

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous) (ISO/IEC - 27001 - 2005 Certified)

SUMMER-16 EXAMINATION <u>Model Answer</u>

Subject code :(17558)

Page **1** of **23**

Important Instructions to examiners:

1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme.

2) The model answer and the answer written by candidate may vary but the examiner may try

to assess the understanding level of the candidate.

3) The language errors such as grammatical, spelling errors should not be given more

Importance (Not applicable for subject English and Communication Skills.

4) While assessing figures, examiner may give credit for principal components indicated in the

figure. The figures drawn by candidate and model answer may vary. The examiner may give credit for any equivalent figure drawn.

5) Credits may be given step wise for numerical problems. In some cases, the assumed constant values may vary and there may be some difference in the candidate's answers and model answer.

6) In case of some questions credit may be given by judgement on part of examiner of relevant answer based on candidate's understanding.

7) For programming language papers, credit may be given to any other program based on equivalent concept.

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous) (ISO/IEC - 27001 - 2005 Certified)

SUMMER-16 EXAMINATION Model Answer

Subject code :(17558)

Page 2 of 23

Q No.	Answer	marks	Total marks
1-A	Any 3		12
1A-a	Hazard: A hazard in anything in the work place that has the potential to harm	1	4
	people. It cal include objects in the workplace such as machinery or dangerous		
	chemicals.		
	Types of hazards :		
	1) Mechanical hazards	3	
	2) Electrical hazards		
	3) Noise hazards		
	4) Radiation hazards		
	5) Explosion hazards		
	6) Toxic hazards		
	7) Chemical hazards		
1A-b	Sources and protection of noise hazard:	1 mark	4
	i) Reduction at source: wherever possible it would be advisable to reduce the	each for	
	noise at the source itself.eg change the bearings if it makes noise due to wear.	any 4	
	ii) Vibration isolation: In case of machine like reciprocating compressors and		
	power presses, the mechanical vibrations are transmitted through the structures,		
	walls and the floor which increases the noise level at the workplace. Reduction		
	of noise levels can be achieved by,		
	a) Using vibration resilient mounts to fix the machine to foundations.		
	b) Special heavy foundations with a large weight compared to the weight of		
	machine.		
	iii) Vibration Damping: Machine parts, ventilation duct cause noise in this		

Subject code :(17558)	P	age 3 of 23
manner. Thenoise in these cases can be reduced by damping- by stiffening t	he	
member.		
iv) Silencers: Where noise due to movement of gases or air is the problem,		
silencers are the right solution. Silencers can be used at the inlet/outlet of		
compressors, exhausts, release of steam and gases and pressure relief valves	s of	
pneumatic machines.		
v) Noise insulation: It may be necessary to insulate the source from all the s	sides	
although insulating two or three sides also give reduction of a lower degree.		
vi) Noise absorption: Noise absorption material, normally soft and porous,		
prevent reflection of noise and also convert some of the noise energy into he	eat	
energy.		
1A-c Different respiratory equipments used as personal protective equipments	ients 4	4
in a chemical plant are:		
1. Air Purifying Type		
a. Mechanical filter respirators:		
b. Canister gas masks:		
c. Chemical Cartridge Respirators:		
2. Air Supplied Type:		
This includes-		
a. Air line respirators:		
b. Fresh air or Suction Hose Masks:		
3. Self Contained Breathing Apparatus:		
These are mainly of three types.		
a. With compressed air or oxygen cylinder		
b. Oxygen rebreathing or recirculating type		
c. Oxygen regenerating type		
1A-d Comparison on respiratory and non respiratory protective equipment:		4

ect code	e :(17558)		Page 4 of 23
	1. Respiratory protective equipment should only be used as a final resort to	2	
	achieve health and safety, whereas non respiratory protective		
	equipment are to be used compulsorily when working in a plant.		
	2. Respiratory protective equipment should be selected as the per the	2	
	nature of environment whereas non respiratory protective equipment		
	are same in all environment.		
1-B	Any 1		
1B-a	Sources of Radiation Hazard :	6	
	Nuclear Industry, Hospital (X-ray division)are some industries where radiation		
	hazard takes place.		
	The radiation is produced when atoms of natural radio active material decay or		
	split, generating streams of photons vibrating at enormous speeds in wavelike		
	form. Radiation has two basic forms: ionizing and nonionizing. In chemical		
	plants workers may be exposed to various forms of nonionizing radiation.		
	Radiation hazards occurred during testing of nuclear weapons, establishment of		
	nuclear power plants, mining and refining of plutonium and thorium and		
	preparation of radioactive isotope.		
1B-b	Various protections used against Eye:	3	
	Protecting eyes and faces from physical, chemical and radiation hazard are of		
	prime importance. These protective devices are available in various types and		
	styles. Selection should be made depending upon the nature of hazards		
	involved.		
	Welding shield are made of non-flammable material, are opaque to dangerous		
	radiation and are poor conductors of heat. Face shields protect face and neck		
	from flying particles, chemical splashes etc. Tinted transparent plastic shields		
	protect against glare. The head band of the face shield should be such that the		
	face piece can be pushed upwards when so required.		

ubject coo	le :(17558)		Page 5 of 23
	In face and eye protection equipment, laminated lens should never be used. The		
	most important thing in eye protection device is that the lens, whether glass or		
	permanent plastic, should be optically correct and completely free from flaws		
	and distortions. These should be comfortable for wear. These should be cleaned		
	and kept in a good state of repair regularly and all workers should be trained for		
	proper use of such devices.		
	Various protections used against Head:		
	There are four widely used types of head protection.	3	
	1. Industrial safety helmet s which can protect against falling objects or		
	impact with fixed objects.		
	2. Caps, helmets etc. which can protect the scalp and hair from		
	entanglement or can protect the head from contamination with toxic or		
	nuisance dust, or protect from dirt carried within the hair.		
	3. Industrial scalp protectors such as Bump Caps can protect process		
	workers from striking their heads against fixed objects when working in		
	confined spaces.		
	4. Crash helmets, cycling helmets and climbing helmets which are		
	intended to protect wearers should they be involved in a fall.		
2	Any 4		16
2-a	Precautions taken against electrical hazards:	1 mark	4
	The danger of injury through electrical shock is present whenever electrical	each for	
	power is used.	any 4	
	1. All electrical should be adequately insulated, grounded or isolated to		
	prevent bodily contact with any source of dangerous potentials.		
	2. To prevent electrical shock, ensure that all equipment are properly		
	grounded.		
	3. To reduce the risk of shock, do not contact any electrical components,		
1		1	1 1

ubject cod	e :(17558)	I	Page 6 of 23
	and keep the work area dry.		
	4. Check all equipment regularly and wear the proper protective equipment		
	when working with high voltages or currents.		
	5. The primary effects of electrical shock are due to current actually		
	flowing through the body. Electrical burns occur when the body		
	completes a circuit connecting the power source with the ground.		
	Although the resistance of dry, unbroken skin to electrical current is		
	relatively high, the amount of current necessary to kill a person is small.		
	Therefore it is easy to exceed lethal levels of current flow, especially if		
	the skin is broken, wet or damp with sweat.		
2-b	Personal protective equipment: (any four)	1 mark	4
	Ear Plug :	each	
	It is personnel protective device for ear which is put inside the ear. They are		
	worn in the ear canal, sealing the entrance to the ear		
	Ear Muffs :		
	It is again a personnel protective device for ear which is placed on the ear		
	thereby covering the ear completely. This can be worn over the head, behind the		
	neck or under the chin. The cups may also be attached to some safety helmets		
	by adjustable side arms.		
	Gloves for hand and arm protection:		
	To safeguard workers there will be purpose-made gloves, supplied by		
	manufacturers specializing in products , capable of protecting them from the		
	hazards.		
	Helmets, hard cap for head protection :		
	Industrial safety helmet can protect the worker against following objects or		
	impact with fixed objects. Caps and helmets protect the head of contamination		
	with toxic substance.		

Subject co	ode :(17558)	ł	Page 7 of 23
	Safety boot or shoes for foot protection :		
	The safety boot or shoe is the most common type of safety footwear, and would		
	normally have a steel toe cap. It helps to protect the feet from corrosive or toxic		
	materials.		
	Goggles for eyes protection:		
	Goggles projects the eyes from dust , gases, welding arc , lesser light, toxic or		
	chemical substances.		
	Apron/ lab coat for body protection		
2-c	Dry chemical extinguisher:	2	4
	Acid phial Plunger Cage Sodium Nozzle Sodium bicarbonate Solution Bottom Bottom handle Norking : On fires involving either liquids in containers or spilled liquids, direct the jet towards the near edge of the fire and with rapid sweeping motion		
	direct the jet towards the near edge of the fire and with rapid sweeping motion,	2	
	arive the fire towards the far edge until all the flames are extinguished. On fires		
	In family inquites, the jet at the base of the frame and sweep upwards. Of		

ect cod	le :(17558)		Page 8 of 23
	fires in electrical equipments, direct the jet straight at the fire. Where the		
	equipment is closed, direct the jet into any opening with the object of		
	penetrating the interior.		
2-d	Objectives of Safety Audit are :	1 mark	4
	1. Confirm that safety, health, fire and environmental program activities	each	
	and controls are in place and functioning.		
	2. Verify that the facility is in compliance with internal benchmarks and		
	government regulations.		
	3. Assess past and current practices to identify and correct safety impediments		
	which may result in personal injuries, property damage or business interruption.		
	Safety audit is essential to determine the company's safety and is a proactive		
	process by which and organization is able to continually evaluate and monitor		
	the progress of its safety and health programs. Safety audit involves the		
	examination and qualitative assessment of all activities such as research and		
	development, design, occupational health and hygiene, environmental control,		
	products and processes, storage and transportation, labeling and packing,		
	operational measures, maintenance, housekeeping and training. Auditing will		
	promote contact with individual workers as a manifestation of the management		
	interest and concern relating to safety. It is also essential that an appropriate		
	member of the management is directly involved in auditing and implementation		
	of the audit report. Audits are designed to rate an organization's total safety and		
	health program, identify it's strength and weakness, show where improvement		
	are needed, and obtain commitment and target dates for correcting problems.		
2-е	Bin Storage:	4	4
	Valuable materials are stored in bins, hoppers or siloswhich are cylindrical or		
	rectangular vessels made up of concrete or metal. Silo is relatively tall and		
	small in diameter, bin is fairly wide and short, hopper is a small bin with		

Subject code :(17558)	Page 9 of 23
sloping bottom which is used to temporarily store the solid before feeding the	
solid to a process. Storage bins or hoppers are generally classified based upon	
the flow pattern of bulk material discharged- core flow, mass flow and	
composite flow. The actual pattern of flow within the container depends upon	
the nature of bulk solid concerned as well as on the shape of the hopper.	
Mass flow bins	
Working: These are characterized by shallow angle of converging section. In	
mass flow bin, every particle of the bulk material in the hopper begins to move	
when the outlet is opened. Hence mass flow bins has steep wall slopes of the	
converging sections. It has relatively large outlet to the feeder or flow control	
valve. The cohesive solids stored in mass flow bins form cohesive arch at the	
opening which acts as the obstruction to the gravity flow of material. It is	
overcome by providing some discharge aid.	
Core flow bins	
Construction: In core flow bins the discharge of the bulk solid is essentially	
irregular with the material flowing through a vertical channel called rat hole,	

Subject cod	ubject code :(17558)		Page 10 of 23
	 which forms within the bin. The material around this central channel is stationary. The main characteristics of core flow bin are 1. First – in- last-out 2. The material gets spoil or degraded by caking in the non flow region. 3. The material which segregate on charging, there is no remixing in the hopper. 4.Non uniform flow is obtained. 		
3	Any 4		16
3-a	Causes of explosion hazard:	1 mark	4
	1. External source of energy	each for	
	2. Internal exothermic reaction in which large volume of gases are	any 4	
	produced.		

ect coc	le :(17558)		Page 11 of 23
	3. The result of the release of internal energy during an uncontrolled		
	reaction.		
	4. High pressure inside the vessel due to heating		
	5. Dust explosion		
3-b	The objectives of material handling are:	1 mark	
	i) Safety in material handling.	each for	
	ii) Better housekeeping	any 4	
	iii) Minimization of fatigue.		
	iv) Speed and economy in movement of materials.		
	v) Minimization of cost of material handling.		
	vi) Improvement in productivity.		
	vii) Greater utilization of material handling equipment.		
	viii)higher plant efficiency		
3-c	Types of plant maintenance:	1 mark	
	1. Preventive maintenance	each	
	2. Scheduled maintenance		
	3. Predictive maintenance		
	4. Breakdown maintenance		
3-d	Objectives of Preventive Maintenance are :	1 mark	
	i) To minimize the possibility of unanticipated production interruption or major	each for	
	breakdown by locating or uncovering any condition this may lead to it.	any 4	
	ii) To make plant equipment and machinery always available and ready for use.		
	iii) To maintain the value of equipment and machinery by periodic inspection		
	repairs etc.		
	iv) To maintain the optimum productive efficiency of the plant equipment and		
	machinery.		
	v) To maintain the operational accuracy of the plant equipment.		
		1	1

bject code :(17558)	Page 12 of 2	12 of 23	
vi) To reduce the work content of the maintenance jobs.vii) To achieve maximum production at minimum repair coviii) To ensure safety of life and limbs of the workmen.	ost.		
3-e ON LINE MAINTENANCE ; In a chemical plant it is nor on linemaintenance work. This avoids total shutdown of the This is possible if proper pipe fittings are installed at the tin suppose there is a rotameter in a pipe line. If we desired to a brokenglass pipe of rotameter we can closed valve 1 and 2 a thefluid through by-pass line. After replacement of the glass rotameter close valve 3 and open 1 & 2. Thus it is possible a maintenance jobs in the line without stopping the productio	rmal practice to do 4 e equipment or plant. me of erection .e.g. replace a and open 3 & divert as pipe in the to attend on.		

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous) (ISO/IEC - 27001 - 2005 Certified)

Page **13** of **23**

SUMMER-16 EXAMINATION Model Answer

Subject code :(17558)

4-A	Any 3		12
4A-a	Fire: Fire is defined as the self-propagating reaction of a material with oxygen	1	4
	in airwhich results in rapid energy release usually in the form of light or heat.		
	Three types of fire in process industries are		
	Fire may be extinguished by withdrawal of flammable contents,	2	
	reactiontemperature	3	
	Withdrawal of flammable contents can be accomplished by 1) Blowing		
	down the vessel and piping contents (2)Pump out or 3)drainingFlammable		
	flow may be interrupted by the shutdown of pumps, closing of valves.		
	Isolation of flammable flow from the air is accomplished by blanketing		
	withsteam or water spray, foam, CO_2 etc.		
4A-b	The causes of equipment breakdown are:	1 mark	4

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous) (ISO/IEC - 27001 - 2005 Certified)

bject cod	e :(17558)		Page 14 of 23
	a) Failure to replace worn out parts.	each for	
	b) Lack of lubrication.	any 4	
	c) Neglecting cooling system.		
	d) Indifference towards minor faults.		
	e) External forces e.g. too low or too high voltage, wrong fuel etc.		
	f) Indifference towards equipment vibrations, unusual sounds coming out of		
	rotating machinery, excessive heating of equipment etc.		
4A-c	Palletization is the method of storing and transporting goods stacked on a	1	4
	pallet and shipped as a unit load. It permits standardized ways of handling loads		
	with common mechanical equipment such as fork lift trucks.		
	Based on design pallets are classified as:	1	
	i) Two way pallets		
	ii) Four way pallets		
	Based on basic construction style pallets are classified as	1	
	i) Single face pallet		
	ii)double face pallet		
	Based on construction pallets are classified as		
	i) Flush stringer	1	
	ii) Single wing		
	iii) Double wing		
4A-d	Methods of liquid storage:	4	4
	Underground storage:		
	*Liquids are stored underground in porous media between impervious rocks.		
	Cavities are formed in salt domes by dissolving the salt and pumping it out.		
	This method has application for storing petroleum product, both liquid and		
	gasses. Hazardous or radioactive materials are stored in underground tunnels or		
	storage tanks		

ject cod	e :(17558)		Page 15 of 23
	Open atmospheric tanks:		
	*Open atmospheric tanks are used for storing liquids that will notbe harmed by		
	water, weather or atmospheric pollution.		
	The closed tanks:		
	*The closed tanks have fixed or floating roof. Fixed roofs are either domed		
	orconed with intermediate supports.		
	*Fixed roof atmospheric tanks require vents to prevent pressure changes		
	whichwould result from temperature changes and withdrawal or addition of		
	liquid.		
	*Vent loss is prevented by using variable volume tanks which have floating		
	roofs.Floating roof must have a seal between roof and tank shell.		
	*For storing liquids under pressure, the tank has curved surface in the form		
	ofsphere ellipsoid shapes.		
	*Plastics or glass coating are applied to the corrosive liquids which are to be		
	stored in glass lined tanks.		
4-B	Any one		6
4B-a	Procedure for safety auditing:	6	6
	Safety audit is carried out by a team whose members are not involved in the		
	plant or activity being audited. The expertise of the team should be compatible		
	with the type of audit. It is beneficial to include the managers of other plants or		
	units in an audit team as well as one previous auditor of the same unit. Audits		
	are carried out in a formal way using a carefully drawn up checklist of items		
	and descriptive standards for each item. A line manager or supervisor of the		
	plant under audit should be asked to accompany the auditor inspecting it. He		
	should be informed of all corrections and improvements required by the		
	auditors so that he can start taking the necessary steps before the audit report is		
	submitted to management. The main object of inspection should be to		

Subject cod	e :(17558)		Page 16 of 23
	determine whether the layout design and condition of equipment and protective		
	features are up to standard and to ensure that the protective features will work		
	in an emergency. The auditing should give a verbal report to the management		
	on completion of audit followed by a clear and concise written report within		
	two weeks.		
	The main aspects of safety audit are:		
	i)Identification of possible hazardous situation		
	ii) Assessment of consequences associated with these hazards		
	iii) Selection of measures to minimize consequences.		
	iv) Implementation of these measures within the organization		
	v) Monitoring and documentation of the changes.		
	The methodology generally accepted and adopted for safety audit is the		
	preparation and submission of a questionnaire or checklist to the plant		
	management		
4B-b	Belt conveyor:	2	6
	Return idlers Driving Solids Carrying idlers		
	Working:		
	Conveyors are gravity or power devices commonly used to move uniform loads		
	continuously from point to point over fixed paths. Belt conveyor as shown in	4	
	figure consists of an endless moving belt of flexible material, stretched between		
	two drums / pulleys and supported at intervals on idler rollers. The pulley that		
	drives conveyor belt rotating is called drive pulley or transmission drum; the		
	other one only used to change conveyor belt movement directions called bend		
	pulley. Drive pulley is driven by the motor through reducer and conveyor belt		

ject co	de :(17558)		Page 17 of 23
	dragging relies on the friction drag between the drive pulley and the conveyor		
	belt. The drive pulleys are generally installed at the discharge end in order to		
	increase traction and be easy to drag. Material is fed on the feed-side and		
	landed on the rotating conveyor belt, then rely on the conveyor belt friction to		
	be delivered to discharge end.		
	Belt Conveyors are the most commonly used type of equipment for the		
	continuous transport of solids. They can carry wide range of materials		
	economically over long & short distances, both horizontally and at an		
	appreciable angle.		
5	Any 2		16
5-a	Construction & Working of Soda Acid Fire Extinguisher :		8
	Construction: In soda acid fire extinguisher the material used are dry chemical,		
	bicarbonate of soda designed to be dissolved in water and a liquid chemical	2	
	sulphuric acid. Sulfuric acid is kept in the acid bottle and sodium bicarbonate		
	in the outer body. Nozzle is provided near the top and aplunger at the top.		
	Working:		
	When the plunger is struck, it breaks the acid bottle. The sulfuric acid and the		
	sodium bicarbonate solution react together to release CO_2 gas. The gas	3	
	generated creates pressure, which forces the water out of the extinguisher		
	nozzle. Before using these extinguisher, it is advisable to check whether these		
	extinguishers are upright type or turn over type. Direct the jet at the base of		
	the fire and sweep it across the area of fire. Attack a vertically spreading fire at		
	its lowest point and follow it up. Search out for hot spots and ensure that the		
	fire is completely extinguished and that it is not smouldering		

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous) (ISO/IEC - 27001 - 2005 Certified)

SUMMER-16 EXAMINATION Model Answer

Subject code :(17558)

	Acid phial Cage Nozzle Nozzle Sodium bicarbonate solution Bottom handle	3	
5-b	Functions and responsibilities of plant maintenance department:	1 mark	8
	1)Inspection 2)Engineering 3) Maintenance 4) Repair 5) Overhaul	each	
	6)Construction 7) Salvage 8) Clerical work		
	1)Inspection:		
	i) Inspection of the plant facilities to examine their condition and to check for		
	repairs needed.		
	ii) Inspection to ensure the safe and efficient operation of plant equipment and		
	machinery.		
	2)Engineering :		
	i) Engineering involves alternations and improvement in existing plant		
	equipment to minimize breakdown.		
	ii) Engineering and consulting services to production supervision.		
	3) Maintenance :		
	i) Maintenance of existing plant equipment.		
	ii) Engineering and execution of planned maintenance, minor installations of		
	equipment building and replacements.		

Subje	bject code :(17558)		I	Page 19 of 23
		4) Repair:		
		i) To carry out corrective repair to alleviate unsatisfactory conditions found		
		during preventive maintenance inspection.		
		5) Overhaul:		
		i) Overhaul is a planned, scheduled reconditioning of plant facilities such as		
		machinery etc.		
		ii) Overhaul involves replacement, reconditioning, reassembly, etc.		
		6)Construction :		
		i) In some organization, maintenance department is provided with equipment		
		and personnel and it takes up construction job too.		
		7) Salvage :		
		i) Maintenance department may also handle disposition of scrap or surplus		
		materials.		
		8) Clerical work:		
		i) Maintenance department keeps records at i) of costs, ii) of time progress on		
		jobs pertaining to important features of building and production equipment.		
-	5-с	Start up of a plant:	4	8
		A chemical plant is started at two different times,		
		1. When it is constructed, erected and to be commissioned first time for		
		production. The procedure here to be followed is to take water in the		
		plant to check the fluid flowing through equipment and pipelines		
		without any leakage, at the desired flow rate, pressure and temperature.		
		If any leakage is observed, it can be rectified. This is the safest and		
		cheapest way of checking the functioning of the plant equipment in		
		total.		
		2. When plant is stopped for annual major shutdown, then the procedure		
		to be followed for start- up of a plant is		

ect cod	e :(17558)	ļ	Page 20 of 23
	i) To take water in the plant to check the fluid flowing through equipment	4	
	and pipelines without any leakage, at the desired flow rate, pressure and		
	temperature. If any leakage is observed, it can be rectified. Thus is the		
	safest and cheapest way of checking the functioning of the plant		
	equipment in total.		
	ii) Once it is assured that fluid flow takes place without any problem, the		
	total plant water is drained off and water is removed and then slowly		
	loaded in stepwise and retched to desire capacity in stepwise. It is		
	always advisable to operate the plant with 50% capacity for few days		
	and after full satisfaction of plant working, it is taken up to full capacity		
6	Any 2		1
6-a	Pneumatic conveyor:	3	
	Different types are:		
	1. Positive pressure pneumatic conveyor		
	2. Negative pressure pneumatic conveyor		
	3. Pressure-vacuum system		
	4. Fluidising system		
	5. Blow tank		
	Positive Pressure or Vacuum Systems:		
	Air or suitable gas is blown along a pipeline, which carries the bulk solid to be		
	conveyed. Fan or blower is used to deliver air into the pipeline. Feeders are	5	
	used to introduce the material into the pipeline against the conveying gas		
	pressure. Gas/ solid disengaging device is used at the discharge end of the		
	pipeline, which separates the conveyed bulk solid from the conveying air		
	stream. The cyclone separator or bag filter units are used for this purpose. The		
	clean gas/ air coming out from these devices is fed back for conveying purpose.		
	These systems are useful for picking up solid from one point band delivering		

Subject code :(17558)

Page **21** of **23**

	¹ / ₄ inch size. But it is unsuitable for multiple pick up points on account of excess air leakage.		
-b	Block diagram of organization of maintenance department	8	

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous) (ISO/IEC - 27001 - 2005 Certified)

SUMMER-16 EXAMINATION Model Answer

Subject code :(17558)

	Facilitais preman porman planning eugs- breman subjection planning eugs- steam maintenance planning eugs- breman struance planning eugs- breman struance planning eugs- breman brenden estimating derign für pest walter lubrication scheduling derign für pest walter lubrication scheduling ectua als construction perpermance waste work order system		
6-c	Predictive maintenance: Predictive maintenance makes use of human sense or other sensitive instruments such as audio gauges, vibration analyser, amplitude meter , pressure , temperature and resistance strain gauges etc. to predict trouble before the equipment fails. Unusual sounds coming out of a rotating equipment predict a trouble , an electric cable excessively hot at one point predict a trouble. Simple hand touch can point out many unusual conditions and thus predict a trouble. In predictive maintenance , equipment conditions are measure periodically or on a continuous basis and this enables maintenance men to take a timely action such as equipment adjustment , repair or overhaul. Predictive maintenance extends the service life of an equipment without fear of failure. Four senses adopted for predictive maintenance technique (Human senses) :	4	8

de :(17558)	Page 23 of 23
1. Ear :eg. Unusual sound coming out of rotating equipment.	
2. Eye :eg. Excessive vibration of equipment or dislocation of moving	
part.	
3. Touch :eg. Excessive temperature of equipment.	
4. Smell :eg. Unusual smoke coming out of equipment.	
Four sensitive instruments adopted for predictive maintenance technique:	
1. Audio gauges :eg. Unusual sound coming out of rotating equipment.	
2. Vibration analysor: eg. Excessive vibration of equipment	
3. Amplitude meter:eg. Excessive temperature of equipment.	
4. Pressure, temperature and resistance strain gauges: eg. Excessive	
temperature of equipment.	
Scheduled maintenance:	
Scheduled maintenance is a stich-in-time procedure which is aimed at avoiding	4
breakdowns. Breakdowns can be dangerous to life and hence should be	
minimized.	
This method of maintenance incorporates inspection, lubrication, repair and	
overhaul of certain equipments which if neglected may result in breakdown.	
Scheduled maintenance practice is generally adopted for overhauling of	
machines, cleaning of water and other tanks, white washing of buildings	
etc.	
	 le :(17558) 1. Ear :eg. Unusual sound coming out of rotating equipment. 2. Eye :eg. Excessive vibration of equipment or dislocation of moving part. 3. Touch :eg. Excessive temperature of equipment. 4. Smell :eg. Unusual smoke coming out of equipment. Four sensitive instruments adopted for predictive maintenance technique: Audio gauges :eg. Unusual sound coming out of rotating equipment. Vibration analysor: eg. Excessive temperature of equipment. Vibration analysor: eg. Excessive temperature of equipment. Pressure, temperature and resistance strain gauges: eg. Excessive temperature of equipment. Scheduled maintenance: Scheduled maintenance is a stich-in-time procedure which is aimed at avoiding breakdowns. Breakdowns can be dangerous to life and hence should be minimized. This method of maintenance incorporates inspection, lubrication, repair and overhaul of certain equipments which if neglected may result in breakdown. Scheduled maintenance practice is generally adopted for overhauling of machines, cleaning of water and other tanks, white washing of buildings etc.