

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

SUMMER-16 EXAMINATION Model Answer

Subject code :(17649)

Page **1** of **25**

Important Instructions to examiners:

1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme.

2) The model answer and the answer written by candidate may vary but the examiner may try to assess the understanding level of the candidate.

3) The language errors such as grammatical, spelling errors should not be given more Importance (Not applicable for subject English and Communication Skills.

4) While assessing figures, examiner may give credit for principal components indicated in the figure. The figures drawn by candidate and model answer may vary. The examiner may give credit for any equivalent figure drawn.

5) Credits may be given step wise for numerical problems. In some cases, the assumed constant values may vary and there may be some difference in the candidate's answers and model answer.

6) In case of some questions credit may be given by judgement on part of examiner of relevant answer based on candidate's understanding.

7) For programming language papers, credit may be given to any other program based on equivalent concept.

SUMMER-16 EXAMINATION Model Answer

Subject code :(17649)

Page 2 of 25

Q No.	Answer	marks	Total marks
1	Attempt any 5		20
1.a	Unit operations involved in alcohol manufacturing:	1 mark	4
	1. Distillation	each	
	2. Filtration		
	3. Mixing		
	4. Evaporation		
1.b	Nutritional requirement of yeast: Yeast require carbon source as it can not do	4	4
	photosynthesis. They also required vitamins, minerals and organic nitrogen		
	source. The micronutrient are the source of carbon, nitrogen, phosphate and		
	sulphate		
1.c	Sterile air in pre fermenter:	4	4
	In addition to contaminants such as dust, pollen, water or oil aerosols and		
	hydrocarbon or other vapours, compressed air contains bacteria with the		
	potential to spoil product. Sanitary applications in the food, beverage,		
	pharmaceutical and electronic industries require compressed air that is free of		
	all the above contaminants. Sterile means free from live bacteria or other		
	microorganisms. Most fermentations are operated under high aeration and the		
	air supplied to the fermentor must be sterilized. Aerobic fermentation process		
	require significant quantities of sterile air. The sterilization of air in the strict		
	bacteriological sense means the complete elimination of all viable		
	microorganisms.		
1.d	BOD: It is the amount of oxygen required to degrade organic waste present in	2	4
	water by purely biological means. The biological oxygen demand, ie, BOD in		

ect coo	de :(17649)	I	Page 3 of 25
	wastewater, is a measure of the quantity of bio-organic substances in		
	wastewater. These can be in the form of fat, oils, carbohydrates and proteins.		
	BOD helps determine the quantum of organic chemicals contained in		
	wastewater that are synthetic and biodegradable		
	COD: - It is the amount of oxygen required to degrade organic waste present in	2	
	water by purely chemical means. COD can help gauge the quantum of both		
	biodegradable and non-biodegradable organics. It is quick method to determine		
	strength of waste in water.		
1.e	Manufacture of rum:	4	4
	Rum is an alcoholic distillate from the fermented juice of sugar cane, sugar		
	cane syrup, sugarcane molasses or other sugarcane byproducts.		
	Cane juice or diluted molasses mash may be allowed to ferment spontaneously		
	using yeast present naturally in the feedstock. To attempt a more controlled		
	fermentation in production of heavy rums, a pure culture of yeast may be used		
	together with a pure bacterial culture.		
	In light rum production, the emphasis is generally on maintaining clean, rapid		
	fermentation to minimize development of undesirable congeners and to		
	maximize fermentation efficiency. Pure cultures of yeast may be propagated.		
	These may be accompanied by the use of antibiotics such as pencillin or		
	bactericides such as chlorine dioxide.pH is lowered to 3.7 to reduce bacterial		
	growth and upto 90% of the yeast volume is used to inoculate a fermenter. The		
	prefermenter is refilled with mash to repeat the process several times.		
l.f	(i)Yeast acidification: Yeast can grow at low pH, but 4.6 is generally	2	4
	considered the level that will prevent the growth and toxin production for		
	pathogens. pH is considered primarily a means of growth inhibition and not a		

Subject cod	le :(17649)	I	Page 4 of 25
	method for destruction of existing pathogens. A pH of 4.6 is used as a divider		
	between high acid and low acid foods. Some foods that are naturally low acid		
	are processed in a way that makes them a high acid food. This is called		
	acidification. Acidification is the direct addition of acid to a low acid food (pH		
	less than 4.6). These foods are called acidified foods. There are a variety of		
	organic acids that are used- acetic, lactic or citric. Selection of acid depends on		
	the desired attributes of the finished products.		
	Acidification		
	(ii) Significance:		
	1. To improve the quality of food.(desired taste, texture)	2	
	2. helps in non refrigerated storage.		
	3. helps in preventing the growth and toxin production for pathogens.		
1.g	Biological treatment of effluent from alcohol industry:	4	4
	The most commonly used conventional units for reducing the organic matter in		
	effluent makes use of biological oxidation. The most commonly used		
	conventional units for biological oxidation are activated sludge and its		
	modifications or trickling filter. The key to the successful operation of		
	biological -oxidation units is the maintenance of adequate food,		
	microorganisms, aerobic conditions and a favorable environment for the		
	organisms to grow in at the cost of organic matter.		
	The conventional activated sludge process consist of primary sedimentation		
	treatment to remove organics that can be settled out, biological oxidation/		
	aeration, settling of activated sludge and returning part of it to be mixed with		
	the raw waste and suitable disposal of excess sludge produced as well as		
	disinfection of the treated liquid effluent produced.		

ect coc	le :(17649)		Page 5 of 25
2	Attempt any 4		1
2.a	Distillation in alcohol manufacturing:	4	
	Yeast cannot survive in high levels of alcohol, so to create stronger spirits an		
	additional process, distillation, is required. Fermented drinks are distilled to		
	create vodka, rum and other spirits. Distillation relies on ethanol having a lower		
	boiling point than water. When the fermented drink is heated the ethanol		
	vaporises at 78.5 degrees and the water is left behind (water boils or vaporises		
	at 100 degrees). The ethanol gas is caught and cooled so it condenses into a		
	stronger concentration of ethanol liquid.		
2.b	Nutrients required for yeast:	¹∕₂ mark	
	1. Glucose	each for	
	2. Fructose	any 8	
	3. sucrose		
	4. Amino acids		
	5. Ammonia		
	6. Peptides		
	7. Organic phosphates		
	8. Inorganic phosphates		
	9. Inorganic sulphur compounds		
	10. Organic sulphur compounds		
2 c	Material of construction of yeast vessel:	1 mark	
	1.Plastics: Light, inexpensive, not resistant to heat and chemicals, low thermal	each for	
	conductivity.	any 4	
	2. Ceramics: Inert, easily worked, inexpensive, fragile and only suitable for		
	small scale domestic brewing.		

(Autonomous) (ISO/IEC - 27001 - 2005 Certified) SUMMER-16 EXAMINATION

Model Answer

ject co	de :(17649)		Page 6 of 25
	3. Stainless steel (most preferred) : Strong, very durable, expensive, excellent		
	cleaning properties, corrosion resistant, high thermal conductivity.		
	4. copper: strong, easily cleaned, very expensive, very high thermal		
	conductivity.		
	5. Concrete: Durable, can be formed in to any shape, relatively heavy but can		
	be used for large vessels, requires inert lining material.		
	6. Aluminium: Light, durable, easily worked, can be used as lining material or		
	as main fabric of vessels, susceptible to attack by alkalies, subjected to electro		
	chemical corrosion.		
2 d	Manufacture of malt alcohol:	3	4
	The process consist of seven steps: mashing, lautering, boiling, fermentation,		
	conditioning, filtering and packaging.		
	Mashing: It is the process where all the ingredients are mixed with water and		
	heated to a pre specified temperature.		
	Lautering: It is the process of separating the wort extracts from the spent grain		
	after the mashing.		
	Boiling: It is the stage where the filtered wort extracts are heated to a certain		
	temperature to maintain the sterility which later helps in preventing the extract		
	from infections.		
	Fermentation: It commences as soon as yeast is added to the cooled wort. Yeast		
	act as a catalyst in metabolizing the malt into alcohol and carbon dioxide.		
	Conditioning: it is the stage where the beer is cooled down to freezing		
	temperature.		
	Filtering: It is the process of stabilizing the beer flavor and filters out any		
	remaining hops, grain particles and yeast in the beer.		
	Packaging: It is the process of filling the beer into the containers such as		
1		1	1

	bottles, cans etc.		
2 e	(i) Toxological Effects of effluent from alcohol industry:	1 mark	
	1.Effluent from alcohol industry causes severe land pollution(foul smell and	each for	
	dark colour)	any 4	
	2. Distillery effluent causes decrease in dissolved oxygen and prove dangerous		
	to aquatic life.		
	3.If the effluent from the alcohol industry is used for irrigation, high BOD		
	water results in crop failure		
	4.Seapage of coloured liquids can adversely affect ground water as well as land		
	quality.		
	5. Soil condition will be deteriorated in course of time.		
2.f	Enzyme dosing: Ethanol production in the dry grind ethanol industry is done		
	by converting the starch in corn to ethanol using enzymes and yeast. Enzyme	4	
	dosing is required to convert starch to glucose and glucose to ethanol.		
	Optimization the enzyme dose for the production of ethanol and sugar during		
	the simultaneous saccharification and fermentation (SSF) process is required.		
	Experimentation is required to decide the quantity of enzymes required.		
	Samples can be taken at 2, 4, 6, 8, 10, 12, 24, 48, and 72 h from the start of		
	SSF. Samples were analyzed using high-pressure liquid chromatography		
	(HPLC) and near-infrared spectroscopy for the ethanol and sugar contents.		
	Each treatment was replicated three times. Response surface methodology		
	(RSM) was used for studying effects of treatment on the response and		
	optimization of the SSF process.		
3	Attempt any 4		
3.a	Azeotropic distillation :	4	
	An azeotrope is a liquid mixture with an equilibrium vapour of same		

Subject code :(17649)	Page 8 of 25
composition as the liquid. The dew point and bubble point are identical at	
azeotropic composition and mixture vapourises at single temperature , so	
azeotropes are called constant boiling mixture.	
Azeotrope cannot be separated by distillation because the dew point and bubble	
point are identical.	
The constituents of binary azeotrope are separated completely by 1) Adding	
third component to the binary mixture 2) By changing system pressure.	
The third component added to the binary azeotrope usually form a low boiling	
azeotrope with one of the feed constituents and withdrawn as distillate. The third	
component added is called as entrainer or azeotrope breaker. The process of	
distillation where the third component is added to the binary azeotrope to effect	
the complete separation is called azeotropic distillation.	
In azeotropic distillation of acetic acid-water mixture, n butyl acetate is used as	
the entrainer. Addition of entrainer will result in the formation of a minimum	
boiling azeotrope with water. The azeotropic mixture therefore will be distilled	
over as vapour product from the high boiling acetic acid, which leaves as	
bottomproduct.	

SUMMER-16 EXAMINATION Model Answer

Subject code :(17649)

Page **9** of **25**

ect coc	le :(17649)	I	Page 10 of 25
	1. All the lines to the vessels are flushed with water and steam sterilized.		
	2. Valve should be checked at regular intervals.		
	3. Gasket should be changed at regularly.		
	4. Filter insert is to be replaced every two years.		
3 d	Manufacturing of brandy: Raw Materials	4	
	The raw materials used in brandy production are liquids that contain any form		
	of sugar. Anything that will ferment can be distilled and turned into a brandy.		
	Grapes, apples, blackberries, sugar cane, honey, milk, rice, wheat, corn,		
	potatoes, and rye are all commonly fermented and distilled.		
	Mass-produced brandy, other than having the same alcohol content, has very		
	little in common with fine brandy. Instead of the painstaking double distillation		
	in small batches, mass-produced brandies are made via fractional distillation in		
	column stills. Column stills are sometimes called continuous stills as raw		
	material is continuously poured into the top while the final product and wastes		
	continuously come out of the side and bottom.		
	1. A column still is about 30-ft (9-m) high and contains a series of		
	horizontal, hollow baffles that are interconnected. Hot wine is poured		
	into the top of the column while steam is run through the hollow baffles;		
	the steam and wine do not mix directly. The alcohol and other low		
	boiling point liquids in the wine evaporate. The vapors rise while the		
	non-alcoholic liquids fall. As the still is cooler at the top, the rising		
	vapors eventually get to a part of the still where they will condense,		
	each type of vapor at a temperature just above its own boiling point.		

SUMMER-16 EXAMINATION Model Answer

Page **11** of **25**

Subject code :(17649)

ject co	de :(17649)	ļ	Page 12 of 25
	pH – between 5.5 and 9		
	Total dissolved solids: 2100 mg / l		
	Oil and grease: less than 10 mg / 1		
	Sodium : < 60%		
	Ammoniacal nitrogen: < 50 mg/l		
3 f	Preparation of Yeast in laboratory	4	4
	Budding yeast life cycle		
	Yeast typically grows asexually by budding. A small bud which will become		
	the daughter cell is formed on the parent (mother) cell, and enlarges with		
	continued grow. As the daughter cell grows, the mother cell duplicates and then		
	segregates its DNA. The nucleus divides and migrates into the daughter cell.		
	Once the bud contains a nucleus and reaches a certain size it separates from the		
	mother cell. The series of events that occur in a cell and lead to duplication and		
	division are referred to as the cell cycle. The cell cycle consists of four distinct		
	phases (G1, S, G2 and M) and is regulated similar to that of the cell cycle in		
	larger eukaryotes. As long as adequate nutrients such as sugar, nitrogen and		
	phosphate are present yeast cells will continue to divide asexually.		
	Yeast cells can also reproduce sexually. Yeast cells exist as one of two different		
	mating types, a cells and alpha cells. When cells of opposite mating types are		
	mixed together in the lab or randomly come into contact in nature they can		
	mate (conjugate). Before joining the cells change shape in a process called		
	shmooing During conjugation the shmooing haploid cells first fuse and then		
	their nuclei fuse, resulting in the formation of a diploid cell with two copies of		
	each chromosome. Once formed, diploid cells can reproduce asexually by		
	budding, similar to haploids. However, when diploid cells are starved of		
	nutrients they undergo sporulation. During sporulation diploid cells undergo		
			1

Subject code :(17649)

Page 13 of 25

	meiosis, a special form of cell division that reduces the number of		
	chromosomes from two copies back to one copy. After meiosis the haploid		
	nuclei produced in meiosis are packaged into four spores that contain modified		
	cell walls, resulting in structures that are very resistant to environmental stress.		
	These spores can survive long periods of time until conditions become more		
	favorable, such as in the presence of improved nutrients, whereupon they are		
	able to germinate and reproduce asexually. These different states, budding,		
	conjugation and sporulation together make up the yeast life cycle.		
	Yeast growth and metabolism		
	When yeast cells are grown in rich carbon sources such as glucose they prefer		
	to grow by fermentation. During fermentation glucose is converted into carbon		
	dioxide and ethanol. Generally, fermentation occurs in the absence of oxygen,		
	and is therefore anaerobic by nature. Even in the presence of oxygen yeast cells		
	prefer to grow fermentatively and this is referred to as the Crabtree Effect after		
	the biologist who discovered this preference. This form of growth is exploited		
	in the making of bread, beer, wine and other alcoholic beverages. Although		
	budding yeast cells prefer to grow by fermentation, when nutrients are limiting		
	they are also able to grow by cellular respiration. During respiration cells		
	convert glucose into carbon dioxide and water, consuming oxygen in the		
	process, and resulting in the production of much larger amounts of energy in		
	the form of ATP.		
4	Attempt any 4		16
4.a	Process of pretreatment of enzyme	4	4
	Firstly, there is a liquefaction process. A starch suspension containing 30-40%		
	dry matter is first gelatinised and liquefied. By using heat-stable bacterial alpha		
	amylase, 'maltodextrin' is obtained which contains mainly different		
			·

ubject cod	e :(17649)		Page 14 of 25
	oligosaccharides and dextrins. Maltodextrins are only slightly sweet and they		
	usually undergo further conversion.		
	In most starch conversion plants, starch liquefaction takes place in a jet-cooking		
	process. The heat stable alpha amylase is added to the starch slurry after pH		
	adjustment, and the slurry is pumped through a jet cooker. Live steam is		
	injected here to raise the temperature to 105°C, and the slurry is then passed		
	through a series of holding tubes for 5-7 minutes, which is necessary to		
	gelatinise the starch fully. Then the temperature of the partially liquefied starch		
	is reduced to 90-100°C by flashing, and the enzyme is allowed to react further		
	at this temperature for 1-2 hours until the required DE (Dextrose Equivalent) is		
	obtained		
4.b	Evaporation Process in chemical industry:	4	4
	Evaporation process is commonly used in food and fermentation industries to		
	concentrate the feed or recover targeted products. Evaporation, in a technical		
	sense, denotes the conversion of a liquid into a vapor for the purpose of		
	separating it from another liquid of higher boiling point, or from a solid which		
	is dissolved in it. In the great majority of cases, the liquid evaporated is water.		
	If the liquid evaporated is to be recovered, the vapors are condensed, and the		
	process then becomes one of Distillation. There are four general methods of		
	evaporation:		
	1. Spontaneous evaporation in the open ail.		
	2. Evaporation by application of heat directly from a fire to the vessel		
	containing the liquid.		
	3. Evaporation by indirect application of heat from the fire, as by means of		
	steam, with or without pressure.		
	4. Evaporation under reduced pressure.		

4.c Taxonomy of Yeast 4 Yeasts do not form a single taxonomic or phylogenetic grouping. The term 4 "yeast" is often taken as a synonym for Saccharomyces cerevisiae, but the phylogenetic diversity of yeasts is shown by their placement in two separate phyla: the Ascomycota and the Basidiomycota. The budding yeasts ("true yeasts") are classified in the order Saccharomycetales. Weature Machines Machines Scientific classification Domain: Eukaryota Kingdom: Fungi Phyla and Subphyla Ascomycota Ascomycota Scientific classification Domain: Eukaryota Kingdom: Fungi Phyla and Subphyla Ascomycota - Saccharomycotina (true yeasts) - Taphrinomycotina o Schizosaccharomycetes (fission yeasts) Basidiomycota Agaricomycotina o Tremellomycetes - Pucciniomycotina. o Microbotryomycetes	ect code :(1	17649)	F	Page 15 of 25
Yeasts do not form a single taxonomic or phylogenetic grouping. The term "yeast" is often taken as a synonym for <i>Saccharomyces cerevisiae</i> , but the phylogenetic diversity of yeasts is shown by their placement in two separate phyla: the Ascomycota and the Basidiomycota. The budding yeasts ("true yeasts") are classified in the order Saccharomycetales. Scientific classification Domain : Eukaryota Kingdom : Fungi Phyla and Subphyla Ascomycota • Saccharomycotina (true yeasts) • Taphrinomycotina o Schizosaccharomycetes (fission yeasts) Basidiomycota • Agaricomycotina o Tremellomycetes • Pucciniomycotina. o Microbotryomycetes	4.c T a	axonomy of Yeast	4	Δ
"yeast" is often taken as a synonym for <i>Saccharomyces cerevisiae</i> , but the phylogenetic diversity of yeasts is shown by their placement in two separate phyla: the Ascomycota and the Basidiomycota. The budding yeasts ("true yeasts") are classified in the order Saccharomycetales. Vocume Vocume Vocume Vocume Vocume Vocume Vocume Vocume Vocume Vocume Vocume Vocume Vocume Vocume Vocume Vocume Vocume Vocume Vocume Vocume Vocume Vocume Vocume Vocume Vocume Vocume Vocume Vocume Vocume Vocume Vocume Vocume Vocume Vocume Vocume Vocume Vocume Vocume Vocume Vocume Vocume Vocume Vocume Vocume Vocume Vocume Vocume Vocume Vocume Vocume Vocume Vocume Vocume Vocume Vocume Vocume Vocume Vocume Vocume Vocume Vocume Vocume Vocume Vocume Vocume Vocume Vocume Vocume Vocume Vocume Vocume Vocume Vocume Vocume Vocume Vocume Vocume Vocume Vocume Vocume Vocume Vocume Vocume Vocume Vocume Vocume Vocume Vocume Vocume Vocume Vocume Vocume Vocume Vocume Vocume Vocume Vocume Vocume Vocume Vocume Vocume Vocume Vocume Vocume Vocume Vocume Vocume Vocume Vocume Vocume Vocume Vocume Vocume Vocume Vocume Vocume Vocume Vocume Vocume Vocume Vocume Vocume Vocume Vocume Vocume Vocume Vocume Vocume Vocume Vocume Vocume Vocume Vocume Vocume Vocume Vocume Vocume Vocume Vocume Vocume Vocume Vocume Vocume Vocume Vocume Vocume Vocume Vocume Vocume Vocume Vocume Vocume Vocume Vocume Vocume Vocume Vocume Vocume Vocume Vocume Vocume Vocume Vocume Vocume Vocume Vocume Vocume Vocume Vocume Vocume Vocume Vocume Vocume Vocume Vocume Vocume Vocume Vocume Vocume Vocume Vocume Vocume Vocume Vocume Vocume Vocume Vocume Vocume Vocume Vocume Vocume Vocume Vocume Vocume Vocume Vocume 	Y	easts do not form a single taxonomic or phylogenetic grouping. The term		
phylogenetic diversity of yeasts is shown by their placement in two separate phyla: the Ascomycota and the Basidiomycota. The budding yeasts ("true yeasts") are classified in the order Saccharomycetales.	"У	yeast" is often taken as a synonym for Saccharomyces cerevisiae, but the		
phyla: the Ascomycota and the Basidiomycota. The budding yeasts ("true yeasts") are classified in the order Saccharomycetales.	pł	hylogenetic diversity of yeasts is shown by their placement in two separate		
yeasts") are classified in the order Saccharomycetales. Image: Complexity of the order state of the	pł	hyla: the Ascomycota and the Basidiomycota. The budding yeasts ("true		
Cytoplaam Nucleus Ceil membrane Mitochondion Witochondion Vacuole Vacuole Scientific classification Domain: Eukaryota Kingdom: Fungi Phyla and Subphyla Ascomycota o Schizosaccharomycetes (fission yeasts) Basidiomycota - o Tremellomycetes o Tremellomycetes o Pucciniomycotina. o Tremellomycetes o Microbotryomycetes	ye	easts") are classified in the order Saccharomycetales.		
Scientific classificationImage: Scientific classificationImage: Scientific classificationDomain:EukaryotaImage: Scientific classificationKingdom:FungiImage: Scientific classific c		Cytoplasm Nucleus Cell membrane Chitin cell wall Mitochondrion Vacuole		
Domain:EukaryotaKingion:FugiPhylaortFugiAscomotoriaAscomotoria (true yeasts)•Saccharomycotina (true yeasts)•Taphrinomycotina•Schizosaccharomycetes (fission yeasts)Basidion:Sagaricomycotina•Agaricomycotina•Pucciniomycotina•Pucciniomycotina•Main component•Pucciniomycotina	Se	cientific classification		
Kingdom: Fungi Phyla and Subphyla Image: Subphyla Ascomycota Image: Sucharomycotina (true yeasts) • Saccharomycotina (true yeasts) • Taphrinomycotina o Schizosaccharomycetes (fission yeasts) Basidomycota Image: Subphyla • Agaricomycotina • Agaricomycotina • Pucciniomycotina • Pucciniomycotina • Pucciniomycotina. • Pucciniomycotina. • Microbotryomycetes	D	omain: Eukaryota		
Phyla → d Subphyla Image: Subphyla Ascomycota Image: Subphyla • Saccharomycotina (true yeasts) • Taphrinomycotina o Schizosaccharomycetes (fission yeasts) Basidiomycota Image: Subphyla • Agaricomycotina o Tremellomycetes • Pucciniomycotina. o Microbotryomycetes	K	Singdom : Fungi		
AscomycotaImage: Ascomycotina (true yeasts)•Saccharomycotina (true yeasts)•TaphrinomycotinaoSchizosaccharomycetes (fission yeasts)Basid	P	hyla and Subphyla		
 Saccharomycotina (true yeasts) Taphrinomycotina Schizosaccharomycetes (fission yeasts) Basidiomycota Agaricomycotina Tremellomycetes Pucciniomycotina. Microbotryomycetes 	A	scomycota		
 Taphrinomycotina Schizosaccharomycetes (fission yeasts) Basidiomycota Agaricomycotina Tremellomycetes Pucciniomycotina. Microbotryomycetes 	•	Saccharomycotina (true yeasts)		
 o Schizosaccharomycetes (fission yeasts) Basidiomycota Agaricomycotina Tremellomycetes Pucciniomycotina. Microbotryomycetes 	•	Taphrinomycotina		
BasidiomycotaImage: Composition of the second o	0	Schizosaccharomycetes (fission yeasts)		
 Agaricomycotina Tremellomycetes Pucciniomycotina. Microbotryomycetes 	B	asidiomycota		
oTremellomycetes•Pucciniomycotina.oMicrobotryomycetes	•	Agaricomycotina		
 Pucciniomycotina. Microbotryomycetes 	0	Tremellomycetes		
o Microbotryomycetes	•	Pucciniomycotina.		
	0	Microbotryomycetes		

SUMMER-16 EXAMINATION Model Answer

Page 16 of 25

Subject code :(17649)

	Bacterea Phylogenetic Tree I: Domain-Phylum Archarea Eucaryota Protist Fungi Fungi Animilia Ascomycota Basidiomycota "Deuteromycetes"		
4d Prop	pagation of yeast:	4	4
It is t	the process where a pure culture of brewer's yeast is propagated in sterile		
wort	usually continuously under aseptic condition.		
Proc	ess:		
1. Ye	east culture is usually stored in a test tube or flask on a culture medium in a		
fridg	e .It is sometimes kept in a freezer or under liquid nitrogen.		
2. Th	ne yeast cells are grown up in a series of laboratory steps ensuring purity at		
each	step by aseptic transfer and selecting single colonies. They are aerated and		
shak	en at around 20°C to maximise yeast cell growth upto 5-6 times.		
3. St	erile wort is collected in a small yeast propagation vessel. The cool wort is		
pitch	ned with the laboratory cultured yeast. Again the culture is maintained at		
arou	nd 20oC with oxygenation at high level to encourage cell mass growth.		
4. Th	ne content of the smaller yeast propagation vessel is used to inoculate		
steril	le wort in the next vessel. This is repeated until sufficient yeast has been		
prod	uced to pitch a standard brew or fermentation vessel.		
4 e Prim	nary treatment involves separating a portion of the suspended solids from	4	4

Subject code :(17649)

Page 17 of 25

	the wastewater. Screening and sedimentation usually accomplish this separation		
	process. The effluent from primary treatment will ordinarily contain		
	considerable organic material and will have a relatively high BOD. Primary		
	treatment is required to recover chemicals from spent wash. It consists of		
	neutralization, filtration, evaporation and incineration. Aim of primary		
	treatment is to remove compounds present in the waste water by physical		
	means. Chemical or biological methods are not used for this purpose. The		
	objective of primary treatment is the removal of settleable organic and		
	inorganic solids by sedimentation, and the removal of materials that will float		
	(scum) by skimming. Approximately 25 to 50% of the incoming biochemical		
	oxygen demand (BOD ₅), 50 to 70% of the total suspended solids (SS), and 65%		
	of the oil and grease are removed during primary treatment. Some organic		
	nitrogen, organic phosphorus, and heavy metals associated with solids are also		
	removed during primary sedimentation but colloidal and dissolved constituents		
	are not affected. The effluent from primary sedimentation units is referred to as		
	primary effluent. Primary sedimentation tanks or clarifiers may be round or		
	rectangular basins, typically 3 to 5 m deep, with hydraulic retention time		
	between 2 and 3 hours. Settled solids (primary sludge) are normally removed		
	from the bottom of tanks by sludge rakes that scrape the sludge to a central well		
	from which it is pumped to sludge processing units. Scum is swept across the		
	tank surface by water jets or mechanical means from which it is also pumped to		
	sludge processing units. Primary sludge is most commonly processed		
	biologically by anaerobic digestion.		
4 f	Industrial spirit is distilled ethyl alcohol (C ₂ H ₅ OH), normally of high proof,	2	4
	produced and sold for other than beverage purposes. It is usually distributed in		
	the form of pure ethyl alcohol, completely denatured alcohol, specially		

ubject cod	le :(17649)		Page 18 of 25
	denatured alcohol and solvent blends.		
	Uses:		
	1. Pure ethyl alcohol is used in laboratories and in industry for its sanitizing,		
	cleaning and solvent properties.	1 mark	
	2. Many medicines, food products, flavorings and cosmetics are made with	each for	
	ethyl alcohol.	any 2	
	3. It is also used to process vaccines, syrups, tinctures, liniments and antiseptics		
	and in the manufacture of pharmaceuticals such as chloroform and barbiturates.		
	4. It may be used in the production of adhesives, cosmetics, detergents,		
	explosives, inks, hand cream, plastics and textiles.		
5	Attempt any 4		16
5 a	Byproducts of fermentation process in alcohol industry	1 mark	4
	1. Carbon dioxide : Can be used as dry ice, in beverages	each	
	2. Fuse oil : Recovery of various chemicals		
	3. Effluent as feed stock for cattle		
	4. Effluent as fertilizer		
5 b	i) Bacteria: They are microscopic organisms whose single cell has neither a	1 mark	4
	membrane enclosed nucleus nor other membrane enclosed organelles like	each	
	mitochondria and chloroplast.		
	Eg: cocci, bacilli, spirilla		
	ii) Enzyme : Enzymes are biological molecules (proteins) that act as catalysts		
	and help complex reactions occur everywhere in life.		
	iii)Yeast: It is a one celled fungus that converts sugar and starch into carbon		
	dioxide and alcohol		
	Eg: beer yeast, dry yeast, wine yeast		
	iv) Microorganism: A microorganism or microbe is an organism which is too		

ect coo	le :(17649)	I	Page 19 of 25
	small to be seen by the unaided human eye. It is a microscopic living organism,		
	which may be single celled or multicellular.		
5 c	Flow diagram for manufacture of vodka	4	
	Strain Jaym Water Mash tub.		
5.d	Pollutants present in distillery waste water	4	
	1. Alcohol	ļ	
	2. Colour		
	3. Total solids		
	4. Chlorides		
	5. Sulphates	ļ	
	6. Potassium	ļ	
	7. Heavy metals		
5.e	Morphology of yeast: It is the description of –		
	1. the shape, size and internal structure of the yeast cells		
	2. changes during the reproduction of vegetative cells and the position of the	2	
	newly formed cells to their parent		
	3. the changes the cells undergo when forming resting cells, ballistospores or		

ect code :(17649)		Page 21 of 25	
6	Attempt any 2		1
6.a	Attempt any 2 Batch fermentation: The reactor is filled with sterile nutrient substrate and inoculated with the microorganism. In the course of the entire fermentation, nothing is added except oxygen, an antifoam agent, and acid or base to control the pH. The fermentation process begins and continue until the number of cells in the fermenter is such that some of the contents of the fermenter can be removed without altering the number of cells in the fermenter. The culture is removed to grow until no more of the product is being made at which point the reactor is	5	
	harvested and cleaned out for another run e.g. For the production of ethanol form molasses	3	
6.b	Manufacture of whisky Three basic ingredients are needed - water, barley and yeast. There are five stages to the process - malting, mashing, fermentation, distillation and maturation.	5	

Subject code :(17649)

Page **22** of **25**

Step 1 – Malting

Barley contains starch and it is this starch which needs to be converted into soluble sugars to make alcohol. For this to occur, the barley must undergo germination and this first part of the prodess is called 'malting'. The barley is soaked for 2-3 days in warm water and then traditionally spread on the floor of a building called a malting house. It is turned regularly to maintain a constant temperature. This is also carried out on a commercial scale in large drums which rotate. When the barley has started to shoot, the germination has to be stopped by drying it in a kiln. Traditionally peat is used to power the kiln and it is at this point where the type of peat used and length of drying in the peat smoke can influence the flavour of the final spirit. The barley is now called 'malt' and this is ground down in a mill, with any husks and other debris being removed.

Step 2 – Mashing

The ground down malt, which is called 'grist', is now added to warm water to begin the extraction of the soluble sugars. The liquid combination of malt and water is called the 'mash'. It is put into a large vessel called a mash tun and stirred for several hours. During this process, the sugars in the malt dissolve and these are drawn off through the bottom of the mash tun. The resulting liquid is called 'wort'. This process is normally carried out three times with the water temperature being increased each time to extract the maximum amount of sugar. Only wort from the first two times is used. The third lot is put back into the next batch of new grist. Any residue, such as husks, is called 'draff'. This is collected and used in the production of farm feed.

Step 3 – Fermentation

The wort is cooled and passed into large tanks called washbacks. These are

Page 23 of 25

SUMMER-16 EXAMINATION Model Answer

Subject code :(17649)

Page 24 of 25

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

SUMMER-16 EXAMINATION Model Answer

Subject code :(17649)

