

Model Answer

Subject code :(17426)

Page **1** of **20**

Important Instructions to examiners:

1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme.

2) The model answer and the answer written by candidate may vary but the examiner may try to assess the understanding level of the candidate.

3) The language errors such as grammatical, spelling errors should not be given more

Importance (Not applicable for subject English and Communication Skills.

4) While assessing figures, examiner may give credit for principal components indicated in the

figure. The figures drawn by candidate and model answer may vary. The examiner may give credit for any equivalent figure drawn.

5) Credits may be given step wise for numerical problems. In some cases, the assumed constant values may vary and there may be some difference in the candidate's answers and model answer.

6) In case of some questions credit may be given by judgement on part of examiner of relevant answer based on candidate's understanding.

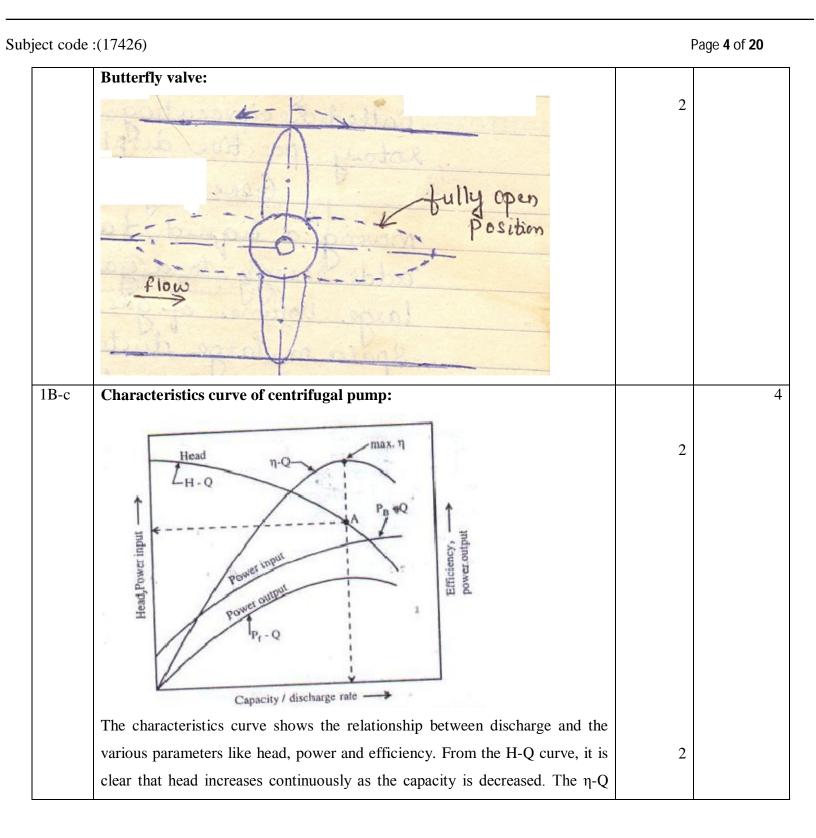
7) For programming language papers, credit may be given to any other program based on equivalent concept.

Model Answer

Subject code :(17426)

Page 2 of 20

Q No.	Answer	marks	Total marks
1A-a	Density:		2
	It is the mass per unit volume of a substance	1	
	Weight density:	1	
	It is the weight of unit volume of fluid.	1	
1A-b	Classification of fluids based on		2
	Density:	1	
	Compressible fluids and incompressible fluids		
	Viscosity:		
	Ideal and actual (real) fluid.	1	
1A-c	Critical velocity.	2	2
	It is the velocity at which the flow changes from laminar to transition.		
1A-d	NRe=10000	2	2
	$f = 0.078/(N_{Re})^{0.25} = 0.0078$		
1A-e	Different types of pipe fittings:(any four)	¹∕₂ mark	2
	Union, coupler, plug, reducer, expander, bend, elbow, tee, cross	each	
1A-f	Merits of positive displacement pump:	1 mark	2
	1. It does not need priming.	each for	
	2. Can be used for low capacity and high heads.	any 4	
	3. Efficiency is high.	points	
	4. Designed for higher heads.		
	5. Can develop high pressure.		
1A-g	Application of steam jet ejector:	2	2
	1, used for handling corrosive gases that would damage mechanical vacuum		
	pump.		



MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous) (ISO/IEC - 27001 - 2005 Certified)

SUMMER-15 EXAMINATION

	2. It is used for handling large volume of vapour at low pressure.		
1 B- a	Derivation of equation of continuity:		
	Mass balance states that for a steady state flow system, the rate of mass	1	
	entering the flow system is equal to that leaving the system provided		
	accumulation is either constant or nil.		
	Let v_1 , ρ_1 & A ₁ be the avg. velocity, density & area at entrance of tube & v_2 ρ_2 &		
	A_2 be the corresponding quantities at the exit of tube.	2	
	Let \dot{m} be the mass flow rate	2	
	Rate of mass entering the flow system = $v_1 \rho_1 A_1$		
	Rate of mass leaving the flow system = $v_2 \rho_2 A_2$		
	Under steady flow conditions		
	$\dot{\boldsymbol{m}} = \rho_1 \mathbf{v}_1 \mathbf{A}_1 = \rho_2 \mathbf{v}_2 \mathbf{A}_2$	1	
	$\dot{m} = \rho v A = constant$ Equation of continuity	1	
1B-b	DiaphragmValve:		
	Sprindle/stern diaplingm(open Body position Close position	2	

	e :(17426)		5 of 20
	curve shows that η reaches a maximum and then falls. The duty point ie the		
	point where the H-Q curve cuts the ordinate through the point of maximum		
	efficiency shows the optimum operating conditions. The difference between		
	power input and power output represents the power lost in the pump due to		
	friction, leakages etc.		
2-a	U tube manometer:		
	Diagram:		
		2	
	P ₁ scale P ₂		
	limb-1		
	limb-1		
	flaid of		
	density p		
	E P /		
	fluid of density = ρ_m		
	Expression to calculate pressure difference:		
	$\Delta P = h \ (\rho_{\rm m} . \rho)g$	2	
	Where h=difference in level of manometric fluid in the two limbs of		
	manometer.		
	ρ = density of flowing fluid		
	ρ_m = density of manometric fluid.		
2-b	Form friction:		

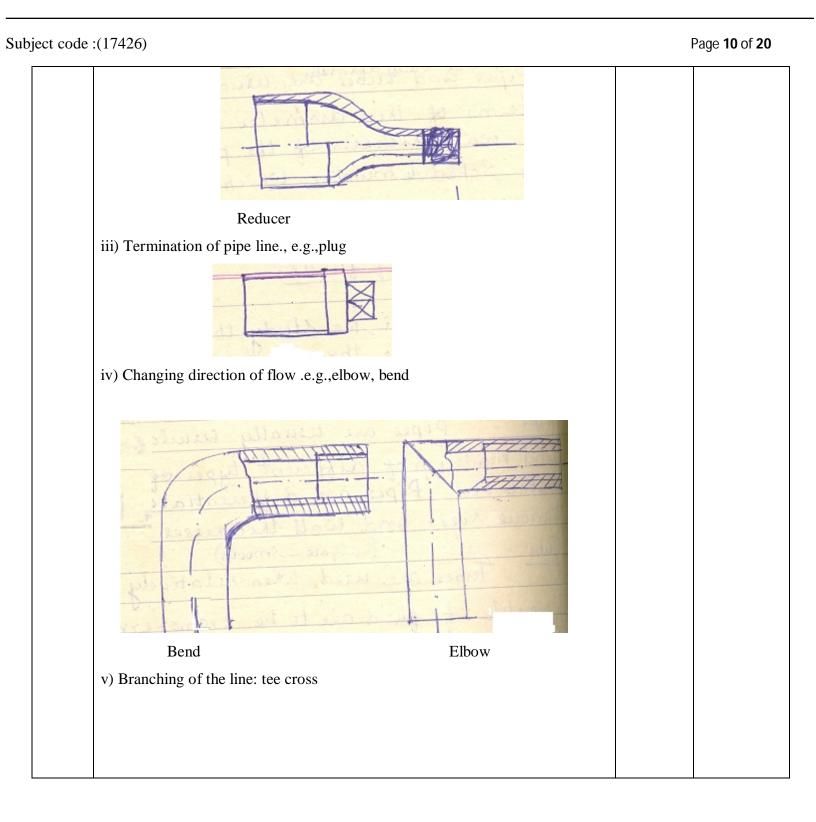
ect cod	e :(17426)	Page 6	of 20
	Friction caused by eddies when an obstruction is present in the line of flow.	2	
	Skin friction: Friction between a moving fluid and wall of pipe. It is due to		
	the roughness of the pipe. When fluid is flowing through a straight pipe, only	2	
	skin friction exists.		
2-c	Diagram of Rupture disc:	4	
	Rupture Disk		
2-d	Priming:	2	
	Removal of air from the suction line and pump casing and filling it with the		
	liquid to be pumped is called priming		
	Air Binding :		
	The pressure developed by the pump impeller is proportional to the density of		
	fluid in the impeller. If air enters the impeller, the pressure developed is	2	
	reduced by a factor equal to the ratio of the density of air to the density of		
	liquid. Hence, for all practical purposes the pump is not capable to force the		
	liquid through the delivery pipe. This is called Air binding.		
2-е	Relation between friction factor and Reynold's number		
	For laminar flow : $f = \frac{16}{NRe}$	2	
	for turbulent flow:		

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous) (ISO/IEC - 27001 - 2005 Certified)

SUMMER-15 EXAMINATION

ect cod	le :(17426)	F	Page 7 of 20
	$f = 0.078/(N_{Re})^{0.25}$ or $1/\sqrt{f} = 4 \log(N_{Re}\sqrt{f}) - 0.4$	2	
2-f	Venturimeter		
	HIGH PRESSURE TAP 19° TO 23° 19° TO 23° 10° TO 20° TO 20° 10° TO 20° TO 20° 10° TO 20° TO 20° 10° TO 20° TO	2	
	PRINCIPLE: It works on the Bernoulli's principle. It is a variable head	2	
	meter. Venturi reduces the flow area thus creating differential pressure across		
	it. Any changes in fluid flow rate through venturi are measured in terms of		
	differential pressure across it.		
3-а	$P = h \rho g$	1	
	$\mathbf{P} = \mathbf{h}_1 \ \boldsymbol{\rho}_1 \ \mathbf{g} = \mathbf{h}_2 \ \boldsymbol{\rho}_2 \ \mathbf{g}$	1	
	$60 \ge 13.6 = h_2 \ge 1$	-	
	$\therefore h_2 = \frac{60 \times 13.6}{1}$	1	
	$= 816.0 \text{ cm of } H_2O \text{ Column}$	1	
3-b	Types of valves used in industry :	1 mark	
	i) Globe Valve	each for any 4	
	ii) Gate Valve	any +	
	iii) Needle Valve		
	iv) Ball Valve		
	v) Diaphragm Valve		
	vi) Check Valve		

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous) (ISO/IEC - 27001 - 2005 Certified)


SUMMER-15 EXAMINATION

	vii)) Butterfly V	Valve				
	viii) Pressure Re	elease Valve				
3-c	Classification of	of Pumps with Examp	les :			
	i) Positive Disp	lacement Pump			1	
	a) Reciprocating	g eg : Piston pump, Plu	inger pump		1	
	b) Rotary eg : C	Gear pump, lobe pump,	screw pump			
	ii) Non - Positiv	ve Displacement Pum	р		1	
	a) Centrifugal e	eg : Volute diffuser			1	
	b) Regeneration				1	
	c) Turbine					
	iii) Special Pun	np				
3-d		Compressor	Blower	Fan	4	
	Speed	All 3 can run at lo	w/ medium/ hig	sh speed depending		
		upon discharge.				
	Pressure	High	Medium	low		
	Flow rate	low	Medium	High		
	Efficiency	Low since heat	medium	High since heat		
		of compression		of compression		
		is more		is low		
3-е	Newton's law o	of viscosity:				
	Newton law of	viscosity states that she	ear stress is prop	ortional to shear rate	2	
	and the proporti	onality constant is the	viscosity of the	fluid.	-	
	Mathematical	expression:			2	
	$\frac{F}{A} = \mu \frac{dv}{dx}$					
	Where,					
	7					

	le :(17426)		Page 9 of 20
	μ = Coefficient of viscosity		
	$\frac{dv}{dx}$ = Shear rate.		
3-f	NPSH for a system with suction lift – is the necessary suction for lifting of		
	liquid from a reservoir which is below the central line of pump. NPSH stands	02	
	for Net positive Suction Head. It is the amount by which the pressure (sum of		
	velocity and pressure head) at the suction point of the pump is in excess of		
	vapour pressure of the liquid.		
	Formula used for NPSH is,		
	$NPSH = -Z_s + \frac{Ps.Pvap}{\rho} - h_{fs}$	02	
	Where,		
	Z_s = height of pump from the level of liquid in the tank (for		
	lift suction $Z_s = -ve$)		
	$P_s =$ Pressure at the eye of impeller		
	$P_{vap} = Vapour pressure of liquid$		
	h_{fs} =Head lost due to friction on suction side.		
4-a	Sketches of Pipe fittings with their uses :	1 mark	
	i)Joining two pipes.,e.g., Coupling /socket, union, nipple	each for any 4 pipe fitting with its use	
	ii) Changing pipeline diameter .,e.g.,reducer, expander		

Model Answer

Subject code :(17426)

Page **11** of **20**

4-b	Reynold's Number is a dimension less number which indicates the nature of	01	4
	flow. It is the ratio of inertial force to viscous force.		
	$N_{Re} = \frac{D u \rho}{\mu}$	01	
	Where,	01	
	D = diameter in cm		
	u = Velocity in cm/s		
	$\rho = \text{density gm/cm}^3$		
	$\mu = \text{Viscosity} \frac{gm}{cm x sec}$		
	Useful information:	02	
	If , $N_{Re} < 2100$, flow laminar		

$N_{Re} > 4000$, flow turbulent		
$2100 < N_{Re} < 4000$, flow transition.		
4-c Reciprocating compressor:	2	

	Construction:		
	Reciprocating compressors are available either as a single-stage or		
	multistage units for pressures as high as 240 Mpa.A reciprocating compressor	2	
	incorporates a piston, a cylinder with intake & exhaust valves and a crank shaft		
	with a drive. These units operate mechanically in the same manner as the		
	reciprocating pumps and are usually double acting. The cylinder of the		
	compressor is usually water jacketed to remove heat of compression. The		
	reciprocating compressors are usually belt driven from an electric motor.		
	When it is not possible to achieve the required compression ratio with single		
	stage units, multistage units are used. In case of multistage compressors, it is		
	general practice to cool the gas between the stages. For cooling purpose,		
	coolers are employed.		
4-d	Calibration of rotameter: The calibration chart for a given rotameter		
	prepared over its entire range is a relationship between the rotameter reading		
	(i.e., height of float, float position) and the volumetric flow rate.	2	
	For calibrating a given rotameter, the flow of fluid (liguid e.g., Water)		
	through the meter is started by slightly opening a valve at the inlet to the		
	meter. Time is allowed to attain steady state & for this valve opening, the float		
	position is noted & the liquid is collected in a measuring tank over a known		
	period of time. The volumetric flow rate is obtained from the volume collected		
	& the time noted. This procedure is repeated for several valve positions to		
	cover the entire range of the meter & the calibration chart is prepared.		
	On the calibration chart, we should provide information such as :		
	name, density & temperature of the fluid handled.		
	Volumetric flow rate = $\frac{\text{volume of liquid collected}}{\text{time}}$		
	Calibration chart for rotameter		

Model Answer

Subject code :(17426) Page 14 of 20 2 Volumetric flow rate Max. C Float position 4-e Solution: 4 10 cm 5 cm Friction loss due to sudden expansion (h_{fe}) is given by the equation 1 $(h_{fe}) = \frac{u_1^2}{2} [1 - \frac{A1}{A2}]^2$ Where, u₁= Velocity of flowing fluid through the smaller pipe A_1 = Cross-sectional area of the smaller pipe $A_2 = Cross-sectional$ area of the larger pipe $A_1 = \frac{\prod}{4} D_1^2,$ where $D_1 = 5 \text{ cm} = 0.05 \text{ m}$ $A_1 = \frac{\prod}{4} (0.05)^2 = 1.963 \text{ x } 10^{-3} \text{ m}^2$ 1 $A_2 = \frac{\prod}{4} D_2^2$, where $D_2 = 10 \text{ cm} = 0.1 \text{ m}$ $A_2 = \frac{\Pi}{4} (0.10)^2 = 7.854 \text{ x } 10^{-3} \text{ m}^2$

ect cod	le :(17426)		Page 15 of 2
	$u_1 = 2 m/s$		
	Substituting values of the terms involved in the above equation of h_{fe} , we get	1	
	$h_{fe} = \frac{(2)2}{2} \left[1 - \frac{(1.963 \ x \ 10-3)}{(7.854 \ x \ 10-3)} \right]^2$	1	
	1.125 J/kg		
4-f	$P_1 = 101.325 \text{ KN} / \text{m}^2$	1	
	$P_2 = 101.325 + 32.424 = 133.749 \text{ KN} / \text{m}^2$		
	$\Delta P = P_2 - P_{1=} \rho g h$	2	
	$32.424* \ 10^3 = 1250* 9.81* h$	1	
	h = 2.644 m	1	
5-a	Data:		
	Volumetric flow rate: $Q = 5 \text{ m}^3/\text{hr}$		
	Diameter of pipe: $D = 78 \text{ mm} = 0.078 \text{ m}$		
	Viscosity of water = $\mu = 8 \times 10^{-4}$ Pa.s = 8×10^{-4} kg/m.s		
	Length of pipe = 50 m		
	Area of pipe = A = $\pi / 4 D^2 = \pi / 4 (0.078)^2$	1	
	$A = 4.776 X 10^{-3} m^2$		
	As $Q = 5 \text{ m}^3/\text{hr} = 5 / 3600 = 1.39 \text{ X} 10^{-3} \text{ m}^3/\text{s}$	1	
	$u = Q/A = \frac{1.39 \text{ X } 10-3}{4.776 \text{ X } 10-3}$		
	u = 0.3 m/s	1	
	$NRe = \frac{Du\rho}{\mu} = \frac{0.078 * 0.3 * 1000}{8 X 10 - 4} = 29250$	1	
	As NRe> 4000, flow is turbulent		
	For turbulent flow $f = \frac{0.078}{NRe^{0.25}} = \frac{0.078}{29250^{0.25}} = 0.00596$	1	
	Pressure drop can be calculated from Fanning equation:		
	$\Delta P = \frac{4f\rho Lu^2}{2D} = \frac{4*0.0059*1000*50*0.3^2}{2*0.078} = 687.6 \text{ N/m}^2$	2	

ect cod	le :(17426)		Page 16 of 2
	Frictional loss $hfs = \frac{\Delta P}{\rho} = 687.6/1000 = 0.6807 \text{ J/kg}$	1	
5-b	Data:		
	D1 = 30 cm = 0.3 m Area of pipe 1 = A ₁ = $\pi / 4$ D ₁ ² = $\pi / 4^* (0.3)^2 = 0.07065$ m ²	1	
	D2 = 20 cm = 0.2 m Area of pipe 2 = $A_2 = \pi / 4 D_2^2 = \pi / 4^* (0.2)^2 = 0.0314 m^2$	1	
	D3 =15 cm = 0.15 mArea of pipe 3 = $A_3 = \pi / 4 D_3^2 = \pi / 4^* (0.15)^2 = 0.01766 m^2$	1	
	Volumetric flow rate of water in a pipe1(dia.30 cm) = $Q_1 = u_1A_1$		
	$Q_1 = 2.5 * 0.07065$	1	
	$Q_1 = 0.1765 \text{ m}^3/\text{s}$		
	From continuity equation		
	mass flow rate in pipe $1 = \text{mass}$ flow rate in pipe $2 + \text{mass}$ flow rate in pipe 3	1	
	$\dot{m_1} = \dot{m_2} + \dot{m_3}$	1	
	$\rho_1 V_1 A_1 = \rho_2 V_2 A_2 + \rho_3 V_3 A_3$		
	$1000*2.5*0.07065 = 1000*2*0.0314 + 1000*V_3*0.01766$	1	
	$V_3 = 6.46 \text{ m/s}$	1	
5-c	Diameter of pipe: $D=78 \text{ mm} = 0.078 \text{ m}$		
	Orifice diameter: $Do = 15 \text{ mm} = 0.015 \text{ m}$		
	$\Delta h = 18 \text{ cm} = 0.18 \text{ m}$		
	Discharge = $Q = 719 \text{ cm}^3/\text{s}$		
	$Q = 7.19 X 10^{-4} m^3/s$	1	
	Density of mercury : $_{\varrho Hg} = 13,600 \text{ kg/m}^3$	1	
	Density of water : $_{QH2O} = 1000 \text{ kg/m}^3$		
	$\Delta H = \Delta h \left[\frac{{}^{e_{Hg}} - {}^{e_{H2O}}}{{}^{e_{H2O}}} \right] = 0.18 \left[\frac{13600 - 1000}{1000} \right] = 2.268 \text{ m of water}$	1	
	$_{\beta}$ = Diameter of orifice /Diameter of pipe = 0.015 /0.078 = 0.192	1	
	Area of orifice = $A_o = \frac{\pi}{4} D_o^2 = \frac{\pi}{4} (0.015)^2 = 0.000176 m^2$	1	
	The flow equation of orifice meter		

ect code	ect code :(17426)		Page 17 of 20	
	$Q = \frac{C_o A_o \sqrt{2g\Delta H}}{\sqrt{1 - \beta^4}}$	1		
	$7.19 * 10^{-4} = \frac{C_o * 0.000176\sqrt{2 * 9.81 * 2.268}}{\sqrt{1 - (0.192)^4}}$	1		
	$7.19 * 10^{-4} = \frac{C_o * 0.000176 * 6.67}{0.9999}$			
	$C_{o} = 0.6099$	1		
6-a	Gear Pump:			
	Most commonly used positive displacement pump.			
	Diagram:			
	SUCTION	4		
	Gear pump			
	Construction:			
	It consists of two toothed gear wheels, enclosed in a casing provided with			
	inlet & outlet connections for liquid to be pumped. Of the two gear wheels			
	,one is driven by an electric drive & other rotates in mesh with the first. The	2		
	gap/clearance between the gear wheels as well as between the surface of the			
	gear wheels & the casing is very small. The number of teeth on each gear may			
	be three, four or more. The discharge rate of liquid is independent of the			

	Working:		
	The liquid to be pumped enters in pump through the inlet connection. As one		
	of the gear wheel is driven by the electric motor, the other gear wheel also		
	rotates inside the casing. Due to rotation of both the gear wheels, there is	2	
	reduction in pressure at the inlet. Therefore the liquid entered in casing is		
	carried round in the space between the gear teeth & the casing during the		
	rotation of the gear wheels & after further rotation the liquid is pumped out of		
	the discharge side as the teeth come into mesh.		
	Used in chemical industry for handling high viscosity liquids like molasses,		
	paints & greases. But not suitable for liquids having suspensions due to closed		
	clearance between the gear wheels & teeth.		
6-b	Data:		
	Velocity of water = 24 m/s (constant, $u_1 = u_2$)	1	
	$P_1 = 361 \text{ kN} / \text{m}^2 = 361 * 1000 \text{ N} / \text{m}^2$	1	
	$P_2 = 288 \text{ kN} / \text{m}^2 = 288 * 1000 \text{ N} / \text{m}^2$		
	$Z_1 = 30 \text{ m}$	1	
	$Z_2 = 33.5 \text{ m}$		
	Total energy at point A = $\frac{P_1}{\rho g} + \frac{u_1^2}{2g} + Z_1 = -\frac{361 \times 1000}{1000 \times 9.81} + \frac{(24)^2}{2 \times 9.81} + 30$	1	
	= 36.79 + 29.35 + 30 = 96.14 m of water	1	
	Total energy at point B = $\frac{P_2}{\rho g} + \frac{u_2^2}{2g} + Z_2 = \frac{288 \times 1000}{1000 \times 9.81} + \frac{(24)^2}{2 \times 9.81} + 33.5$	1	
	= 29.35 + 29.35 + 33.5 = 92.2 m of water		
	Loss of head = Total energy at point A - Total energy at point B = $96.14 - 92.2$		

Model Answer

Subject code :(17426)

= 3.94 m of water.	2	
Centrifugal Blower:		
Diagram:		
Discharge scroll		
	4	
Rotor		
Alter		
Inlet		
Or		
Housing		
Fan Wheel		
Gas Out		
Gas		
Construction :		
It consists of a vaned impeller keyed to a shaft connected to external source	of	

Page **19** of **20**

de :(17426)	Page 20 of 2
discharge scroll are relatively larger than in the centrifugal pump. These units 2	
need high speed of operation & large impeller diameter as very high heads in	
terms of low density fluids are required to generate moderate pressure ratios.	
When the shaft rotates ,the impeller blades are driven inside the casing .The	
impeller is surrounded by diffuser .The function of the diffuser is to convert	
the kinetic energy of gas leaving the impeller into pressure energy. The	
section of each impeller ⁢'s diffuser forms a stage construction. These units	
can be used to develop pressures of 275kPa to 700 kPa.	
Working :	
As the impeller rotates due to rotation of shaft, pressure is reduced & therefore	
gas/air flows inside the casing. The gas is thrown out by centrifugal action	
along the blades. Therefore kinetic energy is imparted to gas due to high speed 2	
of rotation of impeller blades. This K.E.is then converted to an increase in	
static pressure by slowing the flow through the diffuser.	