

SUMMER-15 EXAMINATION <u>Model Answer</u>

Subject code :(17425)

Page **1** of **22**

Important Instructions to examiners:

1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme.

2) The model answer and the answer written by candidate may vary but the examiner may try to assess the understanding level of the candidate.

3) The language errors such as grammatical, spelling errors should not be given more

Importance (Not applicable for subject English and Communication Skills.

4) While assessing figures, examiner may give credit for principal components indicated in the

figure. The figures drawn by candidate and model answer may vary. The examiner may give credit for any equivalent figure drawn.

5) Credits may be given step wise for numerical problems. In some cases, the assumed constant values may vary and there may be some difference in the candidate's answers and model answer.

6) In case of some questions credit may be given by judgement on part of examiner of relevant answer based on candidate's understanding.

7) For programming language papers, credit may be given to any other program based on equivalent concept.

SUMMER-15 EXAMINATION Model Answer

Subject code :(17425)

Page **2** of **22**

Q No.	Answer	Marks	Total marks
1a-i	Impurities in hard water:	2	2
	Impurities in hard water can be listed as follows.		
	1. Suspended impurities: They are dispersion of solid particles that are large		
	enough to be removed by filtration or settling. The particles which are		
	lighter than water like clay silt, algae etc float on the surface.		
	2. Dissolved inorganic impurities: They are impurities which are dissolved in		
	water, when it moves over rock, soil etc. eg. Calcium and magnesium		
	carbonates, sulphates, chlorides etc.		
	3.Organic impurities: they are suspended vegetable and dead animals and		
	dissolved vegetable and animal products.		
	4.Bacterial impurities: Bacteria, micro organisms are disease causing germs		
	present in water		
1a-ii	Hardness of water can be measured by:	1 mark	2
	1. ppm(parts per million)	each for	
	2. Milligrams/ litre	any 2	
	3. Clarke's degree		
	4. Degree French		
1a-iii	Primary refrigerants : They are the safest refrigerants which passes	1	2
	through the cyclic process.		
	Secondary refrigerants: They are the refrigerants which do not pass through	1	
	the cyclic process.		
1a-iv	1)Enthalpy of water :	1	2
	The amount of heat absorbed by 1 kg. of water to heat it from freezing point (
	0°C) to the boiling point is known as enthalpy of saturated water.		
	1		

ect code	e :(17425)		Page 3 of 22
	2) Enthalpy of evaporation	1	
	It is the amount of heat required to convert one kilogram of water at a given		
	temperature and pressure into steam at the same temperature and pressure.		
1a-v	Dryness fraction :	1	
	The fraction of steam that is in the Vapour form is called dryness fraction of		
	steam.		
	If m_g is the mass dry steam per kg of mixture and m_f is the mass of liquid water	1	
	per kg of mixture then dryness fraction $x=m_g/(m_g+m_f)$		
1a-vi	Specific humidity:.It is the ratio of mass of water vapour to the mass of dry air	1	
	present in air- water vapour mixture.		
	Relative humidity:		
	It is the ratio of mass of water vapour in air of given volume at a given	1	
	temperature to the mass of water vapour in same volume at same temperature		
	when air is saturated		
1a-vii	Advantage of thermic fluid over steam:	1 mark	
	(1)High temperature can be obtained at moderate pressure	each for	
	(2) Have wide range of operation stability.	any 2	
	(3) More economical at high temperature.		
	(4) No pretreatment equipment is required when used in boiler		
	(5) no heat loss		
	(6) No risk of corrosion		
	(7) Low maintenance cost		
	(8) Quiet and easy to operate		
1b-i	Reactions take place in lime soda process:	1 mark	
	$2HCl + Ca(OH)_2 \rightarrow CaCl_2 + 2H_2O$	each for	
	$H_2SO_4 + Ca(OH)_2 \rightarrow CaSO_4 + 2H_2O$	any 4	

ject code	e :(17425)		Page 4 of 22
	$Ca(HCO_3)_2 + Ca(OH)_2 \rightarrow 2CaCO_3 + 2H_2O$		
	$Mg(HCO_3)_2 + 2 Ca(OH)_2 \rightarrow 2CaCO_3 + Mg(OH)_2 + 2H_2O$		
	$MgCl_2 + Ca(OH)_2 \rightarrow Mg(OH)_2 + CaCl_2$		
	$MgSO_4 + Ca(OH)_2 \rightarrow Mg(OH)_2 + CaSO_4$		
	$CaCl_2 + Na_2CO_3 \rightarrow CaCO_3 + 2NaCl$		
	$CaSO_4 + Na_2CO_3 \rightarrow CaCO_3 + Na_2SO_4$		
	$CO_2 + Ca(OH)_2 \rightarrow CaCO_3 + 2H_2O$		
	$H_2S + Ca(OH)_2 \rightarrow CaS + 2H_2O$		
1b-ii	Unit of refrigeration is Ton of refrigeration. It is defined as the quantity of	2	
	heat required to be removed from 1Ton water at 0°C to get ice at 0°C in one		
	day.		
	Value in SI:		
	1 ton of refrigeration = 12660 kJ/hr	2	
	= 3.517 kW		
1b-iii	Factors for boiler selection :	1 mark	
	1. The pressure at which boilers, is to operate and quality of steam	each for	
	required.	any 4	
	2. Rate of steam generation i.e. quantity of steam per hour required to be produced.		
	3. Availability of floor area.		
	4. Efficiency of boiler in same range.		
	5. Easy accessibility for cleaning, repairs and instructions.		
	6. Comparative initial cost.		
	7. Erection facility.		
2-a		1 mark	

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous) (ISO/IEC - 27001 - 2005 Certified)

SUMMER-15 EXAMINATION Model Answer

Subject code :(17425)

Page 5 of 22

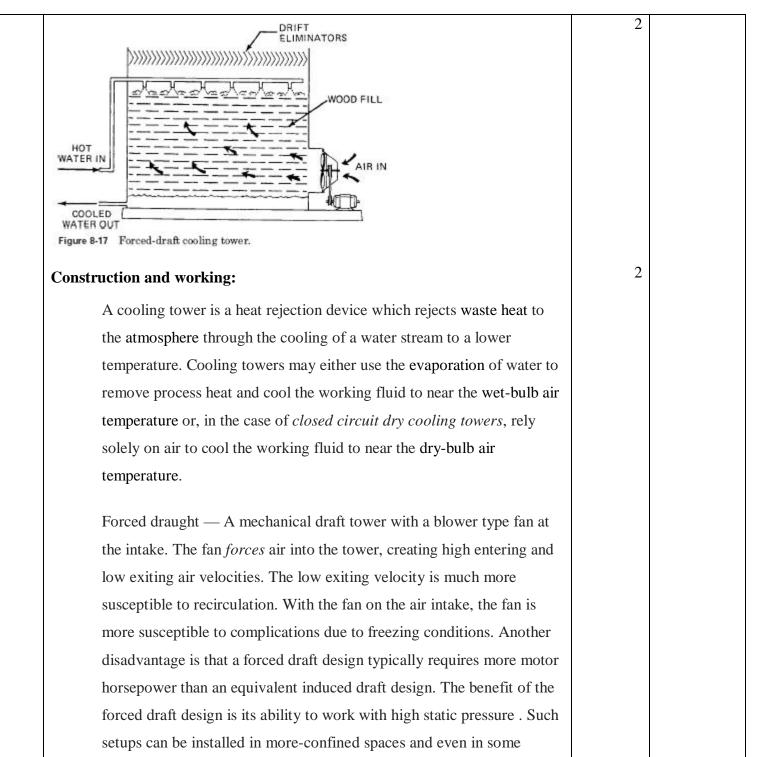
Comp	Comparison of hot and cold lime soda process:		each for	
Cold	lime soda process	Hot lime soda process	any 4	
Treat	ment is done at room	Treatment is done at a temperature of		
temp	erature	80-100 ⁰ C		
Chen	nical reactions are slower	Chemical reactions are faster		
Large	e size storage tanks are essential	Less storage capacity tanks are		
		required		
Proce	ess requires more time	Requires less time		
Coag	ulants are required	No coagulants are required		
Soft	water obtained contains 50-60	Soft water obtained contains 15-30		
ppm	of residual hardness	ppm of residual hardness		
Safe v	Safe working properties of ideal refrigerants:		¹∕₂ mark	
1.	Non corrosive to mechanical cor	mponents,	each for	
2.	Safe (including nontoxic, nonflat	mmable).	any 8	
3.	Boiling point somewhat below th	he target temperature.		
4.	High heat of vaporization.			
5.	Moderate density in liquid form form,	n, a relatively high density in gaseous		
6.	High critical temperature.			
7.	Chemically inert			
8.	Non Toxic			
9.	Non flammable			
10	. Non Corrosive			

ect cod	le :(17425)		Page 6 of 22
	11. Chemically stable.		
	12 It should operate under low pressure		
	13. It should have a well balanced enthalpy of vaporization per unit mass.		
	14. A minimum difference between the vaporizing pressure and condensing		
	pressure is desirable.		
2-c	Advantages of Water tube boiler:	1 mark	
	1. Water tube boilers generate steam of high pressure	each for	
	2. They raise steam quickly.	any 2	
	3. Heating surface is much more effective.		
	4. The direction of water tube boiler is well defined. The circulation is		
	rapid all over the boiler, keeping the boiler at a nearly constant		
	temperature.		
	5. Flexible construction.		
	6. Easy to transport		
	7. Accident free.		
	Disadvantages of water tube boiler:		
	1. Less suitable for use with impure and dirty water.	1 mark	
	2. Require expert attention	each for	
	3. Cost is high	any 2	
	4. More difficult to inspect.		

Subject code :(17425)

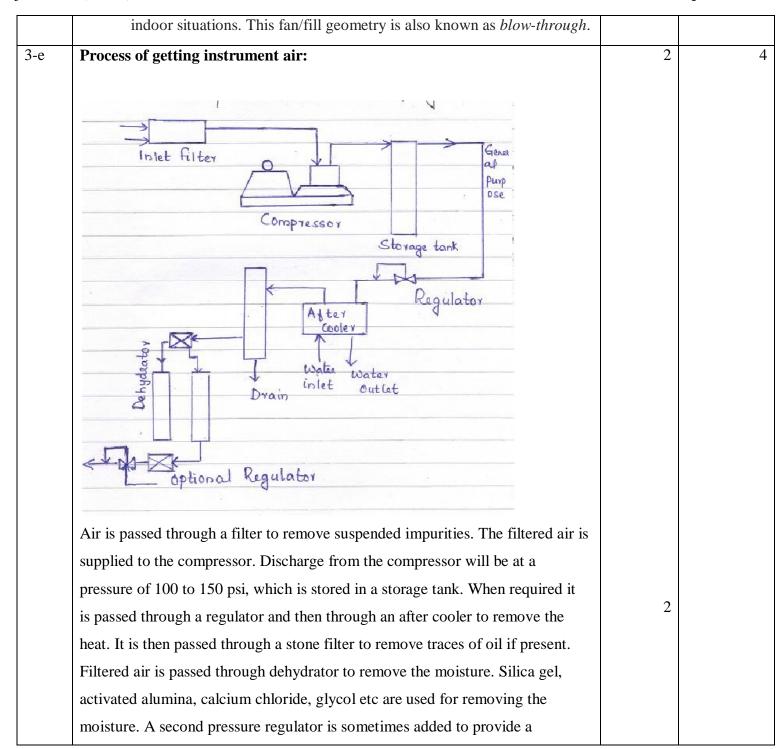
2-d	Sock	2	4
	Wet bulb Dry bulb Instrument is rotated about Handle is firmly		
	2 to 3 times per second until reading attains constant values Sling psychrometer		
	Sling psychrometer consist of two thermometers mounted on base plate. The one with the sock is wet bulb thermometer and the other is dry bulb. The handle		
	of the frame helps for rotating the psychrometer to produce necessary air motion. As the psychrometer is rotated, it provides necessary air velocity over		
	the thermometer. The temperature spread between dry bulb and wet bulb readings depends upon the amount of moisture in the air.		
2-е	Uses of process air:	1 mark	4
	1. In the oxidation of acetaldehyde to acetic acid		
	2. Oxidation of NO to NO ₂ in manufacture of HNO ₃		
	3. In H ₂ SO ₄ manufacture		
	4. In spray painting		
	5. In furnace		
	6. In refrigeration system		
	7. In boiler		
	8. In petroleum refining and petrochemical process		
2-f	Impurities of water which causes corrosion in boiler:	2	4
	1. Dissolve oxygen		
	2. Dissolved Carbon dioxide, H_2S		

ect coc	le :(17425)	F	Page 8 of 22
	3. Chlorides of Calcium and Magnesium		
	Prevention of corrosion:	2	
	1. Mechanical de aeration		
	2. Chemical degasification		
3-a	Eco friendly refrigerant:	2	
	The eco friendly refrigerant would have favourable thermodynamic properties.		
	Be noncorrosive to mechanical components, and be safe, including free		
	from toxicity and flammability.		
	It would not cause ozone depletion or climate change.		
	The desired thermodynamic properties are a boiling point somewhat below the		
	target temperature.		
	e.g. Lithium bromide - water		
	Refrigerants such as ammonia (R717), carbon dioxide and non-halogenated	2	
	hydrocarbons do not deplete the ozone layer and have no (ammonia) or only a	2	
	low (carbon dioxide, hydrocarbons) global warming potential.		
3-b	Super heater:	2	
	ELESCO Type A Superheater Unit ELESCO Type E Superheater Unit		
	SARUKATED STEAM FROM KADLES SARUKATED STEAM FROM KADLES 421 Degrees Falvenheit 1255 Degrees Falvenheit 125 Degrees Falvenheit 125 Degrees Falvenheit		
	Working:		


ect cod	le :(17425)	I	Page 9 of 22
	superheater header mounted against the tube sheet in the smoke box. The steam		
	is then passed through a number of superheater elements-long pipes which are	2	
	placed inside special, widened fire tubes, called flues. Hot combustion gases		
	from the locomotive's fire pass through these flues just like they do the fire		
	tubes, and as well as heating the water they also heat the steam inside the super		
	heater elements they flow over. The super heater element doubles back on itself		
	so that the heated steam can return; most do this twice at the fire end and once		
	at the smoke box end, so that the steam travels a distance of four times the		
	header's length while being heated. The superheated steam, at the end of its		
	journey through the elements, passes into a separate compartment of the super		
	heater header and then to the cylinders as normal.		
3-c	Given :		
	WBT = 22		
	DBT = 30		
	From psychometric chart,		
	Find the intersection of 30 deg C DBT and 22 deg C WBT and move	1	
	horizontally to the dew point temp scale.		
	Dew point temp. = $18.6 \degree C$	1	
	Absolute humidity = 0.016-0.018 Kg/kg dry air	2	
3-d	Forced draft cooling tower:		

Page 10 of 22

SUMMER-15 EXAMINATION Model Answer


Subject code :(17425)

Subject code :(17425)

Page 11 of 22

SUMMER-15 EXAMINATION Model Answer

Subject code :(17425)

constant reduced pressure in the supply line 3-f **Cochran Boiler** 4 4 Cochran Boiler External Shell 1 A Chimney Manhole Smoke tubes. Smoke box Combustion Chamber Crown Five bole Fire box Flucpipe Grate 2 4-a **Reverse osmosis:** 4 Forward Osmosis **Reverse Osmosis** Force (ΔP) . Osmotic Pressure Pure Salt Pure Salt FLOW FLOW Water Water Water Water Semi-permeable Membrane **Description:** It is the process of filtration. In this, we take water with salt in it, an apply 2 pressure to it against a certain type of membrane and presto out comes clean water.

Page **12** of **22**

Subject code :(17425)	Page 13 of 22
Two chamber are separated by an osmotic membrane. Right hand compartment	
has pure water in it. Left hand compartment has salt solution. If left alone, pure	
water floe in the direction of the arrows from the pure water compartment into	
salt solution compartment. Pressure heas in the salt solution compartment	
continue to rise until it reaches a value represented by the osmotic pressure of	
the solution. Then flow of water stops.	
In the same chamber divided by the osmotic membrane, if increasing pressure	
is applied on the salt solution compartment in the direction of the arrow, then	
the first drop of pure water flows in the direction of the arrow from the solution	
compartment to the pure water compartment when the applied pressure equal	
the osmotic pressure value of the solution. The applied p must be much greater	
than the osmotic pressure.	
Description:	
It is the process of filtration. In this, we take water with salt in it, an apply	
pressure to it against a certain type of membrane and presto out comes clean	
water.	
Two chamber are separated by an osmotic membrane. Right hand compartment	
has pure water in it. Left hand compartment has salt solution. If left alone, pure	
water floe in the direction of the arrows from the pure water compartment into	
salt solution compartment. Pressure heas in the salt solution compartment	
continue to rise until it reaches a value represented by the osmotic pressure of	
the solution. Then flow of water stops.	
In the same chamber divided by the osmotic membrane, if increasing pressure	
is applied on the salt solution compartment in the direction of the arrow, then	
the first drop of pure water flows in the direction of the arrow from the solution	
compartment to the pure water compartment when the applied pressure equal	
the osmotic pressure value of the solution. The applied p must be much greater	

Page 14 of 22

SUMMER-15 EXAMINATION Model Answer

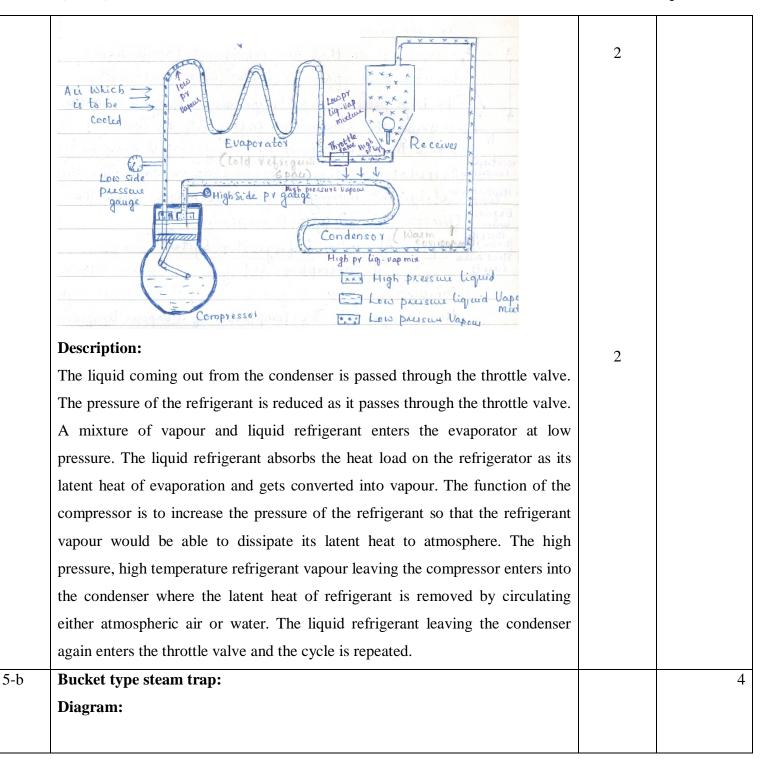
Subject code :(17425)

than the osmotic pressure. 4-b 2 Vapour Absorption system 4 B condenses regenerator expansion ahen repergerator exchanges D-CK In absorption system the compressor in the vapor compression cycle is replaced by an absorber- generator assembly involving less mechanical work. Ammonia is the refrigerant and water is the absorbent. Ammonia vapor is 2 vigorously absorbed in water. So low pressure ammonia vapor from the evaporator comes in contact in the absorber with a weak solution coming from the generator, it is readily absorbed releasing the latent heat of condensation. The temperature of the solution tends to rise, while the absorber is cooled by the circulating water, absorbing the heat of solution, Q_A and maintaining a constant temperature. Strong solution, rich in ammonia, is pumped to the generator where Q_G is supplied from an external source like steam, electricity etc. Since the boiling point of ammonia is less than that of water, the ammonia vapor is given off from the aqua- ammonia solution at high pressure and the weak solution returns to the absorber through a pressure reducing valve. The heat exchanger preheats the strong solution and cools the weak solution, reducing both $Q_A \& Q_G$. The ammonia vapor then condenses in the condenser, is throttled by the expansion valve, and then evaporates absorbing the heat of evaporation from the surroundings.

Subject code :(17425)

Page **15** of **22**

4-c	Boiler mountings: They are equipment mounted on boiler for the safe working	2	4
	of boiler. Different boiler mountings are:		
	Water gauge or water level indicator		
	Pressure gauge		
	Fusible plug		
	Lever safety valve		
	Uses:		
	Water Level Indicator :	1 mark	
	it is used to indicate the level of water in the boiler constantly.	each for	
	Fusible plug :	any 2	
	It is used to protect the fire box crown plate or the fire tube from burning when		
	the level of the water in the water shell falls abnormally low.		
	Pressure gauge: To indicate the pressure inside the boiler.		
	Safety vale: To release the excess steam to maintain the pressure.		
1-d	Construction of psychometric chart:	4	4
	WHET THE THE THE HALF (7)		
	The dry bulb temp. Is indicated by vertical lines drawn parallel to the ordinate.		
	The mass of water vapour in kg per kg of dry air is drawn parallel to the		
	abscissa for different valued of dry bulb temp.		


	Pressure of water vapour in mm of Hg is shown in the scale at left and is the		
	absolute pressure of steam.		
	Dew point temp. Re shown in the scale on the upper curved line.		
	Constant RH Lines in per cent are indicated by marking off vertical distances		
	between the saturation line or the upper curved lines and the base of the chart.		
4-e	Dowtherm – A:	4	
	This fluid is an organic compound of high heat stability, a eutectic mixture		
	containing 73.5 per cent diphenyl oxide and 26.5 per cent diphenyl by weight.		
	At its freezing point of 54 deg F Dowtherm A contract slightly, thereby		
	removing the possibility of damage to process equipment when shut down		
	under cold weather condition. at room temp, it is clear, almost colourless		
	liquid, which darkens rapidly in use without change in physical characteristics.		
	It does not react chemically with metal.		
4-f	Given:		
	Highest temp.		
	T1 = 35 = 308 K		
	Lowest temp.	1	
	T2 = -15 = 258 K		
	C.O.P = T2/(T1 - T2)	2	
	= 258 / (308 - 258)		
	= 5.16	1	
5-a	Vapour compression refrigeration system:		
	Diagram:		

Page 17 of 22

SUMMER-15 EXAMINATION Model Answer

Subject code :(17425)

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

SUMMER-15 EXAMINATION Model Answer

Subject code :(17425)

2 Vanes **B**-casing C-bucket D- spindle 2 E- Valve F- Seat G- exit pipe Use: They are used to collect and automatically discharge the water resulting from partial condensation of steam without allowing any steam to escape. Fluidized bed boiler: 5-c 4 In fluidized bed boiler, coal upto 12mm size can be burned while they are 2 suspended in an agitated state within the combustor, using air blown in from the bottom. Fuels like bagasse rice husk, paper sludge, etc can be used. The major problem with the coal fired boilers containing high sulphur is to suppress the So₂ formed before exhausting the gas into the atmosphere as it is highly poisonous to human health & crops. The FBB permits the injunction of limestone directly into the furnace which can easily capture So₂. This eliminates the need for expensive flue gas scrubbing system downstream of the boiler.

Page 18 of 22

Subject code :(17425)

Page **19** of **22**

	Solid To boiler Supply Supply Med High J	Startur Detlector wall Light matter Light matter Supply - Ash	2	
5-d	Dry bulb temperature:		2	4
	Temperature recorded by ordinary thermometer is called dry bulb temperature.			
	Dew point temperature:		2	
	It is the temperature of air at which wate	er vapour in air starts condensing.		
5-е	From the conditions given, it is wet steam		2	4
	From the steam table, corresponding to a pressure of 5 bar,			
	Enthalpy of water =640.1KJ / Kg		2	
5-f	Comparison of zeolite process and ion exchange process:		1 mark	4
	Zeolite Process	Ion exchange process	each	
	1. Zeolite is hydrated sodium	Ion exchange resins are cross linked		
	alumino silicate	long chain organic polymers		
	2. Sodum ions are exchanged	Functional groups(acidic and basic)		
	for hardness producing ions	in the resins are exchanged for		
		cations and anions in water		

SUMMER-15 EXAMINATION Model Answer

Subject code :(17425)

Page **20** of **22**

	3. Only hardness producing ions All ca are removed.	tions and anions are removed		
	4 Treated water is known as soft Treat	ed water is known as		
	water demin	eralised water.		
6-a	Zeolite process			
	Hard water in			
	Product (Fig on (and product by 2) for all terring of codes by 2 product for the content of a codes of a			
	at the a Cylinder . The Indress Car			
	Injector Zeclite Bed			
	CALLING CONTROL	7.0		
	Fritzer Starter Brington	<u> </u>		
	Nacl Tosink Solution - Soft w	tes		
	Zeolites are hydrated sodium alumino silicates, capable of exchanging			
	reversibly their sodium ions with hardness producing ions in water These			
	silicates hold sodium ions loosely and can easi	ly exchange their sodium ions		
	with other cations such as Ca ²⁺ , Mg ²⁺ For softening of water by Zeolite process, hard water is percolated at a specified rate through a bed of zeolite, kept in a cylinder. The hardness causing ions			
			3	
	(Mg^{2+},Ca^{2+}) etc) are retained by the zeolite as C	-		
	outgoing water contain sodium salts. $CaCl_2(or CaSO_4) + Na_2Ze \rightarrow CaZe+ 2NaCl(or Na_2SO_4)$ $MgSO_4 (or MgCl_2) + Na_2Ze \rightarrow MgZe+ 2NaCl(or Na_2SO_4)$			
	$Ca(HCO_3)_2 \text{ (or } Mg(HCO_3)_2 + Na_2Ze \rightarrow CaZe$		2	
<u> </u>				
6-b	Important refrigerants used in industry:			

Subject code :(17425) Page 21 of 22 1. Ammonia 2. carbon dioxide 3 3.sulphur dioxide 4. isobutene 4. Methyl chloride 5. methylene chloride 6. Freon-22 7. Freon-11 8. Freon 12 **R-22** is monochlorodifluoromethane(CHClF2) or Freon-22 2 **Properties of R-22:** 1. Stable 2. Non toxic 3 3. Non corrosive 4. Non irritating 5. Non inflammable 6. Boiling point 0f -40.80C at atmospheric pressure Good solubility in oil up to -10° C $T = 50^{\circ}c$ 6-c 8 P = 13 bar From steam table at 13 bar Enthalpy of saturated water (h_f) = 814.7 KJ / Kg 2 Enthalpy of evaporation $(h_{fg}) = 1970.7 \text{ KJ} / \text{Kg}$ **(i)** Steam produced is 0.9 dry x = 0.9Enthalpy of 1 kg of wet steam at 13 bar = $h_f + xh_{fg}$ = 814.7 + (0.9 * 1970.7)1

SUMMER-15 EXAMINATION Model Answer

Subject code :(17425)

Page **22** of **22**

= 2588.33 KJ / Kg		
Enthalpy of 1 Kg of feed water at $50^{\circ}c = mCp \ \Delta T = 1* 4.187*(50-0)$	1	
= 209.35 KJ / Kg		
Heat required to convert 1 kg of feed water at 50°c into wet steam at 13 bar		
= Enthalpy of wet steam – enthalpy of feed water		
= 2588.33-209.35 = 2378.98 KJ /Kg	1	
(ii) Dry saturated steam		
Enthalpy of 1 kg of steam at 13 bar $= h_f + h_{fg}$		
= 814.7 + 1970.7		
= 2785.4 KJ / Kg	1	
Enthalpy of 1 Kg of feed water at $50^{\circ}c = mCp \Delta T = 1* 4.187*(50-0)$		
= 209.35 KJ / Kg	1	
Heat required to convert 1 kg of feed water at 50°c into steam at 13 bar		
= Enthalpy of steam – enthalpy of feed water		
= 2785.4-209.35 = 2576.05 KJ/ Kg	1	