

(Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

Subject Code:	17407
Sacjeet Coue.	1, 10,

Summer – 15 EXAMINATION <u>Model Answer</u>

Page No: 1/22

Important Instructions to examiners:

1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme.

2) The model answer and the answer written by candidate may vary but the examiner may try to assess the understanding level of the candidate.

3) The language errors such as grammatical, spelling errors should not be given more importance. (Not applicable for subject English and Communication Skills).

4) While assessing figures, examiner may give credit for principal components indicated in the figure. The figures drawn by candidate and model answer may vary. The examiner may give credit for any equivalent figure drawn.

5) Credits may be given step wise for numerical problems. In some cases, the assumed constant values may vary and there may be some difference in the candidate's answers and model answer.

6) In case of some questions credit may be given by judgment on part of examiner of relevant answer based on candidate's understanding.

7) For programming language papers, credit may be given to any other program based on equivalent concept.

*

	Marks
1. a) Attempt any SIX of the following.	12
i) Define: 1. Sensible heat 2. Latent heat	2
Answer :	
1. Sensible Heat-It is the heat which is sensed by thermometer and usually used to increase the	1
temperature of water is called as sensible heat.	
OR	
The amount of heat added up to saturation temperature is called sensible heat.	
2. Latent Heat-It is defined as the quantity of heat required for phase change of working substance at saturation temperature.	1
The amount of heat added at saturation temperature is called latent heat	
The amount of near added at saturation temperature is caned intent near.	
ii) Draw P-V diagram of dual combustion cycle.	2
Answer:	
PRESSURE (P) FRESSURE (P) Qa Qa Qa Qa PVY = C Expansion Qr Tigure. Dual combustion cycle	2

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

Subject Code: 17407

Summer – 15 EXAMINATION Model Answer

Page No: 2/22

iii) Write formula for work done in polytrophic process and write meaning of terms.	2
Answer: Work done in polytrophic process:	
$dW = \frac{P_1 V_1 - P_2 V_2}{P_1 V_1 - P_2 V_2}$	
n-1	1
Where-	
dW = work done	1
P = Pressure	1
V = Volume	
n = polytrophic index	2
iv) State function of steam condenser and its location in steam power plant.	
Answer: Functions of condenser in steam power plant:-	1
1) To increase the turbine output by maintaining low backpressure on exhaust side of steam turbine.	1
h) The secondary function of condenser is, to convert used stream into not water & supply to the boiler thro feed nump	
Location . It is located in between turbine and feed nump	1
Location in is focated in between taronic and feed pump.	1
v) Write two applications of compressed air.	2
Answer:(any TWO)	
1. Operating tools in factories	
2. Operating drills and hammers in road building	
3. Starting diesel engines	2
4. Operating brakes on buses, trucks and trains	
5. Spray painting	
6. Excavating	
7. To clean the large workshops	
vi) What is meant by conventional and non conventional sources of energy?	2
Answer:	
Conventional energy source:	
Energy source which cannot be used again and again is called as Conventional energy source.	1
e. g. Coal, natural gas, oil, and firewood.	
Nonconventional energy source-	1
Energy source which can be used again and again is caned as honconventional energy source.	1
e. g. Solar power, frydro-electric power, wind power, fridar power, Ocean wave power	
power, ocean mermai power, biomass, bio-ruer etc.	
vii) Define- Calorific value of fuel.	2
Answer: Calorific value of fuel:	
It is defined as the amount of heat liberated during complete combustion of 1 kg of fuel.	2
viii) What is combustion?	2
Answer: Combustion:	
It is a chemical process in which inflammable matter in a substance combine with oxygen at a	2
temperature above the ignition temperature of the substance and results in the evaluation of heat and	
light.	

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

Summer – 15 EXAMINATION Model Answer

Page No: 3/22

b) Attempt any TWO of the following:	8
i) What are the modes of heat transfer? Explain with suitable examples.	
Answer: Mode of heat transfer:-	
1) Conduction 2) Convection 3) Radiation	1
1) Conduction- It is the mode of heat transfer from one part of substance to another part of same substance or one substance to another without displacement of molecules or due to the vibrations of molecules. Example-Heat transfer in between metal rod.	1
2) Convection: It is the mode of heat transfer from one part of substance to another part of same substance or one substance to another with displacement of molecules or due to the fluid flowing. Example: Heat flow from boiler shell to water.	1
3) Radiation: It is the transfer of heat through space or matter. For Radiation there is no need of medium as like convection and conduction. It passes through vacuum in the form of electromagnetic waves. Example: The heat energy receives from sun to the earth surface.	1
ii) Represent otto cycle on P-V and T-S diagram and write equation for air standard efficiency.	4
Answer- P-V and T-S diagram for Otto Cycle: $ \begin{array}{c} $	3
$\eta = 1 - \frac{1}{r^{\gamma-1}}$ Where, $r = \text{compression ratio}$ $\gamma = \text{specific heat ratio}$	1
iii) With sketch explain working of Lamont boiler.	
Answer: Working of Lamont boiler: This is modern high pressure boiler; it is water tube steam boiler working on forced circulation. Circulation is maintained by the centrifugal pump. The feed water passes through the economizer to the drum from which it is drawn to the circulating Pump. The pump delivers the water to the evaporating section which in turn sends a mixture of Steam and water to the drum. The steam in the drum is then drawn through the super heater. The superheated steam so obtained is then supplied to the prime mover.	2

2

(Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION

(Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

Summer – 15 EXAMINATION <u>Model Answer</u>

Page No: 5/22

(Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

(Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

Subject Code: 17407

Summer – 15 EXAMINATION <u>Model Answer</u>

Page No: 7/22

4

2

iv) Liquid+ Vapour phase- Point d is saturation point; further addition of heat will not increase the temperature but liquid phase change into vapors phase. In this region only liquid and vapour is present.

v) Vapour phase- Point e is called as saturation point, further adding heat increase the temperature of steam which is called as superheating and in this region only vapour is present.

c) Explain working of three pass packaged type boiler.

Answer: Working of three pass packaged type boiler:

In this boiler pulverized coal is used as a fuel. Hot gases are produced by burning coal. The flue gases coming from first pass or combustion chamber passes through number of tubes in different passes. Tubes are surrounded by water. Heat released by flue gases is absorbed by water and gets converted into the steam. After passing through all tubes flue gases exhausted to atmosphere through chimney and steam is collected in upper part of boiler.

Condensate

Fig. Two pass down flow surface condenser

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

Summer – 15 EXAMINATION Model Answer

Page No: 8/22

\ ** **	1	0	4
e) Wh	hat are the sources of air leakage in condense	r?	4
Answer	: Sources of air leakage in condenser are:	is loss them at the state of th	
1. At	the joint of part because condenser pressure	is less than atmospheric pressure.	4
2. A1	r also comes with steam from boller feed wa	ter.	4
5. In	jet condenser, air comes with the cooling wa	ater in which it is dissolved.	
4. A1	r leaks if any bypass seal is broken.		
f) Cor	mpare centrifugal compressor with axial flow	v compressors	4
Answer			•
Compa	rison between Centrifugal and Axial flow co	ompressor.	
(Any Fo	our)		
Sr	Centrifugal compressor	Axial Flow Compressor	
No.			
1	Flow is perpendicular to axis of	Flow of air is parallel to the axis of compressor	
	compressor.	row of all is parallel to all all of compressor.	4
2	Low manufacturing and running cost	High manufacturing and running cost	
3	Requires low starting torque	Requires high starting torque	
4	Not suitable for multi-staging	Suitable for multi-staging	
5	Paguiras large frontal area for given rate of	Bacuires less frontel area for given rate of flow	
5	flow.	Requires less fiontal area for given fate of flow.	
6	Pressure ratio per stage is4:1.	Pressure ratio is 1.1 to 1.2	
7	Isentropic efficiency is 70%	Isentropic efficiency is 80%	
8	Used in supercharging I.C. engine and for	Used universally with large gas turbine.	
	refrigerants and industrial gases.	, , , , , , , , , , , , , , , , , , , ,	
			10
3. Attem	ipt any <u>FOUR</u> of the following:		16
a) Ex]	plain construction and working of screw com	ipressor.	4
Answer	: Screw compressor:		
		Air out	
		Male rotor (driver)	
		2	
	Female rotor		
	(driven)		
t			
Air in			
Fig. Screw Compressor			
	C.		

(Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

Subject Code: 17407

Summer – 15 EXAMINATION <u>Model Answer</u>

Page No: 9/22

1

1

4

4

4

1

1

1

Construction: It consists of two mutually engaged helical grooved rotors which are suitably housed in a casing. Out of two rotors male rotor is driver and female rotor is a driven. Male rotor has four lobes and female rotor as six flutes. Working: During rotation of rotor, air enters and takes space between male and female rotor. This air traps and moves axially and radically with rotation of rotors and gets compressed due to volume reduction. Then this air discharged from upward direction. Speed of rotors is different due to different number of lobes and flutes. It handles 3.5 to 300 m3/min and maximum pressure ratio of 20. This system requires lubrication. This compressor is noisy In operation. Used in refrigeration industry. b) State necessity of multi-staging and inter-cooling of air compressor. Answer: Necessity of multi-staging and inter-cooling of air compressor: It has been experienced that if we employ single stage compression for producing high pressure air (say 8 to 10 bar) it suffers the following draw backs 1. The size of cylinder will be too large. 2. Work required to drive the compressor is more 3. Due to high pressure loss of air due to leakage is more. 4. Sometimes, the temperature of air, at the end of compression is too high. It may be heat up the cylinder head or burn the lubricating oil. 5. Volumetric efficiency of compressor is less In order to overcome the above mentioned difficulties two or more cylinders are provided in series with inter-cooling arrangement between them. Such an arrangement is known as multistage compression with inter-cooling. c) Define the following terms in relation to air compressor; i) I.P. ii) B.P. iii) Volumetric efficiency iv) Compressor efficiency Answer: i) I.P. - It is the ratio of polytrophic work into speed of compressor in revolution per second. $I.P. = \frac{W \times N}{60} Watts$ ii) B.P. - It is the power required to drive the compressor or power delivered to the shaft of compressor iii) Volumetric efficiency - It is the ratio of volume of free air delivery per stroke to the swept Volume of piston. v) Compressor efficiency - For the same pressure ratio, It is the ratio of theoretical isothermal work

to the actual work required to drive the compressor. OR It is the ratio of isothermal power to the shaft power or brake power of motor required to drive the compressor

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION

(Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

Summer – 15 EXAMINATION <u>Model Answer</u>

Page No: 10/22

Figure shows a turboprop system employed in aircrafts. Here the expansion of gases takes place partly in turbine 80% and partly 20% in the nozzle. The power developed by the turbine is consumed in running the compressor and the propeller. The propeller and jet produced by the nozzle give forward motion to the aircraft. The turboprop entails the advantages of turbojet (i.e. low specific weight and simplicity in design) and propeller (i.e. high power for takeoff and high propulsion efficiency at speeds below 600km/h). The overall efficiency of the turbo prop is improved by providing the diffuser before the compressor as shown. The pressure rise takes place in the diffuser. This pressure rise take due to conversion of kinetic energy of the incoming air (equal to aircraft velocity) into pressure energy by diffuser. This type of compression is known as "ram effect".

2

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

Summer – 15 EXAMINATION Model Answer

Subject Code: 17407

Page No: 11/22

	r	
i)Compressor		
ii)Combustion chamber		
iii)Turbine		
Brayton cycle consists of four processes		
i) 1-2 is isentropic compression		
ii) 2-3 is constant pressure heat addition		
iii) 3-4 is isentropic expansion		
iv) 4-1 constant pressure heat rejection		
f) State four properties of fuels.	4	
Answer: Properties of fuels: (any four)		
1. It should possess high calorific value.		
2. It should have proper ignition temperature. The ignition temperature of the fuel should either be		
neither too low nor too high.	4	
3. It should not produce poisonous products during combustion. In other words, it should not		
cause pollution o combustion.		
4 It should have moderate rate of combustion		
5 Compustion should be easily controllable i.e. compustion of fuel should be easy to start or stop		
as and when required		
6 It should not leave behind much ash on combustion		
7. It should be easily available in plenty		
 It should be easily available in picity. It should have low moisture content. 		
 It should have low moisture content. It should be shoop 		
9. It should be cheap.		
10. It should be easy to handle and transport.		
4 Attempt any TWO of the following:	16	
a) For a adjubatic process, derive relation between P , V and T	8	
a) For a adiabatic process, derive relation between P, V and T.	0	
Answer		
Pressure (P) Volume (V) & Temperature (T) relation for adjabatic process:		
For adiabatic Process		
PV' = C		
$P_1 v_1^{\gamma} = P_2 v_2^{\gamma}$		
11 22		
	1	
$\frac{r_2}{r_2} = \left(\frac{r_1}{r_1}\right)^{\gamma} \tag{1}$	1	
$P_1 V_2$		
From general gas equation		
$\frac{PV}{PV} - C$		
T = C		

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

Subject Code: 17407 Model Answer Page No: 12/2	22
$\frac{P_1 V_1}{T_1} = \frac{P_2 V_2}{T_2}$ $\frac{T_2}{T_1} = \frac{P_2 V_2}{P_1 V_1} \dots \dots$	1
From (1) $\frac{V_2}{V_1} = \left(\frac{P_1}{P_2}\right)^{1/\gamma}$ (3)	
Put equation (3) into equation (2) $\frac{T_2}{T_1} = \frac{P_2}{P_1} \left(\frac{P_1}{P_2}\right)^{1/\gamma}$	3
$\frac{T_2}{T_1} = \left(\frac{P_2}{P_1}\right)^{\frac{\gamma-1}{\gamma}}$ $\frac{P_2}{P_2} = \left(\frac{T_2}{\gamma-1}\right)^{\frac{\gamma}{\gamma-1}} \tag{4}$	5
$P_{1} = \begin{pmatrix} T_{1} \end{pmatrix}^{r}$ From equation (1) & (4) $P_{2} = \begin{pmatrix} V_{1} \\ Y \end{pmatrix}^{r} = \begin{pmatrix} T_{2} \end{pmatrix}^{\frac{\gamma}{r-1}}$	
$\frac{1}{P_1} = \left(\frac{1}{V_2}\right)^{\gamma} = \left(\frac{1}{T_1}\right)^{\gamma-1}$ $\frac{\frac{P_2}{P_1}}{\frac{P_1}{P_1}} = \left(\frac{V_1}{V_2}\right)^{\gamma} = \left(\frac{T_2}{T_1}\right)^{\frac{\gamma}{\gamma-1}}$	3
 b) Explain with schematic diagram, working of : i) Open cycle gas turbine ii) Closed cycle gas turbine 	8
 Answer: i) Working Open cycle gas turbine: Fresh air enters the compressor at ambient temperature where its pressure and temperature are increased. The high pressure air enters the combustion chamber where the fuel is burned at constant pressure. The high temperature (and pressure) gas enters the turbine where it expands to ambient pressure and produces work. Finally exhausted to atmosphere. 	2

(Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

Summer – 15 EXAMINATION

Fluid enters the compressor from the cooler where its pressure and temperature are increased. The compressed fluid comes out from the compressor is heated in heater by an external source at constant pressure. This high pressure and temperature fluid expands in turbine and develops the useful work. Then this exhausted fluid is cooled to its original temperature in the cooler using external cooling source before passing into the compressor.

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION

(Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

Summer – 15 EXAMINATION <u>Model Answer</u>

Page No: 14/22

(Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

surrounds the bomb To reduce the losses due to radiation calorimeter is further provided with a jacket

(Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

Subject Code: 17407

Summer – 15 EXAMINATION <u>Model Answer</u>

Page No: 16/22

(Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

Summer – 15 EXAMINATION Model Answer

Page No: 17/22

Subject Code: 17407

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION

(Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

Summer – 15 EXAMINATION <u>Model Answer</u>

Page No: 18/22

Ar	swer:	(any four)		
	Sr. No.	conventional source of energy	Non-conventional source of energy	
	1	These are non-renewable energy sources	These are renewable energy sources	
	2	Creates pollution	Does not creates pollution	4
	3	It is not clean energy source	It is clean energy source	
	4	Harnessing cost is more	Harnessing cost is less	
	5	Efficiency is more	Efficiency is less	
	6	Fuel is required	Fuel is not required	
	7	Exhaustible energy source	Non-Exhaustible energy source	
	8	Affects on ozone layer	Does not affects on ozone layer	
	9	ExPetrol, Diesel, Kerosene etc.	ExSolar, Wind, Tidal, Geothermal,	
			Biomass, Etc.	
6 /	Attempt	any FOUR of the following		16
01	a) Estir	mate higher and lower calorific value of a co	al having following composition by mass-	
ca	bon 79	%. Hydrogen -6.5 %. Oxygen- 8%. Nitroger	1 -2.5 %, sulphur-1.5%, and reaming is ash.	4
Ar	swer:			
	Ca	C = 79% = 0.79		
	Hy	ydrogen = $H2 = 6.5\% = 0.065$		
Oxygen = O2 = 8% = 0.08				
Nitrogen = $N = 2.5\% = 0.025$				
Sulphur = $S = 1.5\% = 0.015$				
	A sh = 2.5% = 0.025			
	A a	m = 2.570 = 0.025		
	Dı	ulong's formula: H.C.V. of coal = 33800 C +	144500 (H2 - O2/8) + 9300 S KJ / Kg	1
		=33800 x	0.79 + 144500 (0.065 - 0.08/8) + 9300 x 0.015	
	H.C.V. of coal $= 34789 \text{ KJ} / \text{Kg}$			1
	L.C.V. of coal = H.C.V 9H2 x 2442 KJ / Kg			1
	= 34789– 9 x 0.065 x 2442			
		L.C.V. of coal = 33360.4	43 KJ / Kg	1
ter	b) Det	ermine the amount of heat required to produ re of 24^0 C, under the following conditions:	ce 1 kg of steam at a pressure of 5 bar at a	4

i) When the team is the wet having a dryness fraction 0.9.

(Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

Subject Code: 17407

Summer – 15 EXAMINATION <u>Model Answer</u>

Page No: 19/22

ii) When the team is dry saturated	
Assume specific heat = $2.35 \text{ kJ}/\text{kgK}$.	

Answer: Given Data

P = 5bar $T = 24^{\circ}C$ x = 0.9 m = 1kg $C_{p} = 2.35kJ/kgk.$ At pressure 5 bar saturation Temp $T_{sat} = 151.8^{\circ}C$ $h_{f} = 640.1kJ/kg$ $h_{fg} = 2107.4kJ/kg$ **i)Heat required when steam is wet** $h = h_{f} + xh_{fg}$

$$= 640.1 + 0.9 \times 2107.4$$

$$= 2536.76 kJ$$

since the water is at 24^0 C ,

heat already in water = specific heat of water × rise in temperature

$$= 4.2 \times 24 = 100.8 kJ$$

Heat actually required

$$= 2536.76 - 100.8$$

= 2435.96 kJ

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

	Summer – 15 EXAMINATION	
Subject Code: 17407	Model Answer	Page No: 20/22
ii)When the stem is dr	y saturated	
$h_{g} = h_{f} + h_{fg}$		
= 640.1 + 2107.4		2
= 2747.5 kJ		
Heat actually requir	ed	
= 2747.5 - 100.8		
= 2646.7kJ		
c) Explain Solar Power	Plant and write its two advantages.	4
Answer: Solar power plan	nt :-	
Construction:		
The basic components of the boiler is replaced by s energy from solar radiation	solar power plant are also exactly identical to them plar collector. The arrangement of component is as is collected and utilized to generate steam to run the	nal power plant except s shown in figure. The 1 e turbine.
Sola ener	Solar Collector Feed pump	ric Pr 1
	Figure: Solar power plant	-
Working:		
Steam is generated in so steam turbine where part o used for generating the e condenser and condensate	ar collector of solar power plant. The steam gener f it's thermal energy is converted into mechanical e ectric power. The steam coming out of steam tu s supplied back to solar collector with the help of fe	ated is passed through energy which is further arbine is condensed in 1 wed pump.
Advantages (any two)		

Advantages (any two) i) It is renewable energy source

- ii) Pollution free
- iii) Available all over the world.
- iv) Less maintenance.

1

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

Summer – 15 EXAMINATION Model Answer

Page No: 21/22

	d) State merits and demerits of Wind Energy Power Plant.		4	
A	nswer:			
	Merits of Wind	Energy Power Plant:		
	i)It is renewal	ble energy sources		
	ii)It is polluti	on free		2
	iii) Does not a	affect on ozone layer.		
	iv)It is clean of	energy source		
	v) Fuel is not	required.		
	D '4 6117'			
	Demerits of Wi	nd Energy Power Plant:		2
	1) Depends or	i wind which is not available through	out the year.	2
	iii)High weigh	allOII		
	iv)Initial cost	in is high		
	v)Required sr	ris lingh pecific location		
	vi) Required y	wind mills		
	vi) Required	wind mins.		
	e) Compare Petro	l and Diesel on the basis of :		
	(i) Composition			
	(ii) Specific gravit	ty		
	(iii) Gross calorifi	c values		4
	(iv) Volatility			
Α	nswer: Compariso	on of Petrol and Diesel:		
	Parameter	Petrol	Diesel	
	Composition	Petrol consists of 85 5% carbon	Diesel consists of 86.3% carbon	
	composition	14.4% hydrogen and 0.1%	12.8% hydrogon and 0.0% sulphar	
		sulpher	12.8% hydrogen and 0.9% supplet	4
	Specific gravity	sulpher Petrol has low specific gravity in	Diesel has high specific gravity in the	4
	Specific gravity	sulpher Petrol has low specific gravity in the range of 0.7-0.79	Diesel has high specific gravity in the range of 0.82-0.92	4
	Specific gravity	 sulpher Petrol has low specific gravity in the range of 0.7-0.79 Gross calorific value of petrol is 	Diesel has high specific gravity in the range of 0.82-0.92 Gross calorific value of diesel is in the	4
	Specific gravity Gross calorific values	 sulpher Petrol has low specific gravity in the range of 0.7-0.79 Gross calorific value of petrol is in the range of 42-45 MJ/Kg 	Diesel has high specific gravity in the range of 0.82-0.92 Gross calorific value of diesel is in the range of 50-52 MJ/Kg	4
	Specific gravity Gross calorific values	 sulpher Petrol has low specific gravity in the range of 0.7-0.79 Gross calorific value of petrol is in the range of 42-45 MJ/Kg 	Diesel has high specific gravity in the range of 0.82-0.92 Gross calorific value of diesel is in the range of 50-52 MJ/Kg	4
	Specific gravity Gross calorific values Volatility	 sulpher Petrol has low specific gravity in the range of 0.7-0.79 Gross calorific value of petrol is in the range of 42-45 MJ/Kg Petrol is more volatile than diesel. 	Diesel has high specific gravity in the range of 0.82-0.92 Gross calorific value of diesel is in the range of 50-52 MJ/Kg Diesel is less volatile than petrol.	4
	Specific gravity Gross calorific values Volatility	 sulpher Petrol has low specific gravity in the range of 0.7-0.79 Gross calorific value of petrol is in the range of 42-45 MJ/Kg Petrol is more volatile than diesel. 	Diesel has high specific gravity in the range of 0.82-0.92 Gross calorific value of diesel is in the range of 50-52 MJ/Kg Diesel is less volatile than petrol.	4
	Specific gravity Gross calorific values Volatility f) Explain combu	 sulpher Petrol has low specific gravity in the range of 0.7-0.79 Gross calorific value of petrol is in the range of 42-45 MJ/Kg Petrol is more volatile than diesel. stion chemistry of carbon, methane a 	Diesel has high specific gravity in the range of 0.82-0.92 Gross calorific value of diesel is in the range of 50-52 MJ/Kg Diesel is less volatile than petrol.	4
A	Specific gravity Gross calorific values Volatility f) Explain combu nswer: Combustic	 sulpher Petrol has low specific gravity in the range of 0.7-0.79 Gross calorific value of petrol is in the range of 42-45 MJ/Kg Petrol is more volatile than diesel. stion chemistry of carbon, methane an on chemistry of carbon, methane and the set of th	Diesel has high specific gravity in the range of 0.82-0.92 Gross calorific value of diesel is in the range of 50-52 MJ/Kg Diesel is less volatile than petrol.	4
A	Specific gravity Gross calorific values Volatility f) Explain combu nswer: Combustic i) Carbon: Burni	 sulpher Petrol has low specific gravity in the range of 0.7-0.79 Gross calorific value of petrol is in the range of 42-45 MJ/Kg Petrol is more volatile than diesel. stion chemistry of carbon, methane a on chemistry of carbon, methane ar ing of carbon to carbon dioxide (com 	Diesel has high specific gravity in the range of 0.82-0.92 Gross calorific value of diesel is in the range of 50-52 MJ/Kg Diesel is less volatile than petrol.	4
A C	Specific gravity Gross calorific values Volatility f) Explain combu nswer: Combustic i) Carbon: Burni $C + O_2 \longrightarrow CO_2$	 sulpher Petrol has low specific gravity in the range of 0.7-0.79 Gross calorific value of petrol is in the range of 42-45 MJ/Kg Petrol is more volatile than diesel. stion chemistry of carbon, methane ar ing of carbon to carbon dioxide (com 	12.8% Hydrogen and 0.9% surplier Diesel has high specific gravity in the range of 0.82-0.92 Gross calorific value of diesel is in the range of 50-52 MJ/Kg Diesel is less volatile than petrol. nd hydrogen nd hydrogen: plete combustion)	4
A C	Specific gravity Gross calorific values Volatility f) Explain combu nswer: Combustic i) Carbon: Burni $C + O_2 \longrightarrow CO_2$	 sulpher Petrol has low specific gravity in the range of 0.7-0.79 Gross calorific value of petrol is in the range of 42-45 MJ/Kg Petrol is more volatile than diesel. stion chemistry of carbon, methane a on chemistry of carbon, methane ar ing of carbon to carbon dioxide (com 	Diesel has high specific gravity in the range of 0.82-0.92 Gross calorific value of diesel is in the range of 50-52 MJ/Kg Diesel is less volatile than petrol. nd hydrogen hydrogen: nplete combustion)	4
А С і.с	Specific gravity Gross calorific values Volatility f) Explain combu- nswer: Combustic i) Carbon: Burni $C + O_2 \longrightarrow CO_2$ e. $12 + (16 \times 2) = 12$	 14.4% hydrogen and 0.1% sulpher Petrol has low specific gravity in the range of 0.7-0.79 Gross calorific value of petrol is in the range of 42-45 MJ/Kg Petrol is more volatile than diesel. stion chemistry of carbon, methane aring of carbon to carbon dioxide (corrected of carbon dioxide (c	12.8% Hydrogen and 0.9% supplet Diesel has high specific gravity in the range of 0.82-0.92 Gross calorific value of diesel is in the range of 50-52 MJ/Kg Diesel is less volatile than petrol. nd hydrogen nd hydrogen: plete combustion)	4
A <i>C</i> i.e.	Specific gravity Gross calorific values Volatility f) Explain combu nswer: Combustic i) Carbon: Burni $C + O_2 \longrightarrow CO_2$ e. $12 + (16 \times 2) = 12$	 sulpher Petrol has low specific gravity in the range of 0.7-0.79 Gross calorific value of petrol is in the range of 42-45 MJ/Kg Petrol is more volatile than diesel. stion chemistry of carbon, methane ar ing of carbon to carbon dioxide (com 2+16×2 	12.8% Hydrogen and 0.9% surplier Diesel has high specific gravity in the range of 0.82-0.92 Gross calorific value of diesel is in the range of 50-52 MJ/Kg Diesel is less volatile than petrol. nd hydrogen hydrogen hydrogen	4
A <i>C</i> i.e	Specific gravity Gross calorific values Volatility f) Explain combu nswer: Combustic i) Carbon: Burni $C+O_2 \leftarrow CO_2$ e. $12+(16\times 2)=12$ e. $12+32=44$	 14.4% hydrogen and 0.1% sulpher Petrol has low specific gravity in the range of 0.7-0.79 Gross calorific value of petrol is in the range of 42-45 MJ/Kg Petrol is more volatile than diesel. stion chemistry of carbon, methane aring of carbon to carbon dioxide (corrected of carbon to carbon dioxide (corrected of carbon to carbon dioxide (corrected of carbon dioxide (corrected o	12.8% Hydrogen and 0.9% surplier Diesel has high specific gravity in the range of 0.82-0.92 Gross calorific value of diesel is in the range of 50-52 MJ/Kg Diesel is less volatile than petrol. nd hydrogen nd hydrogen: nplete combustion)	4
A <i>C</i> i.c	Specific gravity Gross calorific values Volatility f) Explain combu- nswer: Combustic i) Carbon: Burni $C + O_2 \longrightarrow CO_2$ e. $12 + (16 \times 2) = 12$ e. $12 + 32 = 44$ 1 + 2 67 - 3 67	 sulpher Petrol has low specific gravity in the range of 0.7-0.79 Gross calorific value of petrol is in the range of 42-45 MJ/Kg Petrol is more volatile than diesel. stion chemistry of carbon, methane ar ing of carbon to carbon dioxide (com 2+16×2 	12.8% Hydrogen and 0.9% surplier Diesel has high specific gravity in the range of 0.82-0.92 Gross calorific value of diesel is in the range of 50-52 MJ/Kg Diesel is less volatile than petrol. nd hydrogen hydrogen hydrogen	4
A <i>C</i> i.c	Specific gravity Gross calorific values Volatility f) Explain combu nswer: Combustic i) Carbon: Burni $C + O_2 \longrightarrow CO_2$ e. $12 + (16 \times 2) = 12$ e. $12 + 32 = 44$ 1 + 2.67 = 3.67	 14.476 hydrogen and 0.176 sulpher Petrol has low specific gravity in the range of 0.7-0.79 Gross calorific value of petrol is in the range of 42-45 MJ/Kg Petrol is more volatile than diesel. stion chemistry of carbon, methane a on chemistry of carbon, methane ar ing of carbon to carbon dioxide (con 2+16×2 	12.8% Hydrogen and 0.9% surplier Diesel has high specific gravity in the range of 0.82-0.92 Gross calorific value of diesel is in the range of 50-52 MJ/Kg Diesel is less volatile than petrol. nd hydrogen nd hydrogen: nplete combustion)	4

(Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

Subject Code: 17407	Summer – 15 EXAMINATION <u>Model Answer</u>	Page No: 22/22
ii)Methane (CH ₄):		

2

1

Burning of methane with oxygen to carbon dioxide and water/ steam

CH₄+2O₂ $\leftarrow CO_2 + 2H_2O$ i.e. $(12+1\times4) + 2(16\times2) = (12+16\times2) + 2(1\times2+16)$ 16+64 = 44+36 $1+4 = \frac{11}{4} + \frac{9}{4}$

That means 1 kg of methane needs 4 kg of oxygen to produce 11/4 kg of carbon dioxide and 9/4 kg of water /steam

iii)Hydrogen:

The union of hydrogen with oxygen produces steam it is represented by the following equitation

$$2H_2 + O_2 = 2H_2O$$

 $2(1 \times 2) + (16 \times 2) = 2(1 \times 2 + 16)$

1 + 8 = 9

1 kg of hydrogen combines with 8 kg of oxygen to produce 9 kg of steam.