

SUMMER-15 EXAMINATION Model Answer

Subject code : (17423)

Page **1** of **28**

Important Instructions to examiners:

- 1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme.
- 2) The model answer and the answer written by candidate may vary but the examiner may try to assess the understanding level of the candidate.
- 3) The language errors such as grammatical, spelling errors should not be given more Importance (Not applicable for subject English and Communication Skills).
- 4) While assessing figures, examiner may give credit for principal components indicated in the figure. The figures drawn by candidate and model answer may vary. The examiner may give credit for any equivalent figure drawn.
- 5) Credits may be given step wise for numerical problems. In some cases, the assumed constant values may vary and there may be some difference in the candidate's answers and model answer.
- 6) In case of some questions credit may be given by judgement on part of examiner of relevant answer based on candidate's understanding.
- 7) For programming language papers, credit may be given to any other program based on equivalent concept.

Subject code : (17423)

Page 2 of 28

Q No.	Answer	marks	Total
1a-i	The first law of thermodynamics states that energy neither be created nor	1	marks 2
Iu I	destroyed during process, although it may be converted from one form to	1	2
	another.		
	Let Q be the amount of heat absorbed by a system from the surroundings while		
	undergoing a change from state 1 to state2. the absorption of heat by the system		
	results in performance of some work W, by the system and an increase energy,	1	
	ΔU of the system, therefore,	1	
	$Q = \Delta U + W$		
	$\Delta U = Q - W$		
1a-ii	Types of colloidal systems:	1/4 mark	2
	• Foam	each	
	• solid foam	caen	
	• Aerosol		
	• emulsion		
	• solid emulsion(gel)		
	• smoke		
	• sol		
	• solid sol		
1a-iii	Corrosion is defined as the gradual deterioration or destruction of a metal by	1	2
	chemical or electrochemical reactions with its environment.		
	Example:		
	• Rusting of iron when exposed to atmospheric conditions.	1	
	• Formation of green film of basic carbonate on the copper when exposed		

ect code	e : (17423)	Pa	ge 3 of 28
	to moist air containing CO _{2.}		
1a-iv	The phase rule states that the number of degrees of freedom in a physical	1	
	system at equilibrium is equal to the number of components in the system		
	minus the number of phase plus the constant2.mathematically, it is stated as		
	follows:		
	$\mathbf{F} = \mathbf{C} - \mathbf{P} + 2$	1	
	C - number of components,		
	P -number of phases		
	F – number of degrees of freedom.		
1a-v	Homogeneous systems: a system consisting of a single phase is called a	1	
	homogeneous system.		
	Heterogeneous system: a system consisting of more than one phase is called	1	
	heterogeneous system.		
1a-vi	Plain carbon steel is a steel in which the main alloying element is carbon in the	2	
	range of 0.05 to 2%		
	There are three types of carbon steels based on the percentage of carbon.		
	1) Low carbon steel or mild steel of 0.05% to 0.30% carbon content.		
	2) Medium carbon steel of 0.3 to 0.5% carbon content.		
	3) High carbon steel > 0.5% to 2% carbon content.		
1a-vii	The types of corrosion are:	2	
	a) dry corrosion or chemical corrosion		
	1) corrosion by oxygen		
	2) Corrosion by other gases.		
	b) wet corrosion or electrochemical corrosion.		
1b-i	Comparison between hydrophilic & hydrophobic colloids		<u> </u>

SUMMER-15 EXAMINATION Model Answer

Subject code : (17423)

Page **4** of **28**

hydrophilic	hydroophobic		
They have a definite affinity for	They have no affinity for		
the dispersion medium	dispersion medium	1 mark each	
These are organic substances	These are of inorganic	for any 4	
like starch, gum& proteins	substances like gold,		
	platinum, iron & arsenic.		
These can be prepared directly	These can be prepared directly		
by mixing solid material with	by mixing and special methods		
liquid dispersion medium.	are used for their preparation.		
Viscosity is higher than that of	Viscosity of sols is same as that		
the dispersion medium	of the medium.		
Their particles are not visible	These particles are visible under		
even under ultra microscope	ultra microscope		
The sols are quite stable	The sols are less stable.		
These are highly hydrated	These are not much hydrated		
They are reversible in nature	These are irreversible in nature		
The particles in sols do not	The particles of these sols carry		
carry charges.	either positive or negative		
	charge.		
They do not show Tyndall	These exhibit Tyndall effect.		
effect			
They will not show any	Particles usually migrate		
action, when placed in an	towards anode or cathode		
electric field.	depending upon their nature of		
	charge.		
The different methods to prevent c	corrosion:	2	

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous) (ISO/IEC - 27001 - 2005 Certified)

	1) Use of high purity metal.		
	2) Use of alloy addition.		
	1) Use of high purity metal:		
	The impurities present in a metal cause heterogeneity and form tiny		
	electrochemical cells with rest of the metal. due to this, metal surface undergoes	2 marks for	
	corrosion at the region where the impurities are present .the corrosion resistance	any 1	
	of any metal can be improved by increasing the purity of the metal.		
	2) Use of alloy addition.		
	Corrosion resistance as well as strength of metals can be improved by alloying		
	.ex. stainless steel containing chromium produce a coherent oxide film which		
	protects the steel from further attack.		
1b-iii	The composition and uses of		
	i) cast iron:		
	composition:	1	
	2.7 to 4.5% carbon, 1.8 to 3% silicon, traces of P,Mn and balance Fe.		
	Uses:	1	
	a) used for caustic fusion pots		
	b) used in pumps and valves & water piping, filter presses., vaccum		
	pumps.blowers,gears,jaw crushers,centrifuges etc.		
	ii) mild steel:	1	
	composition:		
	0.05 to 0.3% carbon plus small amount of P,Si,S and Mn and balance Fe.		
	Uses:		
	• it is widely used in petroleum and chemical industries for reactors, heat	1	
	exchangers, dilution vessels, storage tanks.etc		
	• it is used for handling and storing of caustic solution and commercial		

	grade sulphuric acid.			
2-a	Difference between extensive a	nd intensive properties.	4	4
	Extensive properties	Intensive properties		
	It is depending on the mass of	It is independent of mass		
	the system	/amount of the system		
	It depends on the	These are not depending on		
	amount/quantity of the	the size of the system.		
	substance present in the	These are not additive.		
	system.			
	These are additive.			
	Volume will be different at	The value of the property is		
	the stages of the system	the same at all points.		

ect cod	le : (17423)	Page 7	of 28	
2-b	Electrochemical(Wet corrosion):	2	2	
	It is the corrosion of the metal that occurs in the presence of liquid			
	medium/aqueous environment, through electrochemical reactions. one part			
	behaves as anode and undergoes oxidation and the other part act as a cathode			
	and undergoes reduction.	2		
	Mechanism of wet corrosion: wet corrosion is a two step process. One is			
	anodic or oxidation reaction and the other is cathodic or reduction process.			
	1) anodic reaction involves dissolution of metal			
	$[M \rightarrow M^{n+} + ne^{-}]$ the anode are absorbed at the cathode.			
	2) There are different cathodic reactions in which the electrons are			
	consumed depending upon the nature (acidic / basic / neutral) of the			
	corrosion environment.			
	i) Hydrogen evolution type wet corrosion: it occurs in the acidic			
	environment containing no oxygen or very less oxygen.			
	ii) Oxygen absorption type wet corrosion.: it occurs when the			
	environment is alkaline / basic or neutral, and contains more oxygen, OH ⁻ ions			
	will be given out.			
	Phase diagram for the Sulphur system:	2		
2-c	(U) 154C, 10 ⁺³ atm LIQUID RHOMBIC 95C, 10 ⁻⁵ atm VAPOR Temperature (C)			
	Sulphur exist in four possible phases. Two solid polymorphic phases.	2		

ect cod	le : (17423)	Page 8	of 28
	Rhomboic sulphur with mp= 114° C, monoclinic sulphur at mp= 120° C		
	sulphur liquid . allthese phases have the same chemical species .and represented		
	by one chemical entity S (sulphur) .thus the system sulphur is a four phase, one		
	component system.		
2-d	Methods of preparation of colloidal solution:	2	
	1) Dispersion methods : in this method colloiodal size particles are formed by		
	breaking down large macro-sized particles.		
	Those are:		
	mechanical dispersion method		
	electrical dispersion method	2	
	• peptization		
	2) Aggregation method: here colloidal size particles are formed by		
	aggregation of single molecules.		
	Those are:		
	double decomposition		
	reduction		
	Oxidation.		
2-е	Importance of lining:	2	
	a. to protect against corrosion		
	b. to prevent the contamination of the materials being processed.		
	c. minimize the effect of a abrasion.		
	d. ease of cleaning.		
	e. provide high mechanical strength.	2	
	Different types of linings are :		
	1. Lead lining: it is having high corrosion resistance but it is soft and has		
	poor mechanical property. Because of this it is used for protection of mild		

ect cod	le : (17423)		Pa	ge 9 of 28
	steel.			
	2. Glass lining: glass has exce	llent resistance to all acids except		
	hydrofluoric. Their general	ch as		
	reactors, columns, pipes etc			
	3. rubber lining: here lining is	generally in the form of sheets or	thin films	
	applied by using specific ad	hesive.		
	4. plastic lining: the method of	f plastic lining preparation of the su	urface plays	
	important part in subsequen	t adhesion of film to the metal surf	face.	
2-f	Differences between cathodic in	nhabitors and anodic inhabitors:	4	
	cathodic inhibitors	anodic inhibitors		
	these controls the cathodic	these tend to suppress the		
	reaction.they shield the	anodic reaction or metal		
	cathodic area	dissolution		
	ex.amines,thiourea,mercaptant	ex.sodium or potassium		
	s etc	chromates, phosphates, silicates		
		etc.		
	1			
3-a	Irreversible process:		3	
	A process which goes	from the initial to final state in a f	inite time	
	and cannot be carried in the reven	rse order is c/a irreversible process		
	In an irreversible process, the cha	ange is carried out fast with a meas	surable speed	
	so that the system cannot attain a	state of thermodynamic equilibriu	m when it	
	undergoes the process.			

ect coo	de : (17423)	Page	e 10 of 2
	beginning and at the end, but not at stages in between.		
	All processes occurring in nature are irreversible since they take place with		
	finite driving forces between parts of the system or between the system and		
	surrounding.		
	e.g. :-motion with friction	1	
3-b	Adsorption Isotherm:	4 marks for	
	a Freundlich adsorption isotherm for adsorption of gases is represented by the	any one	
	equation:	isotherm	
	$\mathbf{x}/\mathbf{m} = \mathbf{k}\mathbf{P}^{(1/n)} \tag{1}$		
	x = mass of the gas adsorbed at a pressure P		
	m = mass of		
	k and n are constant adsorbent		
	equation (1) represented by graphically as shown in fig.		
	If we plot $(x/m) v/s P$, get smooth curve as shown in fig.		
	$\frac{x}{m}$ Adsorption Isotherm Saturation Pressure		

SUMMER-15 EXAMINATION Model Answer

Subject code : (17423)

Page 11 of 28

	It is ease in fabrication.			
	Easily and cheaply made in c	omplicated shapes.		
	It has good strength and good			
	e.g. PVC, PP, HDPE etc.			
3-d	Diff. Between Reversible and i	rreversible process:	1 mark each	
	reversible process	irreversible process	For any 4	
	It is an ideal or imaginary process	It is an actual or real process		
	It take infinite time for its	It take finite time for its		
	completion There are no dissipative	completionThere are dissipative effects		
	effects	There are dissipative circets		
	The system passes through the equilibrium states	The system passes through non equilibrium states		
	It is extremely slow process.	It is a fast process and proceeds with a measurable speed		
	An reversible process can be	An irreversible process		
	plotted on thermodynamic	cannot be plotted on		
	coordinates	thermodynamic coordinates.		
3-е	Phase diagram of water sys	tem	4	

SUMMER-15 EXAMINATION Model Answer

Subject code : (17423)

Page **13** of **28**

ect coo	de : (17423)	Page	e 14 of 28
	System is monovarient		
4-b	Mechanism of dry corrosion :		
	Types of dry corrosion:	1	
	(i) corrosion by oxygen		
	(ii) corrosion due to other gases		
	(i) corrosion by oxygen:		
	corrosion by oxygen is the the corrosion of a metal due to chemical attack of		
	oxygen in dry environment at low or high tempit results in the formation of	1	
	metal oxide layer on the metal surface according to the following reaction :		
	$2M + n O2 \rightarrow 2MOn$		
	Initially a thin layer of oxide film is formed and it gradually grows with time.		
	The nature of metal oxide film/layer formed decides the prevention or		
	continuation of corrosion. The oxide film produced based on its nature can be		
	classified as:		
	(i)stable oxide film : it acts as a barrier between metal and oxygen and thus		
	prevents further corrosion. it may be porous or non-porous in nature	2	
	(ii) unstable oxide film : when the oxide film is umstable , it decomposes back		
	to the metal and oxygen. Hence oxidation corrosion is not possible in case of		
	nobel metals such as Ag, Au as they are protected by this manner.		
	(ii)volatile oxide film : when oxide film formed is volatile, it volatalises as soon		
	as it is formed and metal surface is exposed to further corrosion. Hence it leads		
	to continuous and excessive corrosion.		
	OR		
	Corrosion by other gases		
4-c	For isochoric process work done is zero:	2	
	It is a process in which the volume of the system is kept constant.		

ect coo	de : (17423)			Pa	ge 15 of 28
	For isochoric process, chang	e in volume is zero i.e. $dV = 0$.	(1)		
	For e.g.				
	Consider a gas enclosed in a	cylinder fitted with a weightles	s and frictionless		
	piston. Undergoing a reversib	le expansion process ,this cylir	nder is in thermal	2	
	equilibrium with the surround	lings so that the temp. Of the g	as remains		
	constant, while its expansion.	Let P be the pressure of the ga	s (system). For		
	reversible expansion of the ga	as, the external pressure (Pext)	must be		
	infinitesimally smaller than th	ne pressure of the gas. Therefor	e the ext. Pressure		
	is (P- dP) where dP is very s	mall quantity.as a ext. Pressure	(P- dP)		
	infinitesimal than the gas pres	ssure(pressure of the syst.), the	gas will be expand		
	by an nfinitesimal volume dV	(the volume of gas changes fr	om V to $v + dV$).		
	the work done by the gas whe	en its volume increses by an inf	initesimal amount		
	dV is equal to the ext. Pressu	re times the volume change			
	Work done by the syst. Is giv	en by			
	$dW = - [p_{ext} \ dV] = p_{ext} \ dV$				
	dW = ext. Pressure x change	in volume			
	=(P-dP) dV				
	= p x 0				
	= 0				
	dW =0 (for isochoric proces	s)			
4.d	Diff. Between physical and che	mical adsorption:		1 mark each	
	physical adsorption	chemical adsorption		for any 4	
	physical adsorption is a	chemical adsorption is an			
	reversible phenomenon	irreversible phenomenon			
	It is occurs at low temp.	It is occurs at all temp.			
	It is caused by	It is caused by chemical	1		

SUMMER-15 EXAMINATION Model Answer

Subject code : (17423)

Page **16** of **28**

	intermolecular forces of	interaction			
	attraction	interaction			
		The heat analyzed in			
	The heat evolved inphysical	The heat evolved in			
	adsorption is small	chemical adsorptionis large			
	non-specific in nature	Highly specific in nature			
4-e	Electroplating :			4	4
	It is widely used in various in	dustries for coating metal obje	cts with a thin		
	layer of a different metal. The	layer of metal deposited has so	ome desired		
	property, which the metal of the	ne object lacks.			
	Electroplating is done for follo	owing perposes :			
	Give underlying structure prot	ection against corrosion.			
	Prevention of contamination o	f the material being processed.			
	Minimise the effect of abrasion	n.			
	Ease of cleaning.				
	Provide high mech. Strength.				
4-f	MOC for storage of:				4
	(i) liquid ammonia :SS-316, S	S-304, POLYPROPYLENE		1	
	(ii) methanol :MILD STEEL			1	
	(iii) conc. HNO3 : SS-316 AN	D SS - 304		1	
	(iv) toluene :MILD STEEL			1	
				1	

5-a	le : (17423) Langmuir's adsorption isotherm:	Page 13	
u	Derivation:		
	Langmuir Equation which depicts a relationship between the number of active		
	sites of the surface undergoing adsorption (i.e. extent of adsorption) and		
	pressure.		
	To derive Langmuir Equation and new parameter ' θ ' is introduced. Let θ the		
	number of sites of the surface which are covered with gaseous molecules.		
	Therefore, the fraction of surface which are unoccupied by gaseous molecules		
	will be $(1 - \theta)$.		
	Now, Rate of forward direction depends upon two factors: Number of sited		
	available on the surface of adsorbent, $(1 - \theta)$ and Pressure, P. Therefore rate of		
	forward reaction is directly proportional to both mentioned factors.		
	Rate of forward reaction $\propto P(1 - \theta)$		
	Rate of adsorption $\propto P(1 - \theta)$		
	Or, Rate of adsorption = $K_a P (1 - \theta)$		
	Similarly, Rate of backward reaction or Rate of Desorption depends upon		
	number of sites occupied by the gaseous molecules on the surface of adsorbent.		
	Rate of desorption $\propto \theta$		
	Or, Rate of desorption = $K_d \theta$		
	At equilibrium, rate of adsorption is equal to rate of desorption.		
	$K_a P (1 - \theta) = K_d \theta$		
	We can solve the above equation to write it in terms of θ .		
	$K_a P - K_a P \ \theta = K_d \ \theta$		
	$\mathbf{K}_{\mathbf{a}}\mathbf{P} = \mathbf{K}_{\mathbf{a}}\mathbf{P}\ \mathbf{\theta} + \mathbf{K}_{\mathbf{d}}\ \mathbf{\theta}$		
	$\mathbf{K}_{\mathbf{a}}\mathbf{P} = (\mathbf{K}_{\mathbf{d}} + \mathbf{K}_{\mathbf{a}}\mathbf{P}) \ \mathbf{\theta}$		
	$\theta = \frac{K_a P}{K_d + K_a P}$		
	$K_{d} + K_{a}P$		

Subject code : (17423)

Page **18** of **28**

	Divide numerator and denominator on RHS by K _d , we get		
	$\theta = \frac{\frac{K_a}{K_d}P}{\frac{K_d}{K_d} + \frac{K_a}{K_d}P}$		
	$K = \frac{K_a}{K_d}$ Now put		
	in above equation we get $\theta = \frac{KP}{1+KP}$		
	Langmuir Adsorption Equation		
	This is known as Langmuir Adsorption Equation.		
5-b	Oxidation corrosion:	4	4
	It is the corrosion due to chemical attack of oxygen in a dry environment at low		
	or high temperature. it results in the formation of metal oxide layer on the metal		
	surface.		
	The nature of oxide film formed decides the prevention or continuation of		
	corrosion. The oxide film produced based on its nature can be classified as:		
	Stable oxide film, unstable and volatile film.		
	stable oxide film: it acts as barrier between metal and oxygen and thus prevents		
	further corrosion. stable oxide film may be porous or non porous in nature.in		
	case of porous oxide film permits free access of of oxygen to the metal		
	surface.in the case of non porous film their are no pores or cracks in the oxide		
	film for further corrosion.		
	unstable oxide film: the film formed decomposes back to the metal ond		
	oxygen.hence oxidation corrosion is not possible in case of noble metals.		

ect cod	le : (17423)	Page 1	9 of 28
	volatile oxide film: in this case the film formed vaporizes / volatiles as soon as		
	it is formed and the metal surface is exposed to further corrosion. it leads to		
	continues and excessive corrosion.		
5-c	Derivation for workdone	2	
	An isothermal process is a change of a <i>system</i> , in which the temperature		
	remains constant: $\Delta T = 0$. This typically occurs when a system is in contact		
	with an outside thermal reservoir (heat bath), and the change occurs slowly		
	enough to allow the system to continually adjust to the temperature of the		
	reservoir through heat exchange		
	Calculation of work		
	$P = \frac{nRT}{V}$ W_{A-B} W_{A-B} W_{A-B}	2	
	The dark area represents "work" for this isothermal changeIn thermodynamics,		
	the work involved when a gas changes from state A to state B is simply		
	$W_{A\to B} = -\int_{V_A}^{V_B} p dV$		
	For an isothermal, <u>reversible</u> process, this integral equals the area under the		
	relevant pressure-volume isotherm, and is indicated in purple in the figure (at		
	the bottom right-hand of the page) for an ideal gas. Again, $p = nRT / V$ applies		
	and with T being constant (as this is an isothermal process), we have:		

Subject code : (17423)

$W_{A \to B} = -\int_{V_A}^{V_B} p dV = -\int_{V_A}^{V_B} \frac{nRT}{V} dV = -nRT \int_{V_A}^{V_B} \frac{1}{V} dV = -nR$ By convention, work is defined as the work the system does If, for example, the system expands by a piston moving in th applied by the internal pressure of a gas, then the work is con and as this work is done by using internal energy of the syste the internal energy decreases. Conversely, if the environmen system so that its internal energy increases, the work is coun also worth noting that, for many systems, if the temperature the internal energy of the system also is constant, and so ΔU <u>Law of Thermodynamics</u> , $\Delta U = Q - W$, so it follows th this same isothermal process. When no heat flows into or out its container is at the same temperature, then there is no worl work=0 which means external pressure on any moving surface called free expansion.	on its environment. e direction of force unted as positive, em, the result is that t does work on the ted as negative. It is is held constant, U = 0. From <u>First</u> hat $Q = W$ for of the gas because k done. Thus,	
5-d Lead lining: it is having high corrosion resistance but it is s mechanical property. Because of this it is used for protection in case of loose lead sheet lining, the lead sheet is applied to	of mild steel.	4
thickness from 3mm to 10mm and joints are lead burnt in po		
in case of homogeneous lead lining, lead is bonded to the cle		
aid of flux and the thickness of lead lining required is further		
deposited in drop by drop by lead burning.and the minimum	thickness of 4.5 to	
maximum 8mm thickness is maintained.		
it is used in cases where good heat transfer properties are req	luired or operation 1	
is to be carried out.		

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous) (ISO/IEC - 27001 - 2005 Certified)

5-е	i) second law of thermodynamics:	2	4
	All the statements are equivalent	Any one	
	• Heat or in general any type of energy flows from a higher level to a	statement	
	lower level.		
	• When two bodies are at different temperatures, heat flows from a hot		
	body to a relatively cold body.		
	• All natural or spontaneous processes are not thermodynamically		
	reversible.		
	ii) third law of thermodynamics:		
	it states that at the absolute zero of temperature, the entropy of pure crystalline		
	substance is zero.	2	
5-f	The applications of adsorption are:	¹ /2 marks	2
	a. in production of high vacuum:	each for any	
	b. in gas masks		
	c. in heterogeneous catalysts		
	d. in removing colouring matter from solutions		
	e. in chromatography		
	f. in dehumidification		
	g. in water purification.		
	a) In production of high vacuum: in order to remove traces of air from a		
	partially evacuated container. it is connected to a small bulb filled with	1 mark each	
	activated charcoal or silica gel and cooled with a liquid air. The activated	for any 2	
	charcoal adsorbs the traces of air resulting in the production of very high		
	vacuum in the container.		

ect coo	le : (17423)	Pa	ge 22 of 28
	b) In gas masks: gas masks are personal protective devices containing		
	activated charcoal. The activated charcoal removes poisonous, toxic gases from		
	air by adsorption and thus purifies the air for breathing.		
	c) In heterogeneous catalysis :		
	solid catalyzed gas phase reactions proceed through the adsorption of gaseous		
	reactants on the surface of a solid catalyst.		
	d) In removing colouring matter from solutions: animal charcoal removes		
	colours of solutions by adsorbing colour causing impurities. Animal charcoal is		
	used as a decolouriser in the manufacture of cane sugar.		
	e) In dehumidification:		
	silica gel removes moisture present in the air by adsorption .hence, silica gel is		
	used for dehumidification of air in the storage facility of delicate electronic		
	instruments.		
	f) In chromatographic analysis: with the help of chromatographic techniques,		
	it is possible to separate and analyze mixture containing small quantities of		
	organic substances. The component of a mixture has different adsorption		
	tendencies.		
	g) in water purification and softening of water: in water purification by		
	using charcoal bed, the bed acts not only as filter but also as a good adsorbent,		
	which adsorbs impurities which has an objectionable taste and odour.water		
	treatment using ion exchange resins is also considered as an adsorption		
	operation.		
6-a		¹ / ₂ marks for	
	Factors affecting rate of corrosion:	any 8	
	the factors that affect the rate of corrosion are:		
	• Nature of the metal		

	e : (17423)	Page 23 of 2
	Nature of environment.	
	1) Nature of metal:	
	a. purity of metal	
	b. surface area of metal	
	c. relative area of cathodic or anodic parts	
	d. position in the galvanic series	
	e. nature of the oxide film	
	f. solubility of the corrosion product	
	g. physical state of the metal	
	h. Volatility of the corrosion product.	
	2) Nature of the environment:	
	a. temperature of the environment	
	b. pH of the environment	
	c. presence of impurities in the environment	
	d. amount of oxygen present in the environment	
	e. nature of anions and cations present in the environment	
	f. Presence of suspended particles in the environment.	
	g. humidity of environment	
6-b	Freundlich adsorption isotherm:	4
	12 q	
	10	
	4	
	1	
	1 2 3 4 5 6	

Subject code : (17423)

Page **24** of **28**

mol/L). The Freundlich Adsorption Isotherm is mathematically expressed as

$$\frac{x}{m} = Kp^{1/n}$$
It is also written as $\log \frac{x}{m} = \log K + \frac{1}{n} \log p$
or $\frac{x}{m} - Ke^{1/n}$
It is also written as $\log \frac{x}{m} = \log K + \frac{1}{n} \log c$
It is also written as $\log \frac{x}{m} = \log K + \frac{1}{n} \log c$
where
 $x = \max$ of adsorb ate
 $m = \max$ of adsorbent
 $p = Equilibrium pressure of adsorbate
 $c = Equilibrium concentration of adsorbate in solution.$
K and n are constants for a given adsorbate and adsorbent at a particular
temperature.
At high pressure 1/n = 0, hence extent of adsorption becomes independent of
pressure.
 $\log x/m$
 $\log x/m$
 $\log x/m$
 $\log p = \frac{1}{n}$$

ect coo	le : (17423)	Page 2	5 of 28
6-c	Derivation for workdone for in a reversible isobaric process for ideal gas:	4	2
	An <i>isobaric process</i> is a thermodynamic process in which the pressure stays		
	constant: $\Delta P = 0$. The heat transferred to the system does work, but also		
	changes the internal energy of the system:		
	$P \land B \dots W$		
	$O V_A V_B V$		
	The yellow area represents the work done		
	$Q = \Delta U + W$		
	According to the first law of thermodynamics, W is work done on the system, U		
	is internal energy, and Q is heat. Pressure-volume work by the closed system is		
	defined as:		
	$W = \int p dV$		
	where Δ means change over the whole process, whereas d denotes a differential. Since pressure is constant, this means that		

ect cod	le : (17423)	Page	e 26 of 2
	$W = p\Delta V_{\perp}$		
	Applying the ideal gas law, this becomes		
	$W = n R \Delta T$		
	assuming that the quantity of gas stays constant, e.g., there is no phase		
	transition during a chemical reaction., the change in internal energy is related to		
	the temperature of the system by		
	$\Delta U = n c_V \Delta T,$		
	where C_V is specific heat at a constant volume.		
	Substituting the last two equations into the first equation produces:		
	$Q = n c_V \Delta T + n R \Delta T$		
	$= n \left(c_V + R \right) \Delta T$		
	$= n c_P \Delta T,$		
	where C_{P} is specific heat at a constant pressure.		
6-d	The work done by an ideal gas in isothermal reversible expansion is given by		
	$W = nRTln(P_1/P_2)$	1	
	n = 1 mol		
	R = 8.314 J/(mol K)	1	
	T = 300K1		
	$P_1 = 4 \text{ atm}$		
	$P_2 = 1 atm$		

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

SUMMER-15 EXAMINATION **Model Answer**

Subject code : (17423)substituting values, we get 1 $W = 1 * 8.314 * 300 \ln(4/1)$ 3458.69 J = 1 6-е **Industrial applications of :** 4 SS304: a. Used for process equipments, piping, fittings and flanges in milk 1 mark each processing, wine making, brewing, fruit juice and chemical industry. for any 2 b. It is used nitration plants. Used for storage tanks, tankers and containers. c. It is used for handling nitric acid, phosphoric acid, citric acid, dyestuffs, crude and refined oils and organic and inorganic chemicals. SS314 : a. equipment for furnaces 1 mark each b. radiant tubes for any 2 c. heat treatment components d. Annealing and carburizing boxes. 6-f **i**) **uniform corrosion:** it is corrosion of a metal either through chemical or 2 4 electrochemical reaction that proceeds evenly or uniformly over the entire exposed surface or over very large area of the surface. thus, A uniform layer of rust formed on the metal surface and there is a more or less uniform wastage of material. This type of corrosion usually observed on the outer surface of a container exposed at atmosphere. It can be prevented by selecting proper materials, cathodic protection, use of inhibitors and protective coatings.

Page 27 of 28

ect code : (17423)	Page 28 of 2
ii) Pitting corrosion : it is highly localized corrosion of a metal which forms pits in the metal surface.	
It is confined to small areas and occurs at microscopic defects (impurities, rough spots and scratches) on the metal surface. The pits may not be easily visible as they get covered by corrosion product and they grow in the direction	2
of gravity. Pitting corrosion results due to inhomogenities in metal, which creates potentia	
difference with rest of the metal, breaking of a protective coating due to mechanical wear and high velocity of a flowing fluid. It occurs easily on a polished area than on the base metal surface.	