

 MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION

(Autonomous)

 (ISO/IEC - 27001 - 2005 Certified)

 SUMMER-16 EXAMINATION
 Model Answer

Subject Code: 17634 Subject Name: System Programming

 Page 1 of 34

Important Instructions to examiners:

1) The answers should be examined by key words and not as word-to-word as given in

the model answer scheme.

2) The model answer and the answer written by candidate may vary but the examiner may try

to assess the understanding level of the candidate.

3) The language errors such as grammatical, spelling errors should not be given more

Importance (Not applicable for subject English and Communication Skills).

4) While assessing figures, examiner may give credit for principal components indicated in the

Figure. The figures drawn by candidate and model answer may vary. The examiner may give

Credit for any equivalent figure drawn.

5) Credits may be given step wise for numerical problems. In some cases, the assumed

Constant values may vary and there may be some difference in the candidate’s answers and

model answer.

6) In case of some questions credit may be given by judgment on part of examiner of relevant

answer based on candidate’s understanding.

7) For programming language papers, credit may be given to any other program based on

Equivalent concept.

 Marks

1. a) Answer any THREE of the following: 12

(i) Compare assembler and compiler.

(Any 4 points of comparison - 1 mark each)

Ans:

Assembler Compiler

It Converts Machine Manipulation

Code Directly into Binary Machine

Instruction.

It Converts Human Developed Codes

into Machine Executable Codes.

It Gives Most Efficient Executable.
Does not always produce the most

efficient executable.

Some How Difficult to Work with. Easiest for humans to program,

Assembler doesn’t searches for errors.
A compiler searches all the errors of a

program and lists them.

Stores variable in Tables Trace variable in program

Compilers usually produce the machine

executable code directly from a high

level language

Assemblers produce an object code

which might have to be linked using

linker programs in order to run on a

machine

 MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION

(Autonomous)

 (ISO/IEC - 27001 - 2005 Certified)

 SUMMER-16 EXAMINATION
 Model Answer

Subject Code: 17634 Subject Name: System Programming

 Page 2 of 34

(ii) Explain different data structure used by Pass - II of assembler.

(Any 4 Data Structures - 1 mark each)

Ans:

 Copy of source program input to pass 1

 LC: Location Counter: - To keep track of each instruction location

 MOT: Mnemonic Op. Table

 POT: Pseudo Op. Table:-

 MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION

(Autonomous)

 (ISO/IEC - 27001 - 2005 Certified)

 SUMMER-16 EXAMINATION
 Model Answer

Subject Code: 17634 Subject Name: System Programming

 Page 3 of 34

 ST: Symbol Table:-

 BT (Base table):-

 Output in machine code to be needed by the loader

(iii) State and explain four basic tasks of macro processor.

 (1 mark each task of Macro Processor)

Ans:

1. Recognizing Macro Definitions:

A macro pre-processor must recognize macro definitions that are identified by the MACRO and

MEND pseudo-ops. The macro definitions can be easily recognized, but this task is complicated in

cases where the macro definitions appear within macros. In such situations, the macro pre-processor

must recognize the nesting and correctly matches the last MEND with the first MACRO.

 MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION

(Autonomous)

 (ISO/IEC - 27001 - 2005 Certified)

 SUMMER-16 EXAMINATION
 Model Answer

Subject Code: 17634 Subject Name: System Programming

 Page 4 of 34

MDT

Macro Definition Table

&LAB INCR &ARG1, &ARG2, &ARG3

#0 A 1, #1

 A 2, #2

 A 3, #3

 MEND

2. Saving the definitions:

The pre-processor must save the macro instructions definitions that can be later required for

expanding macro calls.

MNT

Macro Name Table

1 “INCRaaaa” 15

. . .

. . .

. . .

3. Recognizing macro calls:

The pre-processor must recognize macro calls along with the macro definitions. The macro calls

appear as operation mnemonics in a program.

ALA

Index Argument

0 “bbbbbb” (All Blank)

1 “Data3bbb”

2 “Data2bbb”

3 “Data1bbb”

4. Replacing macro definitions with macro calls:

The pre-process or needs to expand macro calls and substitute arguments when any macro call is

encountered. The pre-processor must substitute macro definition arguments within a macro call.

 MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION

(Autonomous)

 (ISO/IEC - 27001 - 2005 Certified)

 SUMMER-16 EXAMINATION
 Model Answer

Subject Code: 17634 Subject Name: System Programming

 Page 5 of 34

(iv) Draw flowchart for processing macro calls and expansion in II-Pass macro processor.

(Correct Flowchart - 4 marks)

Ans:

 MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION

(Autonomous)

 (ISO/IEC - 27001 - 2005 Certified)

 SUMMER-16 EXAMINATION
 Model Answer

Subject Code: 17634 Subject Name: System Programming

 Page 6 of 34

b) Answer any ONE of the following: 6

(i) Explain different components of system software.

(List - 1 mark; description - 1 mark each)

 Ans:

Components of system software are:

1. Assembler

2. Macros

3. Loader

4. Linker

5. Compiler

1. Assembler:

It is a language translator that takes as input assembly language program (ALP) and generates

its machine language equivalent along with information required by the loader.

ALP → ASSEMBLER → Machine Language equivalent + Information required by the loader

2. Macros:

The assembly language programmer often finds that certain set of instructions get repeated

often in the code. Instead of repeating the set of instructions the programmer can take the

advantage of macro facility where macro is defined to be as “Single line abbreviation for a

group of instructions”.

The template for designing a macro is as follows

MACRO //Start of definition

Macro Name

MEND //End of def.

3. Loader:

It is responsible for loading program into the memory, prepare them for execution and then

execute them. Loader is a system program which is responsible for preparing the object

programs for execution and start the execution. Functions of loader:

Allocation: Allocate the space in the memory where the object programs can be loaded for

execution.

Linking: Resolving external symbol reference

Relocation: Adjust the address sensitive instructions to the allocated space.

Loading: Placing the object program in the memory in to the allocated space.

 MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION

(Autonomous)

 (ISO/IEC - 27001 - 2005 Certified)

 SUMMER-16 EXAMINATION
 Model Answer

Subject Code: 17634 Subject Name: System Programming

 Page 7 of 34

4. Linker:

A linker which is also called binder or link editor is a program that combines object modules

together to form a program that can be executed. Modules are parts of a program.

5. Compiler:

Compiler is a language translator that takes as input the source program (Higher level program)

and generates the target program (Assembly language program or machine language program)

(ii) What is the difference between:

1) Phase and pass

2) Syntax analysis and semantic interpretation

3) Token and uniform symbol

(Phase and pass - 2 marks; Syntax analysis and semantic interpretation - 2 marks; Token and

uniform symbol - 2 marks)

Ans:

a. Phase and Pass

A pass is a single time the compiler passes over (goes through) the sources code or some other

representation of it. Typically, most compilers have at least two phases called front end and

back end, while they could be either one-pass or multi-pass.

Phase is used to classify compilers according to the construction, while pass is used to classify

compilers according to how they operate.

b. Syntax analysis and semantic interpretation

Syntax Analysis phase takes as input the tokens generated by lexical phase and if the syntax of

the statement is correct it generates a parse tree representation.

Semantic interpretation phase performs the check on the meaning of the statement and performs

the necessary modifications in the parse tree representation.

c. Token and uniform symbol

Token:-

The token name is an abstract symbol representing a kind of lexical unit, e.g., a particular

keyword, or sequence of input characters denoting an identifier. The token names are the input

symbols that the parser processes.

Uniform Symbol:-

There is one uniform symbol for every token of which the token is member and its index within

that table.

 MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION

(Autonomous)

 (ISO/IEC - 27001 - 2005 Certified)

 SUMMER-16 EXAMINATION
 Model Answer

Subject Code: 17634 Subject Name: System Programming

 Page 8 of 34

2. Answer any TWO of the following: 16

a) Write the content of symbol table,literal table POT and MOT after Pass I of assembler for

following code:

(Symbol Table - 2 marks; Literal Table - 2 marks; POT - 2 marks; MOT - 2 marks)

Ans:

Symbol Table

Symbol Value Length Relocation

SIMPLE 0 1 R

LOOP 2 1 A

R1 3 1 A

TWO 4 1 A

FOUR 5 1 R

Literal Table

Literal Value Length Relocation

A 0 1 R

F’2’ 2 1 A

F 3 1 A

SIMPLE START

 BALR 15, 0

 USING *, 15

LOOP L 𝑅1, TWO

 A 𝑅1, TWO

 ST 𝑅1, FOUR

 CLI FOUR +3, 4

 BNE LOOP

 BR 14

𝑅1 EQU 1

TWO DC F’2’

 FOUR DS F

 END

 MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION

(Autonomous)

 (ISO/IEC - 27001 - 2005 Certified)

 SUMMER-16 EXAMINATION
 Model Answer

Subject Code: 17634 Subject Name: System Programming

 Page 9 of 34

Machine Op Table

Pseudo-Op Table

Pseudo-Op Address of routine to

process

Pseudo-Op

START P1START

USING P1USING

ENDbb P1END

EQUbb P1EQU

DCbbb P1DC

DSbbb P1DS

b) Explain the following terms:

(i) Parameter passing in macro

(ii) Nested macro calls

(iii)Conditional macro

(iv) Procedure

Ans:

(i) Parameter passing in Macro:

The macro facility presented is capable of inserting block of instructions in place of macro calls.

All of the calls to any given macro will be replace by identical blocks. This lacks flexibility:

there is no way for a specific macro call to modify the coding that replaces it. An important

extension of this facility consists of providing for arguments.

An important extension of this facility consists of providing for arguments or parameters in

macro calls. Corresponding macro dummy arguments will appear in macro definitions.

Mnemonic

Op-Code

Binary

Op-Code

Instruction

Length

Instruction

Format

Not used in

the design

Lbbb D2 10 100

Abbb 5A 10 001

ST 3E 03 100

CLI 6B 01 100

BNE 1D 03 001

BR 8C 03 000

 MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION

(Autonomous)

 (ISO/IEC - 27001 - 2005 Certified)

 SUMMER-16 EXAMINATION
 Model Answer

Subject Code: 17634 Subject Name: System Programming

 Page 10 of 34

 .

 .

 .

A 1,DATA1

A 2,DATA1

A 3,DATA1

 .

 .

 .

A 1,DATA2

A 2,DATA2

A 3,DATA2

 .

 .

 .

DATA 1 DC F’5’

DATA 2 DC F’10’

In this case the instruction sequences are very similar but not identical. The first sequences

performs an operation using DATA1 as operand; the second using DATA2. They can be considered

to perform the same operation with a variable parameter, or argument. Such parameter is called a

macro instruction argument or dummy arguments. It is specified on the macro name line and

distinguished by the ampersand which is always its first character.

MACRO Macro INCR has One Argument

INCR &ARG

A 1,&ARG

A 2,&ARG

A 3,&ARG

MEND

.

.

.

INCR DATA1 Use DATA1 as operand

.

.

.

INCR DATA2 Use DATA2 as operand

.

 MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION

(Autonomous)

 (ISO/IEC - 27001 - 2005 Certified)

 SUMMER-16 EXAMINATION
 Model Answer

Subject Code: 17634 Subject Name: System Programming

 Page 11 of 34

.

.

DATA1 DC F’5’

DATA2 DC F’10’

.

.

.

(ii) Nested Macro calls:

Since macro calls are “abbreviations” of instruction sequences, it seems reasonable that such

abbreviations should be available within other macro definitions. For example;

MACRO

ADD1 &ARG

L 1,&ARG

A 1,=F’1’

ST 1,&ARG

MEND

MACRO

ADDS &ARG1,&ARG2,&ARG3

ADD1 &ARG1

ADD1 &ARG2

ADD1 &ARG3

MEND

Within the definition of the macro ‘ADDS’ are three separate calls to a previously defined

macro ‘ADD1’. The use of the macro ADD1 has shortened the length of the definition of

ADDS and thus has made it more easily understood.

 MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION

(Autonomous)

 (ISO/IEC - 27001 - 2005 Certified)

 SUMMER-16 EXAMINATION
 Model Answer

Subject Code: 17634 Subject Name: System Programming

 Page 12 of 34

Macro call within macros can involve several levels. For example, the macro ADDS might be

called within the definition of another macro. In fact, conditional macro facilities make it

possible for a macro to call itself. So long as this does not cause an infinite loop – so long as at

some point the macro, having been called for the nth time, decides not to call itself again. It

makes perfectly good sense.

(iii) Conditional Macro:

 Two important macro processor pseudo ops, AIF and AGO, permit conditional reordering of the

sequence of macro expansion. This allows conditional selection of the machine instructions that

appear in expansions of a macro call.

 AIF is a conditional branching pseudo-op; it performs an arithmetic test and branches only if the

tested condition is true. The AGO is an unconditional branch pseudo-op or ‘Go to’ statement. If

specifies a label appearing on some other statement in the macro instruction definition; the

macro processor continues sequential processing of instruction with the indicated statement.

 MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION

(Autonomous)

 (ISO/IEC - 27001 - 2005 Certified)

 SUMMER-16 EXAMINATION
 Model Answer

Subject Code: 17634 Subject Name: System Programming

 Page 13 of 34

(iv) Procedure:

Procedure may be either internal or external. An internal procedure is included as part of a

single program module. An external procedure is a separate program module that s compiled

separately and is linked together with the other program modules by means of the loader.

Furthermore procedures may have multiple entry points. This feature can be very useful for

subroutines that are very similar such as the SINE and COSINE routines. It can be written as

follows.

N_FACTORIAL : PROCEDURE(IN) RECURSIVE;

 IF N=0 THEN RETURN(1)

 ELSE RETURN(N*N_FACTORIAL(N-1));

END;

c) Explain how symbolic names of subroutines are used in relocation and linking in BSS loader

and dynamic loader.

 (Appropriate description - 8 marks)

Ans:

The changes that are necessary for use of a relocatable loader have implications for the

assembly language which produces the input for the loader. The MIXAL language which is used on

the MIX computer is an absolute assembly language; it is used in connection with an assembler

which produces loader input for an absolute loader. It has no provisions for generating relocatable

loader code. A relocatable MIXAL would vary in several respects.

One variation would be in the ORIG statement; it would be allowed in only limited ways, if

at all. A programmer would no longer be able to ORIG her code to an arbitrary absolute address.

The only uses which would be permitted would be relative ORIGs, like ORIG *+10, ORIG N*2+*,

and so forth. Many assemblers thus replace the ORIG statement with a BSS statement. The BSS

statement stands for "Block Storage Save" and takes one expression in its operand field. A BSS 10

is identical to an ORIG 10+*, a BSS N*2 to an ORIG N*2+*, and so on.

Another change is in allowed address expressions. Each symbol is either absolute or

relocatable. Expressions can also be typed as absolute or relocatable. An absolute symbol is an

absolute expression, and a relocatable symbol is a relocatable expression. The sum, difference,

product, and quotient of absolute expressions are absolute expressions. Relocatable expressions are

more difficult to define. A relocatable expression is one whose final value depends upon the base

address in the same way as a relocatable symbol. The binding from relocatable to absolute should

be a simple addition of a base. Let R be a relocatable symbol or expression, and let A be an absolute

symbol, constant, or expression. Then the expressions, R+A, R-A, and A+R are relocatable. An

expression like R-R is absolute. Expressions like R+R, R*R, R/R, A*R, or R/A are neither

relocatable nor absolute and hence are not allowed.

Notice that either R or A can be an expression, and so expressions like R-R-A+R+A-R+R

are allowed (and are relocatable). To determine if an expression is either relocatable or absolute,

 MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION

(Autonomous)

 (ISO/IEC - 27001 - 2005 Certified)

 SUMMER-16 EXAMINATION
 Model Answer

Subject Code: 17634 Subject Name: System Programming

 Page 14 of 34

replace all relocatable symbols by R and all absolute symbols by A. Then check that no relocatable

symbols are involved in multiplications or divisions. Finally combine sub-expressions such as R+A,

A+R, R-A and substitute with R, and A+A, A-A, A/A, A*A, and R-R, substituting with an A until

the entire expression is reduced as far as possible. If the result is either R or A, the expression is

valid and of the indicated type; otherwise it is illegal.

One other change is concerned with externals and entry points. To the assembler of a

segment, any reference to an external will appear to be a reference to an undefined symbol, which is

not what is meant. One possible approach to this would be to treat all undefined symbols as

externals, but this would result in truly undefined symbols being treated incorrectly. Thus a new

pseudo-instruction is introduced which is used to notify the assembler that a symbol is meant to be

an external symbol, not an undefined one. This new pseudo-instruction, EXT, could be of the form

EXT <list of external symbols>

or alternatively

<symbol> EXT <operand field ignored>

Many assemblers require external symbols to be declared as such before their first use in the

segment and often place restrictions on the use of externals in address expressions, allowing only an

external by itself, or plus or minus an absolute expression.

Corresponding to the externals are entry points and they are treated in much the same way. In order

for the loader to correctly link externals with the corresponding entry point, the loader must know

where the entry points are. Thus assembly languages often include an entry point declaration

pseudo-instruction ENT. The form of this pseudo instruction is often

ENT <list of entry point symbols>

Any symbol listed in an ENT pseudo-instruction must be defined as a relocatable symbol elsewhere

in the segment, and can then be used by the loader for linking.

In addition to these programmer-visible changes in assembly language programs, the assembler

itself must also produce relocatable, not absolute, loader code.

 MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION

(Autonomous)

 (ISO/IEC - 27001 - 2005 Certified)

 SUMMER-16 EXAMINATION
 Model Answer

Subject Code: 17634 Subject Name: System Programming

 Page 15 of 34

3. Answer any FOUR of the following: 16

a) Outline the algorithm for syntax analysis phase of complier.

(Explanation with example - 4 marks)

Ans:

 The function of the syntax phase is to recognize the major constructs of the language and to call the

appropriate action routines that will generate the intermediate form to matrix for the constructs.

Databases involved in syntax analysis are as follows:

Uniform Symbol Table (“UST”): It is created by the lexical analysis phase and containing the

source program in the form of uniform symbols. It is used by the syntax and interpretation phases as

the source of input to the stack. Each symbol from the UST enters the stack only once.

Stack: the stack is the collection of uniform symbols that is currently being worked on by the stack

analysis and interpretation phase. The stack is organized on a Last In First Out (LIFO) basis. The

term “Top of Stack” refers to the most recent entry and “Bottom of Stack” to the oldest entry.

Reductions: The syntax rules of the source language are contained in the reduction table. The

syntax analysis phase is an interpreter driven by the reductions.

Example:

/ /***/

<idn> PROCEDURE/bgn_proc/S1 ****/4

<any><any><any>/ERROR/S2S1*/2

 These three reductions will be the first three of the set defined for the example. The

interpretation is as follows:

1. Start by putting the first three uniform symbols from the UST onto the stack.

2. Test to see if top three elements are <idn>:PROCEDURE.

3. If they are, call the begin procedure (bgn_proc) action routine, delete the label and get the next

four uniform symbols from the UST onto the stack and go to reduction

4. If not, call action routine ERROR, remove the third uniform symbol from the stack get one

more from the UST, and go to reduction 2.

 The reduction state that all programs must start with a „<label>:PROCEDURE‟.

 The syntax phase deletes the label and the „:‟, gets four more tokens and interprets reduction 4,

which will start parsing of the body of the procedure.

 MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION

(Autonomous)

 (ISO/IEC - 27001 - 2005 Certified)

 SUMMER-16 EXAMINATION
 Model Answer

Subject Code: 17634 Subject Name: System Programming

 Page 16 of 34

 If the first statement is not a <label>: PROCEDURE until a match is found or until all the

symbols in the UST have been tried.

b) Describe the I/P and O/P of the macro processor. How it is dependent upon the assembler

source code.

(I/P -1 mark; O/P -1 mark; Description - 2 marks)

Ans:

Input to Macro Processor:

 Source code with macro call;

Output of Macro Processor:

 Source code with macro expansion.

 The process of replace is called expanding the macro. Notice that the macro

definition itself does not appear in the expanded source code. The definition is saved by the macro

processor. The occurrence in the source program of the macro name, as an operation mnemonic to

be expanded, is called macro call.

 The macro processor can be added as a pre-processor to an assembler, making a complete

pass over the input text before pass 1 of the assembler. The macro processor can also be

implementing within pass 1 of the assembler.

 The implementation of the macro processor within pass 1 eliminates the overhead of

intermediate files, and we can improve this integration of macro process and assembler by

combining similar functions.

c) Write a binary search algorithm with suitable example.

(Algorithm - 2 marks, example - 2 marks)

Ans:

Binary Search Algorithm: A more systematic way of searching an ordered table. This technique

uses following steps for searching a keywords from the table.

1. Find the middle entry (N/2 or (N+1)/2)

2. Start at the middle of the table and compare the middle entry with the keyword to be searched.

3. The keyword may be equal to, greater than or smaller than the item checked.

4. The next action taken for each of these outcomes is as follows

 If equal, the symbol is found

 If greater, use the top half of the given table as a new table search

 If smaller, use the bottom half of the table.

Example:

The given nos are: 1,3,7,11,15

To search number 11 Indexing the numbers from list [0] upto list[5]

 MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION

(Autonomous)

 (ISO/IEC - 27001 - 2005 Certified)

 SUMMER-16 EXAMINATION
 Model Answer

Subject Code: 17634 Subject Name: System Programming

 Page 17 of 34

 Pass 1

Low=0

High = 5

Mid= (0+5)/2 = 2

So list[2] = 3 is less than 7

Pass 2

Low= (Mid+1)/2 i.e (2+1)/2 = 1

High = 5

Mid= (1+5)/2 = 6/2 = 3

So list [3] = 11 and the number if found.

d) Define operating system. Enlist its functions.

(Definition - 1 mark; any 3 functions - 1 mark each)

Ans:

The operating system is the core software component of the computer system. It is an interface

between the computer software and hardware components.

Functions of operating system:

1) Controls peripheral devices connected to the computer.

2) Transfers files between main memory and secondary memory storage, manages file folders,

allocates the secondary storage space, and provide file protection and recovery.

3) Allocates the use of RAM to the requesting processes.

4) Allow computer to run other applications.

e) Name the machine independent and dependent phase of complier and justify your answer.

(Machine independent - 1 mark; machine dependent - 1 mark; justification - 2 marks)

Ans:
The compiler having seven phases of the compiler model as follow

 Machine independent:-

1. Lexical phase

2. Syntax phase

3. Interpretation phase

4. Machine independent Optimization

 MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION

(Autonomous)

 (ISO/IEC - 27001 - 2005 Certified)

 SUMMER-16 EXAMINATION
 Model Answer

Subject Code: 17634 Subject Name: System Programming

 Page 18 of 34

 Machine dependent:-

1. Storage Assignment

2. Code generation

3. Assembly Phase

 A compiler takes as input a source program and produces as output an equivalent sequence of

machine instructions. This process is so complex that it is not reasonable, either from a logical

point of view or from an implementation point of view, to consider the compilation process as

occurring in one single step. For this reason, it is customary to partition the compilation process

into a series of sub processes called phases.

 Marks

4. a) Answer any THREE of the following: 12

(i) Explain the database used in lexical phase.

(1 mark for each database)

Ans:

1) Source program: original form of program; appears to the compiler as a sting of character

2) Terminal table: a permanent data base that has an entry for each terminal symbol. Each entry

consists of the terminal symbol, an indication of its classification, and its precedence.

Symbol Indicator Precedence

3) Literal table: created by lexical analysis to describe all literals used in the source program.

There is one entry for each literal, consisting of a value, a number of attributes, an address

denoting the location of the literal at execution time, and other information.

Literal Base Scale Precision Other

information

Address

4) Identifier table: created by lexical analysis to describe all identifiers used in the source

program. There is one entry for each identifier. Lexical analysis creates the entry and places the

name of identifier into that entry. The pointer points to the name in the table of names. Later

phases will fill in the data attributes and address of each identifier.

Name Data attributes Address

5) Uniform Symbol table: created by lexical analysis to represent the program as a string of

tokens rather than of individual characters. Each uniform symbol contains the identification of

the table of which a token is a member.

Table Index

 MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION

(Autonomous)

 (ISO/IEC - 27001 - 2005 Certified)

 SUMMER-16 EXAMINATION
 Model Answer

Subject Code: 17634 Subject Name: System Programming

 Page 19 of 34

(ii) Draw block diagram of the phase of complier and indicate the main function of each.

(Diagram - 2 marks; functions - 2 marks)

Ans:

Lexical Analysis

The first phase of scanner works as a text scanner. This phase scans the source code as a stream of

characters and converts it into meaningful lexemes. Lexical analyzer represents these lexemes in

the form of tokens as:

<token-name, attribute-value>

Syntax Analysis

The next phase is called the syntax analysis or parsing. It takes the token produced by lexical

analysis as input and generates a parse tree (or syntax tree). In this phase, token arrangements are

checked against the source code grammar, i.e. the parser checks if the expression made by the

tokens is syntactically correct.

Semantic Analysis

Semantic analysis checks whether the parse tree constructed follows the rules of language. For

example, assignment of values is between compatible data types, and adding string to an integer.

Also, the semantic analyzer keeps track of identifiers, their types and expressions; whether

 MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION

(Autonomous)

 (ISO/IEC - 27001 - 2005 Certified)

 SUMMER-16 EXAMINATION
 Model Answer

Subject Code: 17634 Subject Name: System Programming

 Page 20 of 34

identifiers are declared before use or not etc. The semantic analyzer produces an annotated syntax

tree as an output.

Intermediate Code Generation

After semantic analysis the compiler generates an intermediate code of the source code for the

target machine. It represents a program for some abstract machine. It is in between the high-level

language and the machine language. This intermediate code should be generated in such a way that

it makes it easier to be translated into the target machine code.

Code Optimization

The next phase does code optimization of the intermediate code. Optimization can be assumed as

something that removes unnecessary code lines, and arranges the sequence of statements in order to

speed up the program execution without wasting resources (CPU, memory).

Code Generation

In this phase, the code generator takes the optimized representation of the intermediate code and

maps it to the target machine language. The code generator translates the intermediate code into a

sequence of (generally) re-locatable machine code. Sequence of instructions of machine code

performs the task as the intermediate code would do.

(iii) Define following terms:

1) Searching

2) Sorting

3) Hashing

4) Mnemonic

(1 mark for each definition)

 Ans:

1) Searching: Searching allows to find data that meets specific criteria. Searching is required to

search an assembler’s symbol table. Different searching techniques are linear search and binary

search.

2) Sorting: Sorting allows you to organize the data in ascending or descending order. Sorting is

required to arrange symbol table generated by assembler in ordered fashion. Different sorting

techniques are interchange sort, bucket sort, address calculation sort.

3) Hashing: Hashing is the transformation of a string of characters into usually shorter fixed-

length value or key that represents the original string. Hashing is used to index and retrieve

items in a database because it is faster to find shorter hashed key than to find it using the

original value.

4) Mnemonics: a mnemonic is an abbreviation for an operation. It is entered in the operation code

(OPCODE) field of each assembler program instruction. For eg, in assembly language

programming INC (increase by one) is a mnemonic.

 MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION

(Autonomous)

 (ISO/IEC - 27001 - 2005 Certified)

 SUMMER-16 EXAMINATION
 Model Answer

Subject Code: 17634 Subject Name: System Programming

 Page 21 of 34

(iv) Show the result of each pass for following using radix sort 00100, 10001, 01011, 0001, 00101, 00000,

01001, 10101 etc.

(1 mark for each pass)
Ans:

Pass 1:00000

0 00100,00000

1 10001, 01011, 00001, 00101, 01001, 10101

Sorted array: 00100, 00000, 10001, 01011, 00001, 00101, 01001, 10101

Pass 2:00000

0 00100,00000, 10001, 00001, 00101, 10101

1 01011, 10110

Sorted array: 00100, 00000, 10001, 00001, 00101, 10101, 01011, 10110

Pass 3: 00000

0 00000, 10001, 00001, 01011

1 00100, 00101, 10101, 10110

Sorted array: 00000, 10001, 00001, 01011, 00100, 00101, 10101, 10110

Pass 4: 00000

0 00000, 10001, 00001, 00100, 00101, 10101, 10110

1 01011

Sorted array: 00000, 10001, 00001, 00100, 00101, 10101, 10110, 01011

 Pass 5: 00000

0 00000, 00001, 00100, 00101, 01011

1 10001, 10101, 10110

Sorted array: 00000, 00001, 00100, 00101, 01011, 10001, 10101, 10110

 MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION

(Autonomous)

 (ISO/IEC - 27001 - 2005 Certified)

 SUMMER-16 EXAMINATION
 Model Answer

Subject Code: 17634 Subject Name: System Programming

 Page 22 of 34

b) Answer any ONE of the following: 6

(i) Define parser. Draw the parse tree for the string ‘abccd’ using top down parser

(Definition - 2 marks, parse tree - 4 marks)

Ans:

Parser: A parser is a program that receives input in the form of sequential source program

instructions, interactive online commands, markup tags, ets and breaks them up into parts such as

mnemonics, symbols, objects, methods, etc that can then be managed by other phases of compiler.

Parser is also called as “Syntax analyzer”.

Parse tree for the string ‘abccd’ using top down parser.

String is “abccd”

Assume:

S→ xyz | aBC

B → b | bc

C → dc | cd

Steps

 Assertion 1 : abccd matches S

 Assertion 2: abccd matches xyz:

 Assertion is false. Try another.

 Assertion 2 : abccd matches aBC i.e bccd matches BC:

 Assertion 3 : bccd matches cC i.e ccdd matches C:

 Assertion 4 : ccd matches dc:

 False.

 Assertion 4 : ccd matches dc:

 False.

 Assertion 3 is false. Try another.

 Assertion 3 : ccd matches bcC i.e cd matches C:

 Assertion 4 : cd matches dc:

 False.

 Assertion 4 : cd matches cd:

 Assertion 4 is true.

 Assertion 3 is true.

 Assertion 2 is true.

 Assertion 1 is true.

 MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION

(Autonomous)

 (ISO/IEC - 27001 - 2005 Certified)

 SUMMER-16 EXAMINATION
 Model Answer

Subject Code: 17634 Subject Name: System Programming

 Page 23 of 34

(ii) Describe token with respect to lexical analysis with suitable example.

(Explanation - 4 marks, suitable example - 2 marks)

Ans:

 The first tasks of the lexical analysis algorithm are to the input character string into token.

 A token is a substring of the input string that represents a basic element of the language. It may

contain only simple characters and may not include another token. To the rest of the compiler,

the token is the smallest unit of currency. Only lexical analysis and the output processor of the

assembly phase concern themselves with such elements as characters. Uniform symbols are the

terminal symbols for syntax analysis.

 Lexical analysis recognizes three types of token: terminal symbols, possible identifiers, and

literals.

 It checks all tokens by first comparing them with the entries in the terminal table. Once a match

is found, the token is classified as a terminal symbol and lexical analysis creates a uniform

symbol of type “TRM”, and inserts it in the uniform symbol table.

 If a token is not a terminal symbol, lexical analysis proceeds to classify it as a possible identifier

or literal. Those tokens that satisfy the lexical rules for forming identifiers are classified as

“possible identifiers”.

Example:

Consider following program

WCM: PROCEDURE(RATE,START,FINISH);

 DECLARE (COST,RATE,START,FINISH) FIXED BINARY

 (31)STATIC;

 COST = RATE * (START-FINISH) + 2*RATE*(START-

 FINISH-100);

 RETURN (COST);

END;

 MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION

(Autonomous)

 (ISO/IEC - 27001 - 2005 Certified)

 SUMMER-16 EXAMINATION
 Model Answer

Subject Code: 17634 Subject Name: System Programming

 Page 24 of 34

Lexical analysis – tokens of example program

5. Answer any TWO of the following: 16

a) At what point of time do each of the following loading schemes perform binding

(explanation -2 marks each)

Ans:

Absolute loader

The simplest type of loader scheme, which fits the general model of Figure 5.3, is called an

absoluteloader. In this scheme the assembler outputs the machine language translation of the source

program in almost the same form as in the “assemble-and-go” scheme,except that the data is

punched on cards (object deck) instead of being placed directly in memory .The loader in turn

simply accepts the machine language text and place it into core at the location prescribed by the

assembler .This scheme makes more core available to the user since the assembler is not in memory

at load time.

 Absolute loaders are simple to implement but they do have several disadvantages .First, the

programmer must specify to the assembler the address in core where the program is to be loaded

furthermore ,if there are multiple sub-routines ,the programmer explicitly in his other subroutines to

perform subroutine linkage.

→Direct linking loader →BSS loader

→Absolute loader →Dynamic linking loader

 MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION

(Autonomous)

 (ISO/IEC - 27001 - 2005 Certified)

 SUMMER-16 EXAMINATION
 Model Answer

Subject Code: 17634 Subject Name: System Programming

 Page 25 of 34

Figure 5.4 illustrate the operation of an absolute assembler and an absolute loader. The programmer

must be careful not to assign two subroutines to the same or overlapping locations.

Direct linking loader

Adirect –linking loader is a general relocatable loader,and is perhaps the most popular loading

scheme presently used.we will assume that the system employs such a loader .

The direct – linking loader has the advantage of allowing the programmer multiple procedure

segments and multiple data segments and of giving him complete freedom in referencing data or

instructions contained in other segments .This provides flexible intersegment referencing and

accessing ability, while at the same time allowing independent translations of programs.

In this section we present a general format for the assembler output with such a loading scheme,

patterned after those used in the IBM 370.While the formats themselves are somewhat arbitrary, the

information that the assembler must give to the loader is not .The assembler (translator) must give

the loader the following information with each procedure or data segment:

1. The length of segment

2. A list of all the symbols in the segment that may be referenced by other segments and their

relative location within the segment

3. A list of all symbols not defined in the segment but referenced in the segment

4. Information as to where address constants are located in the segment and a description of how

to revise their values

5. The machine code translation of the source program and the relative addresses assigned

Dynamic linking loader

 A major disadvantage of all the previous loading schemes is that if a subroutine is

referenced but never executed (e.g, if the programmer had placed a call statement in his program

but this statement was never executed because of a condition that branced around it), the loader

would still incur the overhead of linking the subroutine.

 MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION

(Autonomous)

 (ISO/IEC - 27001 - 2005 Certified)

 SUMMER-16 EXAMINATION
 Model Answer

Subject Code: 17634 Subject Name: System Programming

 Page 26 of 34

 Further more, all of these schemes require the programmer to explicitly name all procedures

that might be called, it is not possible to write programs as follows:

LOADERS

:

.

READ SUBNAME, ARGUMENT

ANSWER = SUBNAME (ARGUMENT)

PRINT ANSWER

.

:

Where the name of the subroutine (e.g., SQRT, SINE, etc.) is an input parameter, SUBNAME, just

like the other data.

BSS loader

The changes that are necessary for use of a relocatable loader have implications for the assembly

language which produces the input for the loader. The MIXAL language which is used on the MIX

computer is an absolute assembly language; it is used in connection with an assembler which

produces loader input for an absolute loader. It has no provisions for generating relocatable loader

code. A relocatable MIXAL would vary in several respects. One variation would be in

the ORIG statement; it would be allowed in only limited ways, if at all. A programmer would no

longer be able to ORIG her code to an arbitrary absolute address. The only uses which would be

permitted would be relative ORIGs, like ORIG *+10, ORIG N*2+*, and so forth. Many assemblers

thus replace the ORIG statement with a BSS statement. The BSS statement stands for "Block

Storage Save" and takes one expression in its operand field. A BSS 10 is identical to an ORIG

10+*, a BSS N*2 to an ORIG N*2+*, and so on.

 MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION

(Autonomous)

 (ISO/IEC - 27001 - 2005 Certified)

 SUMMER-16 EXAMINATION
 Model Answer

Subject Code: 17634 Subject Name: System Programming

 Page 27 of 34

b) With neat diagram describe the analysis and synthesis phase of general model of compiler.

(Diagram - 2 marks; analysis phase - 3 marks; synthesis phase - 3 marks)

Ans:

1) Lexical Phase:-

Its main task is to read the source program and if the elements of the program are correct it

generates as output a sequence of tokens that the parser uses for syntax analysis.

The reading or parsing of source program is called as scanning of the source program.

It recognizes keywords, operators and identifiers, integers, floating point numbers, character strings

and other similar items that form the source program.

The lexical analyzer collects information about tokens in to their associated attributes.

2) Syntax Phase:-

In this phase the compiler must recognize the phases (syntactic construction); each phrase is a

semantic entry and is a string of tokens that has meaning, and 2nd Interpret the meaning of the

constructions.

Syntactic analysis also notes syntax errors and assure some sort of recovery. Once the syntax of

statement is correct, the second step is to interpret the meaning (semantic). There are many ways of

recognizing the basic constructs and interpreting the meaning.

Syntax analysis uses a rule (reductions) which specifies the syntax form of source language.

This reduction defines the basic syntax construction and appropriate compiler routine (action

routine) to be executed when a construction is recognized.

 MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION

(Autonomous)

 (ISO/IEC - 27001 - 2005 Certified)

 SUMMER-16 EXAMINATION
 Model Answer

Subject Code: 17634 Subject Name: System Programming

 Page 28 of 34

The action routine interprets the meaning and generates either code or intermediate form of

construction.

c) Write the content of MNT and MDT FOR FOLLOWING CODE

MACRO

ONE &ARG

 L 1,&ARG

 A 1,=f’1’

 ST 1,&ARG

MEND

MACRO

TWO &AR𝑮𝟏 &AR𝑮𝟐 &AR𝑮𝟑

 ONE &AR𝑮𝟏

 ONE &AR𝑮𝟐

 ONE &AR𝑮𝟑

MEND

(MNT table - 4 marks; MDT table - 4 marks)

Ans:

MNT table

M

MDT Table

INDEX MACRO DEFINITION

TABLE(MDT) CARD (80

BYTES/ENTRY)

1 ONE &ARG

2 L 1,#1

3 A 1,=F’1’

4 ST 1,#1

5 MEND

6 TWO &ARG1,&ARG2,&ARG3

7 ONE #1

8 ONE #2

Index 8bytes name 4 bytes MDT index

1 ONE 1

2 TWO 6

 MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION

(Autonomous)

 (ISO/IEC - 27001 - 2005 Certified)

 SUMMER-16 EXAMINATION
 Model Answer

Subject Code: 17634 Subject Name: System Programming

 Page 29 of 34

9 ONE #3

10 MEND

6. Answer any FOUR of the following : 16

a) What kind of error that can be detected in a source program during syntatic analysis.

(Any two kinds of errors - 2 marks each)

Ans:

Errors Detected in Syntatic analysis:-

 Syntactic errors include misplaced semicolons or extra or missing braces; that is, "{" or " } . "

As another example, in C or Java, the appearance of a case statement without an enclosing

switch is a syntactic error.

 Unbalanced parenthesis in expressions is handled.

 A missing delimiter ';' cannot be inserted in order to parse the rest of the list. This could lead to

an infinite loop in the parser.

 In Syntatic analysis , it checks the code with predefine grammar and find all Grammatical

errors like arithmetic, logical, syntactical so on; and display the message as per error.

b) What is the purpose of ID number on ESD card? Why it is not needed for locally define

symbol.

(Purpose of ID - 2 marks; reason - 2 marks)

Ans:

Purpose of ID number on ESD:
Each SD and ER symbol is assigned a unique number by the assembler. This number is called as

symbol identifier or ID which is used in conjunction with RLD Card.

 Reason behind Not needed for locally defined Symbol:

The external symbol is used for relocation or linking is identified on RLD cards by means of an ID

number rather than symbol name. The id number must match an SD or ER entry on ESD card.

Since an entry of locally declared symbols are already known hence the unlike the case with GEST

it is not necessary to search the LESA given an ID number the corresponding value is written as

LESA(ID) can be immediately obtained.

 MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION

(Autonomous)

 (ISO/IEC - 27001 - 2005 Certified)

 SUMMER-16 EXAMINATION
 Model Answer

Subject Code: 17634 Subject Name: System Programming

 Page 30 of 34

c) List the specification of data structures in direct linking loader.

(Any four data structure - 4 marks)

Ans:

Direct linking loader

The ESD card contain the information necessary to build the external symbol. The external symbol

are symbols that can be referred beyond the subroutine level. The normal label in the source

program are used only by the assembler.

The TXT card contains the blocks of data and the relative address at which data is to be placed.

 Once the loader has decided where to load the program, it adds the Program Load Address

(PLA) to relative address. The data on the TXT card may be instruction, non related data or

initial values of address constants.

 MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION

(Autonomous)

 (ISO/IEC - 27001 - 2005 Certified)

 SUMMER-16 EXAMINATION
 Model Answer

Subject Code: 17634 Subject Name: System Programming

 Page 31 of 34

The RLD cards contain the following information

1. The location and length of each address constant that needs to be changed for relocation or

linking.

2. The external symbol by which the address constant should be modified.

3. The operation to be performed.

 MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION

(Autonomous)

 (ISO/IEC - 27001 - 2005 Certified)

 SUMMER-16 EXAMINATION
 Model Answer

Subject Code: 17634 Subject Name: System Programming

 Page 32 of 34

 MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION

(Autonomous)

 (ISO/IEC - 27001 - 2005 Certified)

 SUMMER-16 EXAMINATION
 Model Answer

Subject Code: 17634 Subject Name: System Programming

 Page 33 of 34

d) Explain binary search algorithm with example.

(Explanation - 2 marks; Example - 2 marks)

Ans:

Binary Search Algorithm: A more systematic way of searching an ordered table. This

technique uses following steps for searching a keywords from the table.

1. Find the middle entry (N/2 or (N+1)/2)

2. Start at the middle of the table and compare the middle entry with the keyword to be searched.

3. The keyword may be equal to, greater than or smaller than the item checked.

4. The next action taken for each of these outcomes is as follows

If equal, the symbol is found

If greater, use the top half of the given table as a new table search

If smaller, use the bottom half of the table.

Example:

The given nos are: 1,3,7,11,15

To search number 11 indexing the numbers from list [0] up to list [5]

Pass 1

Low=0

High = 5

Mid= (0+5)/2 = 2

So list[2] = 3 is less than 7

Pass 2

Low= (Mid+1)/2 i.e (2+1)/2 = 1

High = 5

Mid= (1+5)/2 = 6/2 = 3

So list [3] = 11 and the number if found.

 MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION

(Autonomous)

 (ISO/IEC - 27001 - 2005 Certified)

 SUMMER-16 EXAMINATION
 Model Answer

Subject Code: 17634 Subject Name: System Programming

 Page 34 of 34

e) Explain the following terms:

(i) Segment

(ii) Card

(iii)Core

(iv) Deck

(1 mark each)

Ans:

 Segment:- Parts of memory is called as segment

 Card: - card is a piece of stiff paper that contains information represented by the presence of

absence of holes in predefined positions. The information might be data for data

processing applications

 Core: - single computing component with two or more independent actual processing

units called "core” or Main Memory (RAM) is called as Core.

 Deck: - A sequence of cards that is input to or output from some step in an application's

processing is called a card deck or simply deck.

