cansmission line voltage	
4	В	a) Ans:				
		1)	Low power factor: the current in the c As 'I' = $P/(V \times pf)$ This increased cur	tor a certain real power load lo lifferent conducting sections.). rent leads to higher copper losse	w pf leads to increase in	2 marks
			system conductors	. Hence losses increase with fall	l in power factor.	
		2)	Low transmission draw excess curren current leads to ind windings that lead	voltage: Motoring devices supp nt to handle the load as 'I' = (o/ creased copper losses in the supp to decrease in efficiency.	lied with lower voltage p)/[η V pf]. This excess ply lines & machine	2 marks
		3)	Transmission line phases will be une hence increased lo causes 40 % increa currents will be ac	voltage imbalance: due to this the qual that will lead to higher curr sses especially in the motor load ase in motor losses. Also the neg tive and create extra losses.	he currents in the different rents in the neutral and ds. A 5% imbalance gative phase sequence	2 marks
4	В	b) An inc factor annum lag, ca	lustrial consumer ha of 65 %. The tariff a plus Rs. 2.85 per k lculate the total ene	aving a maximum demand of 10 rates are Rs. 900 per kVA of ma Wh of energy consumed. If ave ergy consumed per annum and an	0 kW maintains a load aximum demand per rage power factor is 0.8 nnual electricity bill.	
4	В	b) Ans: Averag	ge load = (LF) x (M	ID in kW) = $0.65 \times 100 = 65 \text{ kW}$	Ι.	1 mark

Subject	Diplom t Code :17506 (ECA)	a in Engineering Summer–2015 Examinations <u>Model Answers</u>	Page No : 11 of 17
	MD (kVA) = (MD in kV)	V)/(avg. pf) = 100/0.8 = 125 kVA.	1 mark
	Annual units consumed	N = Average load x no. of hrs in a year	1 mark
		$= 65 \times 365 \times 24 = 569400 \text{ kWh}.$	1 mark
	Annual bill = MD charg	es + Energy charges	
	= 125 x 900	+ 569400 x 2.85 = Rs. 112500 + 1622790	1 mark
	= Rs. 173529	90/-	1 mark
5	Attempt any four:		16 marks
5 a)	Ans: Different commercia 1) Losses due to un 2) Losses due to err 3) Losses due to by 4) Losses due to by 4) Losses due to by 5) Losses due to sto 6) Losses due to cha 7) Losses due to cha 8) Losses due to int	al losses: authorized extension of loads. Fors in meter reading & recording. passing the meter. proper testing & calibration of meters. opping the meters by remote control. anging the sequence of thermal wiring. anging the C.T. ratio. fentional burning of meters.	1 mark ustomers to ver drawn 1 ½ marks
5 b) 5 b)	 and another of supplied properly tested, resorting surprise raids/checks on These remedies lead to p utilized. They will lead to energy which in turn red to saving in energy resort Explain how motion dete Ans: Motion detectors when i moving entities (human as required as long as the As soon as the last persort 	by the agency personner, instanting accurate in g to regular testing/calibration of meters, condu- consumers premises to detect theft or pilferage proper evaluation of the energy produced, distr to avoidance of improper /unwarranted use of a luces the energy requirements by some scale in urces. ectors can be used for energy conservation. nstalled at proper places in rooms or at entrance beings) and switch on the lights/fans/air-condi- ere is someone in the room.	ibuted and ivailable 1 ¹ / ₂ marks turn leading xes detect tioning units 2 marks
	the controller circuits the	us saving energy / conserving energy.	1 mark

Sı	ıbject	Diploma in Engineering Summer–2015 ExaminationsCode :17506 (ECA)Model AnswersPage No : 12 o	f 17
		These use transducer sensors, counter circuits, intelligent load circuit controllers etc.	1 mark
5 5	c) c)	With the help of conceptual diagram explain what co-generation is. Ans: Co-generation is the combined utilization of multiple forms of energy produced by some primary source in a useful manner to avoid wastage of energy produced in the primary stage of a certain industrial process or it is a system in which the multiple outputs of a single source of energy: such as (heat energy, mechanical (motional) energy & electrical energy are obtained to efficiently utilize the source input.	1 mark
		 This can be achieved in two main ways as given below: 1) Topping cycle: the energy from fuel burnt is used to first produce power and then the thermal energy which is a by-product of the cycle and is used to supply process heat or other thermal requirements. Suitable where the processes of the industry need low heat (temperatures). 	1 ½ marks
		 2) Bottoming cycle: the energy from fuel burnt is used at the high temperature thermal energy required for the process of the industry and then the heat rejected is recovered and used to generate power. Fuel burning Industry process (uses thermal energy) 	1 ½ marks
5	d)	Explain how each of following conserves energy in lighting system voltage stabilizers, dimmers.	
5	d)	Ans: Voltage stabilizers: Wherever, installation of separate transformer for lighting is not economically attractive servo stabilizer can be installed for the lighting feeders. This will provide stabilized voltage for the lighting equipment. The performance of chokes, ballasts, will also improve due to the stabilized voltage. This system also provides the option to optimize the voltage level fed to the lighting feeder. In many plants, during the non-peaking hours, the voltage levels are on the higher side. During this period, voltage can be optimized, without any significant drop in the illumination level. High voltages lead to higher light output (un-necessary) consuming higher energy, hence stabilizers are used to control the voltage to such light sources	2 marks

Dimmers:

These are devices whose output voltage can be varied starting from a very low

Diploma in Engineering Summer-2015 Examinations			
Sı	ıbject	Code :17506 (ECA) Model Answers Page No : 13 of	17
		value to rated. When supplying to lighting loads these provide the required voltage level for optimum illumination thus avoiding excessive brightness and saving in the energy inputted to the light sources. These dimmers are available in rheostatic forms, auto-transformers & electronic regulator circuits (thyristor dimmers). The most energy efficient ones are the thyristor type.	2 marks
5	e)	Explain any four advantages of centralized control equipment for conserving energy.	
5	e)	 Ans: Advantages of centralized control equipment: Intelligently switches on/off lighting loads as per the occupancy requirement. When controlling air conditioning they effect a huge savings. Maintains desired level of illumination or controls the intensity of light in the occupancies. Time scheduling can be done for switching on / off the lights. Timer based/ time of day based / prevailing illumination based lighting control possible for optimization of the lighting circuits. In latest applications it saves energy utilized for lighting, fan & airconditioning by sensing and switching according to requirement. 	Any four 1 mark each = 4 marks (other relevant answers to be assessed accordingly)
5	f)	Explain how soft structures helps to conserves energy.	

5 f) Ans:

Soft starter:

Soft starter delivers a controlled power to the motor to provide smooth, step less acceleration and deceleration. It consists of thyristors in the main circuit and the motor voltage is regulated with a printed circuit board. So as the voltage is low at the time of starting, current & torque developed will be also low. During starting period the soft starter provides low voltage to motor which enables to adjust the play between the gear wheels or stretching driving belts or chains etc. In other words it eliminates unnecessary jerks during the start. Gradually the voltage and the torque increase so that the machinery starts to accelerate.

Figure 1 mark

1 mark

The line voltage drops & losses at start are thus very low. It provides a reliable and economical solution to overcome problem related with starting. Due to low torque developed lower mechanical stresses are produced. Improved starting

		Dipl	oma in F	Engineering Summer–2015 Exa	aminations		
Subject	Code :17506 (ECA)Model AnswersPage No : 1				Page No : 14 c	L 4 of 17	
	power fa frictional hammeri	ctor. Lowers losses. Prov ng in the pip	maximu ides soft e system	um demand. Wear of bearings t stop function (useful in stopp n occurs at direct stop).	reduces hence low ping pumps where water	2 marks	
6	Attempt	Attempt any four:					
6 a) 6 a)	 Write different steps of energy audit of an industry. Ans: Defining scope of audit. Form audit team. Estimate time frame and budget. Collect information of different sections in all respects (no measurements 5) Conduct site inspection and identify strategic measurement points. Conduct measurements at strategic points. Analyse data collected. Identify energy management and conservation opportunities. Schedule maintenance and other related activities. 					Full coverage 4 marks Partial proportiona lly lower marks	
6b)	Prepare a	ny eight que	stions re	elated to energy audit of shopp	ping mall.		
6b)	Ans: The main aim of the questionnaires it is to collect the basic data:						
	I)	Availability of drawings of electrical, plumbing works?				¹∕₂ mark	
	II)	II) No of personnel employed, Hours of working,					
	III)	Equipment / components: A) Type of supply: 1. Specifications, arrangement of receiving it. OR				marks, other valid points also to be considered	
		B) C) D) Supply 1. 2. 3. 4. 5. 6. 7.) Own su 1. 2.) Power 1 2 3 	 Transformer- Type of transformer? Location? Output voltage? KVA ratting? Supply voltage? Present load nature and value? Remark? ubstation? Location. Drawings of layout. factor improvement Types of capacitors Ratings? Switching schedules 	,		

Diploma in Engineering Summer-2015 Examinations

Model Answers

Page No: 15 of 17

- E) Air conditioning system-
 - 1. Type?
 - 2. Location of compressor?
 - 3. Rating?
 - 4. Piping?
 - 5. Gas name if gas used?
- F) Lighting (location wise or floor wise or section wise)
 - 1. Type of lamps?
 - 2. Type of work?
 - 3. Lumen output?
 - 4. Wattage of lamp?
 - 5. Method of switching?
 - 6. Operating load?
 - 7. Operating hours?
- G) DG set (Diesel Generator Set)-
 - 1. Type of DG set?
 - 2. Capacity?
 - 3. No. of DG set?
 - 4. Fuel used?
 - 5. % loading?
 - 6. Units generated annually?
- H) Standby Generator-
 - 1. Type of generator?
 - 2. No. of generator?
 - 3. Load capacity?
 - 4. Rating?
- I) Lifts used.
 - 1. Capacities ?
 - 2. Locations ?
 - 3. Frequency of use?
- J) Exterior lighting system plans & drawings ?
- 6c) Classify cogeneration system based on sequence of energy generation. Explain working of each of them with diagram.
- 6c) Ans:

Cogeneration systems are classified on the basis of sequence of energy generation as topping cycle & bottoming cycle.

1) Topping cycle: the energy from fuel burnt is used to first produce power and then the thermal energy which is a by-product is used to supply process heat or fulfill other thermal requirements. Suitable where the processes of the industry need low heat (low temperatures). 1 mark

1 mark

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous) (ISO/IEC-27001-2005 Certified)

Di Subject Code :17506 (ECA)	ploma in Engine <u>M</u>	ering Summer–20 odel Answers	15 Examinations Page No:1	6 of 17			
-	high energy	exhaust heat	energy				
Fuel burning	Power [(co)gen	eration]	Industry process (uses thermal energy)	Figure ½ mark			
 Bottoming c thermal ener rejected is re 	ycle: the energy gy required for t ecovered and use	from fuel burnt is the process of the ed to generate pow	s used at the high temperature industry and then the heat ver.	e 1 mark			
	high energy	exhaust h	eat energy				
Fuel burning	g → Industr therma	ry process (uses al energy) =	⇒ Fower [(co)generation]	Figure ½ mark			
 6 d) State any four factor 6 d) Ans: The factors that gov site/situation specific play an important re- related items decide 1) Base electric meet the min purchased fr 2) Base therma supply the m are used if th 3) Electrical los system is de Therefore th utility grid 	 State any four factors on which co-generation system is selected. Ans: The factors that govern the selection of cogeneration systems are very much site/situation specific. The local factors such as the thermal energy requirements etc play an important role. Also the availability of the relevant opportunities and other related items decide the selection. They are broadly as follows: Base electrical load matching: - The co-generation system is designed to meet the minimum electricity demand. The remaining power required is purchased from the utility grid. Base thermal load matching: - The co-generation system is designed to supply the minimum thermal energy requirement. Stand by boilers/ burners are used if the demand for heat is higher. Electrical load matching:- This is stand alone system. The co-generation system is designed such that total electricity required is generated. Therefore this co-generation system is totally independent of the electricity 						
 utility grid. Sused. 4) Thermal loa total heat en electricity pu 5) Availability good co-gen 	 utility grid. Sometimes if energy demand is higher, auxiliary boilers are used. Thermal load matching:- The co-generation system is designed such that the total heat energy require is generated. If required energy demand is higher electricity purchased from grid. Availability of fuel: cheap and easy availability of fuel helps to achieve good co-generation 						

Subject	Diplom Code :17506 (ECA)	a in Engineering Summer–2015 Exa <u>Model Answers</u>	minations Page No: 17 of 17				
	6) Space requireme generation where	nts: the site if very limited in space as ample space helps in installing t	does not support co- he co-generation system				
	7) Initial and operat generation system	ing costs: lower values encourage t	he installation of co-				
6 e) 6 e)	Explain use of ABC ana Ans: (points to be covered	lysis in energy audit project. ed)					
	ABC analysis is used to project in our case) that minor influecial compon- maintaining a tight contr determined manner lead	identify components of a project (enave major & minor influences on the ents are classified into items of lists of over these and using them judicities to optimisation of the project cost.	nergy conservatio the cost. The major & s A, B, & C. ously in a scientifically 1 mark				
	Of the total cost of the energy conservation project implementation:						
	List 'A' contains items that account for approximately 70% of total cost but these items (major energy inputs / outputs related) number around 7 to 10% (which are very important) of total numbers;						
	List 'B' contains items but these items (medium are only important) of to	that account for approximately 20% importance energies related) numb tal numbers;	6 to 25% of total cost per around 20 % (which				
	List 'C' contains items that account for approximately 5% to 10% of total cost but these items (very minor energies related) number around 50 to 70% (which are not important) of total numbers.						
	Advantages referred to e 1) The audit he involved the 2) Help to sche useful outpu 3) Optimize th 4) Maximize th	nergy audit projects: elps to identify items/related energie ere in. edule the different processes to achi at using the minimum inputs withou e expenses on energy required. he savings.	es and the costs eve overall maximum at loss of quality. Any three = 1 mark				

5) Reduce energy losses.