

Subject code :(17560)

Page **1** of **22**

Important Instructions to examiners:

1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme.

2) The model answer and the answer written by candidate may vary but the examiner may try

to assess the understanding level of the candidate.

3) The language errors such as grammatical, spelling errors should not be given more

Importance (Not applicable for subject English and Communication Skills.

4) While assessing figures, examiner may give credit for principal components indicated in the

figure. The figures drawn by candidate and model answer may vary. The examiner may give credit for any equivalent figure drawn.

5) Credits may be given step wise for numerical problems. In some cases, the assumed constant values may vary and there may be some difference in the candidate's answers and model answer.

6) In case of some questions credit may be given by judgement on part of examiner of relevant answer based on candidate's understanding.

7) For programming language papers, credit may be given to any other program based on equivalent concept.

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous) (ISO/IEC - 27001 - 2005 Certified)

Summer-16 EXAMINATION <u>Model Answer</u>

Subject code :(17560)

Page **2** of **22**

Q No.		An	swer	marks	Total marks
1 A	Any th	ree			12
1A-a				1 mark	4
		Evaporation	Drying	each	
	1	It is an operation in which a	It is an operation in which the		
		weak solution/liquor is	moisture of a substance is		
		concentrated by vaporising a	removed by thermal means.		
		portion of the solvent			
	2	It is a heat transfer operation.	It is a mass and heat transfer		
			operation.		
	3	Evaporation involves the	Drying involves the removal of		
		removal of water as a vapour	water at a temperature below its		
		at its boiling point.	boiling point.		
	4	In evaporation operation, the	In drying operation, the product		
		product obtained is a liquid.	obtained is a solid.		
1A-b	Fourie	r's law of conduction:		4	4
	It states that the rate of heat flow across an isothermal surface is proportional to				
	the terr	perature gradient at the surface.			
	$\frac{dQ}{dA} = -k\frac{\delta T}{\delta T}$				
		on - rate of heat transfer			
		Area perpendicular to heat flow			
	k- Thermal conductivity				
	1-	remperature			
14 0	Stofar	Poltzmann Law :			1
IA-C	Steran	DUITZIIIAIIII LAW		2	4

ect cod	e :(17560)		Page 3 of 22
	It states that the total energy emitted (emissive power) by a black body is		
	proportional to fourth power of its absolute temperature.		
	$W_b \Box T^4$		
	$W_b = \sigma T^4$	2	
	Where $W_b = \text{total energy emitted (emissive power) by a black body}$		
	σ = Stefan Boltzman constant= 5.67*10 ⁻⁸ W/m ² K		
	T = absolute temperature		
1A-d	Effect of non condensable gases in condensation process:	4	
	If non condensable gas is present in condensing vapour, it hinders the process		
	of heat transfer. The non condensable gas collects in the vicinity of condensing		
	surface, and the condensing vapour has to diffuse through the gas film. The		
	presence of this diffusion resistance in the process of condensation decreases		
	the rate of condensation far below than that for a pure material. Presence of		
	about 1% by volume air in the condensing vapour can reduce the heat transfer		
	coefficient by 60% of its value for no air.		
1.B	Any one		
1 B- a	Rate of heat transfer through sphere:		
	Consider a hollow sphere of inner radius r1 and outer radius r2. Let T1 be		
	the temp. at the inner surface and T2 be the temp. at the outer surface. Heat	2	
	will flow from outside to inside.		
	Consider a spherical element at radius r and thickness dr. the rate of heat		
	flow can be written as $Q = -kA dT/dr$		
	$= -k4\Pi r^2 dT/dr$	2	
	$dr/r^2 = -k4\Pi \ dT/Q$		
	Integrating and applying the limits between r1 to r2 and T1 to T2		
	$1/r1 - 1/r2 = k4\Pi (T1 - T2)/Q$		
	$(r2-r1)/r1r2 = k4\Pi (T1-T2)/Q$	2	
		1	1

Subject code :(17560)

Page 4 of 22

ect coc	le :(17560)	I	Page 5 of 22
	Working:		
	In this evaporator feed enters the bottom of the tubes, gates heated by the	2	
	condensing steam, starts to boil part way up the tubes and the mixture of		
	vap. and liquid comes out from the top of the tubes and finally impinges at		
	high velocity on a deflector. The deflector acts both as a primary separator		
	and foam breaker. The separated liquid enters the bottom of the exchanger		
	and parts of this liquid is taken out as a product.		
	This type of evaporator is widely used for handling of foamy, frothy		
	liquids.		
	It is typically used for the production of condensed milk and concentrating		
	black liquor in the pulp and paper industry.		
2	Any four		1
2-a	Modes of heat transfer are:	2	4
	1. Conduction		
	2. Convection		
	3. Radiation		
	1) Conduction : If a temperature gradient exist in a continuous substance,		
	heat can flow unaccompanied by any observable motion of mater. Heat		
	flow of this kind is called conduction.		
	2) Convection : When a macroscopic particle of fluid crosses a specific		
	surface, it carries with it a definite quantity of enthalpy. Such a flow of		
	enthalpy is called convection.	2	
	3) Radiation : Radiation is transfer of energy through space by		
	electromagnetic waves		
2-b	Basis: 1 m ² area		
	$B_1 = 0.225m$		
			1

Subject code :(17560)

	$K_1 = 1.4 \text{ W/mK}$		
	A=1 m^2		
	$\mathbf{R}_{1} = \mathbf{B}_{1} / \mathbf{K}_{1} \mathbf{A}$		
	= 0.225/1.4 = 0.160 K/W		
	$B_2 = 0.120m$		
	$K_2 = 0.2W/mK$		
	A=1 m^2		
	$\mathbf{R}_{2}=\mathbf{B}_{2}/\mathbf{K}_{2}\mathbf{A}$		
	= 0.120/0.2 = 0.60 K/W		
	$B_3 = 0.225m$		
	$K_3 = 0.7 W/mK$	2	
	A=1 m^2		
	$\mathbf{R}_3 = \mathbf{B}_1 / \mathbf{K}_1 \mathbf{A}$		
	= 0.225/0.7 = 0.321 K/W		
	$R= R_1 + R_2 + R_3$	1	
	= 0.16+0.6+0.321 = 1.081 K/W		
	Temp.drop ΔT = 1200-330 = 870 K		
	Heat loss $Q = \Delta T / R$		
	= 870 / 1.081	1	
	= 804.81 W		
2-c	Graphite block heat exchanger:	1	4
	Graphite heat exchangers are well suited for handling corrosive fluids.		
	Graphite is inert towards most corrosive fluids and has very high thermal	2	
	conductivity. Graphite being soft, these exchangers are made in cubic or		
	cylindrical blocks. In cubic exchangers, parallel holes are drilled in a solid cube		
	such that parallel holes of a particular row are at right angles to the holes of the		
	row above & below. Headers bolted to the opposite sides of the vertical faces of		

Page 6 of 22

ect coc	de :(17560)			Page 7 of 22
	the cube provide the flow of process	fluid through the block. The headers		
	located on the remaining vertical face	es direct the service fluid through the		
	exchanger in a cross flow.			
			1	
	Applications of graphite block h.e.			
	i) It is used for very radioact	ive liquid.		
	ii) It can be used for Corrosive Fluid.			
2-d	Single pass and multi pass shell and	l tube heat exchanger:	1 mark	
	Single pass	Multi pass	each for	
	Simple in construction	complex in construction	any 4	
	Flow may be parallel or counter	Flow is parallel as well as counter		
	current	current		
	Inexpensive	expensive		
	Heat transfer coefficients are low	Heat transfer coefficients are high		
	Frictional losses are low	Frictional losses are high		
	Heat transfer rates are low	Heat transfer rates are high		
	Floor space requirement is large	Floor space requirement is low		
2-е	Monochromatic Emissive power:			
	Monochromatic radiation emitted	from unit area in unit time is called	2	
	monochromatic emissive power.			
				1 · · · · · · · · · · · · · · · · · · ·

Total Emissive power: It is the total quantity of radiant energy of all wave length emitted by a body per unit area per unit time.	2	
3 Any two		1
3-a Plate and frame heat exchanger:	2	
Construction:		
It consists of a series of rectangular, parallel plates held firmly together between	3	
head frames. The plates have corner ports and are sealed by gaskets around the		
ports and along the plate edges. The plates are having corrugated faces. These		
plates serve as heat transfer surfaces and are of stainless steel It is provided		
with inlet and outlet nozzles for fluids at ends.		
Working:		
The hot fluid passes between alternate pairs of plates, transferring heat to cold	3	
fluid in the adjacent spaces. The plates can be readily separated for cleaning and		
heat transfer area can be increased by simply adding more plates.		
3-b Relationship between overall and individual heat transfer coefficients:		
Consider a hot fluid flowing through a circular pipe & a cold fluid flowing on		
the outside of the pipe.		
Heat is flowing from the hot fluid to the bulk of cold fluid through a		
Series of resistances.		
(i) When heat is flowing from bulk of hot fluid to the metal wall , although heat		

e :(17560)	Page 9 of 22
transfer in bulk fluid takes by convection current ,there is a very small layer of	
fluid near the pipe in which heat transfer takes place by conduction. This is	
because flow in this layer is laminar & there is no mixing of molecules. This	
layer is known as viscous sublayer. This thin film of fluid flowing in Laminar	
flow is of great importance in determining the rate of heat transfer. The	2
Thermal conductivity of fluid is very low so that resistance offered by this film	
is very large through the film is thin.	
(ii) When heat across metal wall resistance is comparatively low.	
(iii) When heat transfer takes place from metal to the bulk of fluid there exists	
a thin film of cold fluid which has a high resistance.	
(iv) Heat then flows from this thin film to bulk of cold fluid by convection. The	
process of heat transfer from bulk of hot fluid to bulk of cold fluid is	
represented by fig.	
Cold Fluid Te Tb Fluid Te Tb Fluid Te Tb Fluid Te Tb Fluid Te	2

Subject cod	e :(17560)	F	Page 10 of 22
	flow.		
	Ta – Tb –Tc is temperature drop from bulk of hot fluid to metal wall on hot		
	side.		
	$T_1 = $ is Avarage temperature on hot side		
	$Z_1 Z_2$ represents thin film on cold side in which liquid is flowing in Laminar		
	flow.		
	Td –Te – Tf is temperature drop from metal wall to the bulk of cold fluid.		
	T2 is average temperature on cold side.		
	The rate of heat transfer on hot side liquid is given by		
	$Q = k_i A_i (Ta - Tc)/x_1 \dots (i)$		
	The effective thickness x_1 depends on nature of flow , nature of surface and is		
	generally not known. Therefore an indirect method of calculating heat transfer		
	rate is by use of inside heat transfer coefficient represented by hi.		
	Rate equation is usually written as		
	Q =hi Ai (Ta – Tc)(ii)		
	Comparing equation (i) & (ii),		
	$hi = k_1/x_1$		
	Resistance for heat tranfer is given as		
	$\mathbf{R} = \mathbf{x}/\mathbf{k}_{\mathbf{A}} = 1/\mathbf{K}/\mathbf{x}(\mathbf{A}) = 1/\mathbf{h}\mathbf{i}\mathbf{A}\mathbf{i}$		
	Resistance offered by film on hot side= 1/hiAo	2	
	= Resistance of metal wall = L/KmAm		
	= Resistance of thin film on cold fluid =1/hoAo		
	So effectively heat transfer is across this there is $Q1 + Q2 + Q3$ films.		

Subject	bject code :(17560)		Page 11 of 22
	At Steady State,		
	Q1 = Q2 = Q3 = Q=Constant		
	$\ldots Q = \Delta t / R1 + R2 + R3$		
	$Q = T1 - T2/[(1/hiAi) + (Lm/R Am) + (1/hoAo)] \dots(i)$		
	We multiply N & D by Ai=area of heat transfer on hot side, we get		
	Q = (T1-T2)Ai / [(1/hiAi)+(Lm/Km.Am + (1/ho.Ao)] Ai		
	=(T1-T2) Ai [(1/hi)+(Lm/Km.Ai/Am)+(1/ho.Ai/Ao)]		
	Since pipes are circular,		
	$A = 2 \pi r l$		
	= (T1-T2)Ai[(1/hi)+(Lm/Km.2 π ri L/2 π rm L)+(1/ho.2 π ri /2 π ro)]		
	= (T1-T2)Ai[(1/hi)+(Lm/Km. ri/ rm)+(1/ho ri/ ro)]		
	We assume a new parameter,		
	Ui = Overall heat transfer coefficient on inside liquid.		
	1/Ui =1/hi + Lm/Km.ri/rm +1/ho ri/ro(i)		
		2	
3-	The rate of heat transfer in this case is given by		8
	Q = U.A.FT. (LMTD) for counter current flow	2	
	$Q = rate of heat transfer = 116 kw = 116*10^3 w$		
	A = Area of heat transfer = 1.5 m^2		
	FT = correction factor for LMTD = 0.85		
	LMTD = log mean temperature difference for counter current flow = $23k$	2	

ect code	e :(17560)	I	Page 12 of 22
	U= Heat transfer coefficient in $W/(m^2.K)$		
	116*103 = U * 1.5*0.85*23	2	
	$U = \frac{116*103}{15*0.05*23}$		
	$= 3956 \text{ w/(m}^2.\text{K})$	2	
4 A	Any three		12
4A-a	Solution :		4
	Length of pipe $= 1 \text{ m}$		
	$e = 0.8$ $\sigma = 5.67 * 10-8 \text{ w/(m}^2 \text{.k}^4)$	1	
	$T^1 = 423 \text{ k}$ $T^2 = 300 \text{k}$ $Do = 60 \text{mm} = 0.06 \text{m}$		
	Outside surface area per 1 meter length of pipe is		
	A = π Do L = π *0.06*1 = 0.189 m ²	1	
	The net radiation rate per 1 m length of pipe is		
	$Qr = e\sigma A (T1^4 - T2^4) = 0.8 *5.67 *10 - 8 * 0.189(\overline{423}^4 - 300^4)$	1	
	= 205 w/m	1	
4A-b	Fixed tube sheet heat exchanger:	4	4
	Channel Cha		
4A-c	Capacity: The capacity of an evaporator is defined as the number of kilograms	2	4
	of water vaporized/evaporated per hour.		
	Economy of evaporation : The economy of an evaporator is defined as the	2	

ect code :(17560)	Page	13 of 22
number of kilograms of water evaporated per kilogram of stem fed to the		
evaporator.		
$\overline{4}$ A-dSolution: Area= 1 m² Thickness x= 0.3 m T1 = 593K, T2 = 311 K	1	
$O/A = 1/x [0.003/2(T_2^2 - T_1^3) - 10^{-6}/3(T_2^2 - T_1^2)]$	2	
$Q/A = 1/x [0.003/2(593^2 - 311^3) - 10^{-6}/3(593^2 - 311^2)]$		
= 1/0.3[382.392-59.48]		
Q= 1076 W	1	
4 B Any one		(
4B-a Consider the thick walled hollow cylinder as shown in fig.(a). The inside		(
radius of cylinder is r_1 and the outside radius is r_2 and length of cylinder is L.		
Assume that thermal conductivity of the material of which cylinder is made be		
k.		
Let the temperature of the inside surface be T_1 and that of the outside surface		
be T_2 . Assume that $T_1 < T_2$, therefore the heat flows from the inside of		
cylinder to outside . It is desired to calculate the rate of heat flow for this case.		
	1	
Ta Ta		
(a)Heat flow through thick walled cylinder		
Consider a very thin cylinder (cylindrical element), concentric with the		
main cylinder , of radius r , where r is between r_1 and r_2 . The thickness of wall		

Subject code :(17560)	Page 14 of 22
of this cylindrical element is dr.	1
$Q = -k 2 \prod L (dT / dr)(i)$	
Equation (i) is similar to eqn (a) . Here area perpendicular to heat flow is $2\prod$	[rL
and dx of eqn (a) is equal to dr.	
Rearranging the eqn (i), we get	
$dr / r = -k (2 \prod L) /Q.dT(ii)$	
Only variables in eqn (ii) are r and T (assuming k to be constant).	
Integrate the eqn (ii) between the limits	
When $r = r_1$, $T = T_1$	1
When $r = r_2$, $T = T_2$	
$_{r2} \int r^{1} dr /r = -k (2 \prod L) / Q_{T1} \int dT(iii)$	1
ln $r_2 - r_1 = -k (2 \prod L) (T_1 - T_2)(iv)$	
$\ln (r_2 / r_1) = k (2 \prod L) (T_1 - T_2) / Q(v)$	
Rate of heat flow through thick walled cylinder :	
$\therefore \mathbf{Q} = \mathbf{k} (2 \prod \mathbf{L}) (\mathbf{T}_1 - \mathbf{T}_2) / \ln (\mathbf{r}_2 / \mathbf{r}_1) \dots (\mathbf{v}_i)$	
Equation (a) can be used to calculate the flow of heat through a thick walled	
cylinder.	
It can be put into more convinient form by expressing the rate of heat flow a	s :
$Q = k (2 \prod r_m L) (T_1 - T_2) / (r_2 - r_1)(vii)$	
Where r_m is the logarithmic mean radius & is given by	1
$r_{\rm m} = (r_2 - r_1) / \ln (r_2 / r_1)$	
$= (r_2 - r_1) / 2.303 \log (r_2 / r_1)(viii)$	
$A_m = 2 \prod r_m L(ix)$	

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous) (ISO/IEC - 27001 - 2005 Certified)

bject code :(ect code :(17560)		Page 15 of 22	
	A _m is cal	lled as logarithmic mean area.		
E	Equation ((viii) becomes		
		$\mathbf{Q} = \mathbf{k} \mathbf{A}_{\mathbf{m}} (\mathbf{T}_1 - \mathbf{T}_2) / (\mathbf{r}_2 - \mathbf{r}_1)(\mathbf{x})$		
		$Q = (T_1 - T_2) / [(r_2 - r_1)/k A_m] = \Delta T / R$	1	
V	Where	$\mathbf{R} = (\mathbf{r}_2 - \mathbf{r}_1)/\mathbf{k} \mathbf{A}_m$		
4B-b A	Advantag	ges of short tube evaporator :	3	6
	i)	Relatively inexpensive		
	ii)	As scaling occurs inside the tubes, it can be easily removed by		
		mechanical or chemical means.		
	iii)	Provides moderately good heat transfer at a reasonable cost.		
	iv)	Can be put into more rigorous services than horizontal tube		
		evaporator.		
Ι	Disadvantages of short tube evaporator :		3	
	i)	Floor space required is large		
	ii)	Amount of liquid hold up in the evaporator is large		
	iii)	Since there is no circulation, these units are not suitable for viscous		
		liquid.		
5 A	Any two			16
5-a N	MFR of thermic fluid = $21*950 = 19950$ kg/hr		2	8
Ν	MFR of cold fluid = $15*1000 = 15000$ kg/hr		2	
H	Heat gained by cold fluid = 15000*4.187(328-303)		1	
H	Heat given out by thermic fluid = $19950*2.93(388-T_2)$		1	
	Equating, $T_2 = 361.2 \text{ K}$		2	
5-b F	For parallel flow			8
Δ	$\Delta T1=423-308=115K, \Delta T2=363-338=25 \text{ k}$		2	
2	∆ Tlm= (1	15-25/ln(115/25) = 58.97 K	2	

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous) (ISO/IEC - 27001 - 2005 Certified)

ect code :(17560)		Page 16 of 22	
	For counter current		
	$\Delta T1 = 423 - 338 = 85K$, $\Delta T2 = 363 - 308 = 55 k$		
	Δ Tlm= (85-55)/ln(85/55) = 68.92 K	2	
	Since the value of Δ Tlm is higher for counter current flow, it is preferred.	2	
5-c	Basis: 30000 kg/hr feed is fed to the evaporator.	1	8
	Material balance of solids:		
	Solids in feed= solids in the thick liquor		
	0.10x30000=0.05xm'		
	m'=6000kg/h.	1	
	overall Material balance:		
	kg/h feed= kg/h water evaporated + kg/h thick liquor		
	water evaporated= mv=30000-6000=24000kg/h	1	
	enthalpy balance over evapoprator(assuming no heat loss)		
	$Q=ms \lambda s=mf.Cpf.(T-Tf)+mv \lambda$	1	
	msx220=30000x3.98x(323-293)+24000x2383		
	ms=276245.45kg/h.	1	
	steam consumption= 276245.45kg/h		
	steam economy= kg/h water evaporated/kg/h steam consumed		
	= 24000/276245.45 = 0.087	1	
	Heat load= Q= ms λ s= 276245.45x220=16881666.39 w	1	
	$\Delta T = Ts - T = 393 - 323 = 70K$		
	A =Q/U Δ T = 16881666.39 /2900x70= 83.16m²	1	
6	Any two		16
6-a	Multiple effect evaporation: In this system, evaporators are arranged in series	2	8
	so that the vapour produced in first effect is fed to the steam chest of second		
	effect as heating medium in which boiling takes place at low pressure and		
	temperature and so on.		
			1

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous) (ISO/IEC - 27001 - 2005 Certified)

Page **18** of **22**

Summer-16 EXAMINATION <u>Model Answer</u>

Subject code :(17560)

ject coc	le :(17560)		Page 19 of 22
	droplets are formed on the surface The droplets grow and ultimately fall		
	from or fall down under the influence of gravity leaving behind the bare		
	metal surface on which further condensation takes place. The condensation		
	occurring by this mechanism is known as dropwise condensation.		
	Filmwise condensation:		
	When a saturated vapour comes into contact with the cold surface, it		
	condenses and if condensate wets the surface it formes a continuous film of		
	condensate through which heat mass be transferred. The additional vapour	4	
	is then required to condense into the liquid film rather than directly on the		
	surface. The condensate ultimately flows down the surface under the		
	influence of gravity.		
	In Filmwise condensation, the film covering the acts as a resistance to		
	heat transfer while in dropwise condensation a large portion of a surface is		
	directly exposed to the vapour. Because of this the rate of heat transfer and		
	heat transfer coefficient in dropwise condensation is larger than filmwise		
	condensation.		
6-c	The logarithmic mean temperature difference (also known as log mean		
	temperature difference or simply by its <u>initialism</u> LMTD) is used to determine		
	the temperature driving force for heat transfer in flow systems, most notably		
	in heat exchangers. The LMTD is a logarithmic average of the temperature	2	
	difference between the hot and cold feeds at each end of the double pipe		
	exchanger. The larger the LMTD, the more heat is transferred. The use of the		
	LMTD arises straightforwardly from the analysis of a heat exchanger with		
	constant flow rate and fluid thermal properties.		
	Understanding the concept of log mean temperature difference or LMTD is		
	very important for heat exchanger design especially for the heat exchangers		
			1

Subject co	ubject code :(17560)	
	with no phase change.	
	The LMTD is the driven force for the heat exchange between the two fluids. As	
	the LMTD value increases, the amounts of heat transfer between the two fluids	
	also increase. The LMTD value is used for calculating the heat duty of the heat	
	exchanger. The formula is:	
	$\mathbf{Q} = \mathbf{U} * \mathbf{A} * \mathbf{LMTD}$	
	Where,	2
	Q – Heat duty of the heat exchanger (in <i>watts</i>)	
	U – Heat transfer co-efficient (in watts/Kelvin/Meter square)	
	A – Heat transfer area (in meter square)	
	Assume heat transfer is occurring in a heat exchanger along an axis z, from	
	generic coordinate A to B, between two fluids, identified as I and 2, whose	
	temperatures along z are $T_1(z)$ and $T_2(z)$.	
	The local exchanged heat flux at z is proportional to the temperature difference:	
	$q(z) = U(T_2(z) - T_1(z))/D = U(\Delta T(z))/D,$	
	where <i>D</i> is the distance between the two fluids.	
	The heat that leaves the fluids causes a temperature gradient according to Fourier's law:	
	$\frac{\mathrm{d}T_1}{\mathrm{d}z} = k_a(T_1(z) - T_2(z)) = -k_a\Delta T(z)$	2
	$\frac{\mathrm{d} T_2}{\mathrm{d} z} = k_b (T_2(z) - T_1(z)) = k_b \Delta T(z)$	
	Summed together, this becomes	

Subject code :(17560)

Page **21** of **22**

$$\frac{d\Delta T}{dz} = \frac{d(T_2 - T_1)}{dz} = \frac{dT_2}{dz} - \frac{dT_1}{dz} = K\Delta T(z)$$
where $K = k_a + k_b$.
The total exchanged energy is found by integrating the local heat
transfer q from A to B :

$$Q = \int_A^B q(z)dz = \frac{U}{D} \int_A^B \Delta T(z)dz = \frac{U}{D} \int_A^B \Delta T dz$$
Use the fact that the heat exchanger area Ar is the pipe
length A - B multiplied by the interpipe distance D :

$$Q = \frac{UAr}{(B - A)} \int_A^B \Delta T dz = \frac{UAr \int_A^B \Delta T dz}{\int_A^B dz}$$
In both integrals, make a change of variables from z to A T :

$$Q = \frac{UAr \int_{\Delta T(A)}^{\Delta T(B)} \Delta T \frac{dz}{d\Delta T} d(\Delta T)}{\int_{\Delta T(A)}^{\Delta T(B)} \frac{dz}{d\Delta T} d(\Delta T)}$$
With the relation for A T found above, this becomes

$$Q = \frac{UAr \int_{\Delta T(A)}^{\Delta T(B)} \frac{1}{R} d(\Delta T)}{\int_{\Delta T(A)}^{\Delta T(B)} \frac{1}{R} d(\Delta T)}$$
Integration is at this point trivial, and finally gives:

$$Q = U \times Ar \times \frac{\Delta T(B) - \Delta T(A)}{\ln[\Delta T(B)/\Delta T(A)]}$$
from which the definition of LMTD follows.

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous) (ISO/IEC - 27001 - 2005 Certified)

Summer-16 EXAMINATION <u>Model Answer</u>

Subject code :(17560)

Page **22** of **22**