

SUMMER – 16 EXAMINATIONS

Page No: ____/ N

Subject Code: 17553 Important Instructions to examiners:

1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme.

Model Answer

2) The model answer and the answer written by candidate may vary but the examiner may try to assess the understanding level of the candidate.

3) The language errors such as grammatical, spelling errors should not be given more importance. (Not applicable for subject English and Communication Skills)

4) While assessing figures, examiner may give credit for principal components indicated in the figure. The figures drawn by candidate and model answer may vary. The examiner may give credit for any equivalent figure drawn.

5) Credits may be given step wise for numerical problems. In some cases, the assumed constant values may vary and there may be some difference in the candidate's answers and model answer.

6) In case of some questions credit may be given by judgment on part of examiner of relevant answer based on candidate's understanding.

7) For programming language papers, credit may be given to any other program based on equivalent concept.

Q. NO.	MODEL ANSWER	MARKS	TOTAL MARKS
1	Attempt any FIVE of the following:		5X4=20
а	ii) The general considerations in machine design are as follows.	01 mark	
	01)Type of Load and Stresses caused by the Load:-	each for	
	The load on the Machine Component, may act in several ways due to which	any four	
	the Internal Stresses are set up.	points.	
	02)Motion of Parts:-		
	The successful operation of any Machine depends largely upon the simplest		
	arrangements of the Parts, which will give the required motion. The Motion		
	of the Part may be		
	A)RectilinearMotion, which includes Unidirectional and Reciprocating		
	Motion.		
	B)CurvilinearMotion, which includes Rotary, Oscillatory Simple Hormonic.		
	C)Constant Velocity.		
	D)Constant or Variable Acceleration.		
	03)Selection of Material:-		
	Every Machine Design Engineer should have a thorough knowledge of the		
	Properties of Material and their behaviour under working conditions.		
	04)Form and Size of the Parts:-		
	In order to design any Machine Part for form and size, it is necessary to		
	know the Forces which the Part must sustain. Any suddenly applied or		
	impact load must be taken into consideration, which may cause failure. The		
	smallest Practicable Cross-Section may be used, but it may be checked that		
	the Stresses induced in the Designed Cross-Section are reasonably safe.		
	05)Frictional Resistance and Lubrication:-		
	There is always a Loss of Power due to Frictional Resistance.Careful		
	attention must be given to the matter of Lubrication of all surfaces which		
	moves in contact with others.		
	06)Safety of Operator:-		
	A Machine Designer should always provide safety device for the safety of		
	the operator. The Safety Appliances should in no way interfere with the		
	operation of the Machine.		
	07)Use of Standard Parts		
	The use of Standard Parts are closely related to the Cost of Machine because the Cost of Standard Parts is only a fraction of the cost of		
	Machine, because the Cost of Standard Parts is only a fraction of the cost of similar parts made to order.		
	08)Convenient and Economical Features:-		
	The operating feature of the Machine should be carefully		
	studied.TheStarting,Controlling and Stopping Levers should be located on		
	the basis of convenient handling.		
	09)Workshop Facilities:-		
	A Design Engineer should be familiar with limitation of his Employer's		
	Workshop, in order to avoid the necessity of having work-done in some		
	other Workshop.		
	10)Assembling:-		
	10/1/33CH10111B.	I	

	Every Machine must be Assembled as a unit before it can function. The final		
	Location of any Machine is important and the Design Engineer must		
	anticipate the exact location and the local facilities for erection.		
	Above considerations are most important in machine design engineering		
b	Types of Shafts: The following two types of shafts are important from the	01 mark	04
	subject point of view:	01 mark	marks
	1. Transmission shafts: These shafts transmit power between the	each for	
	source and machines absorbing power. The counter shafts, line	any	
	shafts, overhead shafts and all factory shafts are transmission	three	
	shafts. Since these shafts carry machine parts such as pulleys, gears	properti	
	etc., therefore they subjected to bending in addition to twisting.	es	
		63	
	2. Machine shafts: These shafts form an integral part of the machine		
	itself. The crank shaft is an example of machine shaft.		
	The material used for shafts should have the following properties:		
	1. It should have high strength.		
	2. It should have good machinability.		
	3. It should have low notch sensitivity factor.		
	4. It should have good heat treatment properties.		
	5. It should have high wear resistant properties		
С	1.Lap Joint:	½ mark	4m
	It is a joint between two overlapping components. It consists of fillet welds.	each for	
	Fillet weld ishaving triangular cross-section joining two surfaces at right	any 04	
	angles to each other. The examples of lap joint are single transverse fillet,	figures	
	double transverse fillet, parallel fillet welds. Based on the relative positions	&	
	of the load axis with respect to the fillet axis, the fillet welds are classified	½ mark	
	intotwo types.	each for	
	(i) Parallel fillet weld: "If the load axis is parallel to the axis of the fillet, it is	any four	
	known parallel fillet weld".	applicati	
	(ii) Transverse fillet weld : "If the load axis is perpendicular to the axis of the	ons	
	fillet, it is known as transverse fillet weld". The transverse fillet weld can be	0113	
	a single transverse fillet weld or a double transverse fillet weld.		
	regaring and the labour of the second s		
	(a) Parallel fillet weld (b) Single transverse (c) Double transverse		
	fillet weld fillet weld		
	2. Butt Joint:		
	(i) The butt weld as shown in Fig. is obtained by placing the plates to be		
	joined side by side with their edges nearly touching each other		
	(ii) The small gap is maintained between the edges for the filler material.		
	(iii) The examples of butt joints are square butt, single V-butt, single If-butt,		

 This is a B.S.W. thread with fine pitches. The proportions of the B.A. thread		
are shown in Fig. These threads are used for instruments and other		
precision works.		
Stresses in Pipes:The stresses in pipes due to the internal fluid pressure are determined by Lame's equation.According to Lame's equation, tangential stress at any radius x $Gt = \{[p (ri)^2] / [(ro)^2 - (ri)^2] \} / \{1 + [(ro)^2 / x^2]\}$ And Radial stress at any radius x $Gr = \{[p (ri)^2] / [(ro)^2 - (ri)^2] \} / \{1 - [(ro)^2 / x^2]\}$ where p = Internal fluid pressure in the pipe, ri = Inner radius of the pipe, and ro = Outer radius of the pipe	02 marks for stresses	8m
The various types of pipe joints are as follows. 1. Socket or a coupler joint. The most common method of joining pipes is by means of a socket or a coupler as shown in Fig. This type of joint is mostly used for pipes carrying water at low pres ure and where the overall smallness of size is most es essential.	04 marks for any 4 joints & 02	
	marks for their applicati ons (uses)	
Socket or coupler joint		
 Nipplejoint. In this type of joint, a nipple which is a small piece of pipe threaded outside' screwed in the internally threaded end of each pipe, as shown in Fig. The disadvantage of this joint is that it reduces the area of flow 		

	condition viz.		
	n = 2j - 3		
	where, n= no. of links and j= no. of joints	02	
	Deficient frame:	marks	
	A frame is said to be deficient if the number of members in it is less than	marks	
	that required for a perfect frame. Such frames can't retain their shape		
	when loaded.		
	Redundant frame:		
	A frame is said to be redundant if the number of members it is more than		
	that required for a perfect frame. Such frame can be analyzed by making	02	
	use of equations of equilibrium alone.	marks.	
2.		11101 KS.	4X4=16
	Attempt any Four of the following:		474=10
а	Ductility. It is the property of a material enabling it to be drawn into wire		
	with the application of a tensile force.		
	Toughness, It is the property of a material to' resist fracture due to high		
	impact loads like hammer blows.	01	04
b	It is defined, in general, as the ratio of the maximum stress to the working	01 mark	04
	stress.	01 mark	marks
	Mathematically,	02	
	Factor of safety = Maximum stress/Working or design stress	marks	
	In case of ductile material e.g. mild steel, where the yield point is clearly		
	defined, the factor of safety in based upon the yield point stress. In this		
	case,		
	Factor of safety =Yield point stress/Working or design stress		
	In case of brittle material e.g. cast iron, the yield point is not well defined as		
	for ductile materials. Therefore, the factor of safety for brittle materials is		
	based on ultimate stress		
	Factor of safety=Ultimate stress/ Working or design stress		
	This relation may be used for ductile materials.		
	The following things are considered for the selection of Factor of Safety.		
	i) The type of product. (i.e. whether it is a utility good or machine part etc.)		
	ii) The importance/ position of the component in the assembly.		
	iii) The extent of damage to the people and/or to other parts that may take		
	place due to the failure of the part.		
	iv) The cost of the material.	01	04
С	•Keyway is a slot machined either on the shaft or in the hub to	01 mark	04
	accommodate the key.	01 mark	marks
	 It is cut by vertical or horizontal milling cutter. The known out into the shaft reduces the load corruing conscituted shaft. 	01 mark	
	• The keyway cut into the shaft reduces the load carrying capacity of shaft.	01 mark	
	• This is due to stress concentration near the comers of the keyway and		
	reduction in the crosssectionalarea of shaft.		
	• In other words, the torsional strength of shaft is reduced.		
	• The following relation of reduction factor is used to analyze the		
	weakening effect of keyway is given by H. F. Moore.		
	e = 1 - 0.2 (w/d) - 1.1(h/d)		
	Where, e = shaft strength factor = Strength of shaft with keyway/Strength		

	Of shaft Wlithout keyway		
	w = Width of keyway, d = Diameter of shaft		
	h = Depth of keyway = 112 x thickness of key = 1/2 x t		
	 It is usually assumed that strength of keyed shaft is 75% of solid shaft. 		
	 Thus, after finding out dimensions of key, the reduction factor 'e' is 		
	calculated and for safe design, its value should be less than 0.75.		
d	Following are the advantages and disadvantages of welded joints over	02	4m
	other method joints.	marks	
	Advantages	(any 2	
	1. The welded structures are usually lighter than riveted structures. This is	adv.)	
	due to the reason that in welding, gussets or other connecting components		
	are not used.		
	2. The welded joints provide maximum efficiency (may be 100%) which is		
	not possible in case of riveted joints.		
	3. Alterations and additions can be easily made in the existing structures		
	4. As the welded structure is smooth in appearance, therefore it looks		
	pleasing.		
	5. In welded connections, the tension members are not weakened as in the		
	case of riveted joints.		
	6. A welded joint has a great strength. Often a welded joint has the strength		
	of the parent metal itself.		
	7. Sometimes, the members are of such a shape (i.e. circular steel pipe) that		
	they afford difficulty for riveting. But they can be easily welded.		
	8. The welding provides very rigid joints. This is in line with the modern		
	trend of providing rigid frames.		
	9. It is possible to weld any part of a structure at any point. But riveting		
	requires enough clearance.		
	10. The process of welding takes less time than the riveting.		
	Disadvantages	02	
	1. Since there is an uneven heating and cooling during fabrication, therefore	marks	
	the member may get distorted or additional stresses may develop.	(any 2	
	2. It requires a highly skilled labour and supervision.	disadv.)	
	3. Since no provision is kept for expansion and contraction in the frame,		
	therefore there is a possibility of cracks developing in it.		
	4. The inspection of welding work is more difficult than riveting work.		
L			

	 Important Terms Used in Riveted Joints The following terms in connection with the riveted joints are important from the subject of view : (i)Pitch. It is the distance from the centre of one rivet to the centre of the next rivet measured parallel to the seam as shown in Fig. It is usually denoted by p. (iii)Diagonal pitch. It is the distance between the centre in adjacent rows of zig-zagriveted joint as shown in Fig. It is usually denoted by Pd. (iv)Margin or marginal pitch. It is the distance between the centre of rivet hole to the nearest edge of the plate as shown in Fig. It is usually denoted by Pd. 	marks for figure 02 marks for 04 terms	marks
f	Perfect frame : A pin-jointed frame which has got just sufficient number of members to resist the loads without undergoing appreciable deformation in shape is called rigid or perfect frame. The perfect frame obeys the following condition viz.	01 mark	
	n = 2 j - 3 where, n = no. of links and j= no. of joints	01 mark	
	Deficient frame:		

	Redundant frame:		
		01	04
	A frame is said to be redundant if the number of members it is more than	01 mark	04
	that required for a perfect frame. Such frame can be analyzed by making		
2	use of equations of equilibrium alone.		220 10
3.	Attempt any TWO of the following:		2X8=16
а	Given: d = 50 mm; \mathbf{T} = 42 MPa = 42 N/mm ² fc = 70 MPa = 70 N/mm ²		
	The rectangular key is designed as discussed below:		
	we find that for a shaft of 50 mm diameter,		
	Width of key, w = 16 mm Ans.		
	And thickness of key, t = 10 mm Ans.		
	The length of key is obtained by considering the key in shearing and		
	crushing.		
	Let I = Length of key.		
	Considering shearing of the key. We know that shearing strength (or torque		
	transmitted)of the key,		
	T = I x w X 7 X d/2 = I x 16 x 42 x 50/2 = 16 800 I N-mm(i)	01 mark	
	and torsional shearing strength (or torque transmitted) of the shaft,		
	$T = \pi/16 \times 7 \times d^3 = \pi/16 \times 42 (50)^3 = = 1.03 \times 106 \text{ N-mm} \dots (ii)$		
	From equations (i) and (ii), we have		
	I = 1.03 x 106/16800 = 61.31 mm	01 mark	
	Now considering crushing of the key. We know that shearing strength (or		
	torque transmitted the key,		
	T = l x t/2x δc x d/2 = l x 10/2 x 70 x 50/2 = 8750 l N-mm	01 mark	
	From equations (ii) and (iii) , we have		
	I = 1.03 X 106/8750 = 117.7 mm		
	Taking larger of the two values, we have length of key,		
	I = 117.7 say 120 ans.	01 mark	04
b	Solution.		
	in Far US of UT had all a start and the		
	ing hider states of the half		
	P		
	75 mm		
	12.5 mm in Constant billion		
	Given : Width = 75 mm;		
	Thickness = 12.5 mm;		
	$\sigma t = 70 \text{ MPa} = 70 \text{ N/rnrn}^2;$		
	$:T = 56 \text{ MPa} = 56 \text{ N/mm}^2$		
	The effective length of weld (II) for the transverse weld may be		
	obtained by subtracting 12.5 mm from the width of the plate.		
	11 = 75 - 12.5 = 62.5 mm		
	Length of each parallel fillet for static loading		
	Let I2 = Length of each parallel fillet.		
	We know that the maximum load which the plate can carry is $P = Area \times Stress = 75 \times 12.5 \times 70 = 65625 \text{ N}$		
	$\Gamma = AIEa X OIIE00 = 10 X 12.0 X 10 = 00 020 IN$		

-		
	Load carried by single transverse weld,	
	P1 = 0.707 s x l1 X σt = 0.707 x 12.5 x 62.5 x 70 = 38 664 N	
	and the load carried by double parallel fillet weld,	
	P2 = 1.414 s x l2 X t: = 1.414 x 12.5 x l2 x 56 = 990 l2 N	
	Load carried by the joint (P),	
	$65\ 625 = P\ 1 + P\ 2 = 38\ 664 + 990\ 12\ or\ 12 = 27.2\ mm$	
	Adding 12.5 mm for starting and stopping of weld run, we have	
	l2=27.2 + 12.5 = 39.7 say 40 mm Ans.	
	Length of each parallel fillet for fatigue loading	
	the stress concentration factor for transverse welds is 1.5 and for	
	parallel fillet welds is 2.7.	
	:. Permissible tensile stress,	
	$\sigma t = 70/1.5 = 46.7 \text{ N/mm}^2$	
	and permissible shear stress,	
	$\tau = 56 / 2.7 = 20.74 \text{ N/mm}^2$	
	Load carried by single transverse weld,	
	$P_{\rm v} = 0.707 \text{ s x } 11X \text{ ot} = 0.707 \text{ x } 12.5 \text{ x } 62.5 \text{ x } 46.7 = 25 \text{ 795 N}$	
	and load carried by double parallel fillet weld,	
	P2 = 1.414 s x I2 X T = 1.414 X 12.512 x 20.74 = 366 I2.N	
	:. Load carried by the joint (P),	
	65625 = PI + P2 = 25795 + 366 l2 or l2= 108.8 mm	
	Adding 12.5 mm for starting and stopping of weld run, we have	
	l2 = 108.8 + 12.5 = 121.3 mm Ans.	
с	Given: D = 350 mm.;	
	$p = 1.25 \text{ N/mm}^2$;	
	$\sigma t = 33 \text{ MPa} = 33 \text{ N/mm}^2$	
	Let d = Nominal diameter of studs,	
	·	
	dc = Core diameter of studs, and	
	n = Number of studs.	
	We know that the upward force acting on the cylinder cover,	
	$P = \pi/4 \times D^2 \times P = .\pi/4 (350)^2 1.25 = 120265 N(i)$	
	Assume that the studs of nominal diameter 24 mm are used. From Table	
	(coarse series), we find that the corresponding core diameter (de) of the	
	stud is 20.32 mm.	
	Resisting force offered by n number of studs,	
	-	
	$P = \pi/4 x (dc)^2 \text{ ot } x n = . \pi/4 (20.32)^2 33 x n = 10700 n N(ii)$	
	From equations (i) and (ii), we get	
	n = 120265/10 700 = 11.24 say 12 Ans	
	Taking the diameter of the stud hole (d1) as 25 mm, we have pitch circle	
	diameter of the studs,	
	$Dp = D + 2t + 3d1 = 350 + 2 \times 10 + 3 \times 25 = 445 \text{ mm}$	
	(Assuming $t = 10 \text{ mm}$)	
	Circumferential pitch of the studs	
	= (π x Dp) / n = (π x 445) / 12 = 116.5 mm	
	We know that for a leak-proof joint, the circumferential pitch of the studs	
	should be between	
	20Vd; to 30Vd; , where d1is the diameter of stud hole in mm.	
	:. Minimum circumferential pitch of the studs)	
1	Within an enconnecential pitch of the study j	

	=20Vd; = 20V25 = 100 mm		
	and maximum circumferential pitch of the studs		
	=30V d; = 30V25 = 150 mm		
	Since the circumferential pitch of the studs obtained above lies within 100		
	mm to 150 mm, therefore the size of the stud chosen is satisfactory.		
	Size of the stud = M 24 Ans		
4.	Attempt any TWO of the following:		2X8=16
а	Given:		
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	N = 200 r.p.m. ;		
	$P = 20 \text{ kW} = 20 \text{ X} 10^3 \text{ W};$		
	$\tau = 42 \text{ MPa} = 42 \text{ N/mm}^2$		
	Let $d = Diameter of the shaft.$		
	We know that torque transmitted by the shaft, $T_{\rm eff}(x,y,z,0)$ (27 N)		
	$T = (p \times 60) / (2\pi N)$		
	We also know that torque transmitted by the shaft (T),		
	955 X $10^3 = \pi / 16 \times \tau xd^3 = \pi / 16 \times 42 xd^3$		
	d ³ = 955 X 10 ³ /8.25 = 115 733 or d = 48.7 say 50 mm Ans		
bi		4m	4m
	$\bullet$ G		
	E the state of the		
	A		
	The second secon		
	B.C. Salar Contraction		
	Ductile material		
	St		
	I F-F		
	Surface level and the there is a many seal product		
	Brittle material		
	/		
	O Strain		
	A. Proportional limit: Hooke's law holds good up to point A and it is known		
	as proportional limit. It is defined as that stress at which the stress-strain		
	curve begins to deviate from the straight		
	<b>°</b>		
	B. Elastic limit: The material has elastic properties up to the point B. This		
	point is known as elastic limit. It is defined as the stress developed in the		
	material without any permanent set		
	C & D. Yeild Point: There are two yield points C and D. The points C and		
	D are called the upper and lower yield points respectively.		
	E. Ultimate stress: At E, the stress, which attains its maximum value is		
	known as ultimate stress.		
	F. Breaking strength: Failure is complete		
b ii	Shaft couplings are used in machinery for several purposes, the most		



	common of which are the following:		
	1. To provide for the connection of shafts of units that are manufactured		
	separately such as a motor and generator and to provide for disconnection		
	for repairs or alternations.		
	<ol><li>To provide for misalignment of the shafts or to introduce mechanical flexibility.</li></ol>		
	3. To reduce the transmission of shock loads from one shaft to another.		
	4. To introduce protection against overloads.		
	S. It should have no projecting parts		
с	Given:		
	$Q = 2400 \text{ m}^3/\text{h} = 40 \text{ m}^3/\text{min};$		
	$p = 1.4 \text{ N/mm}^2$ ;		
	v = 30 mls = 1800 m/min		
	$6t = 40MPa = 40 N/mm^2$		
	Inside diameter of the pipe		
	We know that inside diameter of the pipe,		
	$D=1.13\sqrt{(Q/v)} = 1.13\sqrt{40/1800} = 0.17 = 170$ mm	02	
	Wall thickness of the pipe	marks	
	Assuming C=3 for a steel pipe, wall thickness of the pipe		
	T ={(p.D) /(26t)} + C		
	$=\{(1.4 \times 170) / (2 \times 40)\} + 3 = 6 \text{ mm}$	02	04
		marks	marks



	Attempt any TWO of the following:		2X8=16
a b i	Solution. Solution. Steel plate 200  mm $55.3  mm$ $10  mm$ $150  mm$ $10  mm$ $1$	02 02	2X8=16
ום	stress concentration can be defined as the increase in the intensity of stress due to various factors such as abrupt change in cross section, sharp corners, presence of holes, internal deformities, cracks, etc. The presence of stress concentration cannot be totally eliminated but it may be reduced to some extent. A device or concept that is useful in assisting a design engineer to visualize the presence of stress concentration and how it may	02 marks	4m
	be reduced is that of stress flow lines, as shown in Fig. The reduction of stress concentration means that the stress flow lines shall maintain their spacing as far as possible.		



## MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous) (ISO/IEC - 27001 - 2005 Certified)

	(a) Por $(b) Good$ $(c) Preferred$ $(b) Good$ $(c) Preferred$ $(c) Preferred$ $(c) Preferred$ $(c) Preferred$ $(c) Preferred$	marks (any 2)	
	Method of reducing stress contraction in cylinder members with shoulders $P \xrightarrow{P} P \xrightarrow{P} P \xrightarrow{(b) \text{ Preferred}} (b) \text{ Preferred}$ Method of reducing stress contraction in cylinder members with holes $P \xrightarrow{(c)} P \xrightarrow{(c)} P$		
	(a) Poor(b) Good(c) PreferredMethod of reducing stress contraction in cylinder members with holesThe stress concentration effects of a press fit may be reduced by making more gradual transition from the rigid to the more flexible shaft. The various ways of reducing stress concentration for such cases are shown in Fig. a,b,c		
b ii	<b>U</b> (1)		
ci	<ul> <li>Procedure for method Joint: <ol> <li>For a simply supported frame consider the FBD of entire frame applying condition of equilibrium find support reaction.</li> <li>Consider the FBD of joint from the trusses at which not more than two members with unknown force exist.</li> <li>Assume the member to be in tensile or compression by simple inspection and applying condition of equilbrium.Find answer.</li> <li>The Assumed sense can be verified from the obtained numerical results. A positive answer indicates that the fence is correct whereas negative answer indicates that the sense shown on the FBD must be changed.</li> </ol> </li> </ul>	04 mark for any four points.	



	<ul> <li>5) Select the new FBD of joint with not more than two unknown in members and respect the point 3,4and 5 for complete analysis.</li> <li>6) Tabulate the answer representing member magnitude of force and their nature.</li> </ul>	04 mai	ks
c ii	Muff		
6.	Attempt any FOUR of the following:	4X4	=16
ai	Solution. Given: t = 10 mm; dt = 80 MPa = 80 N/mm ² ; t = 60 MPa = 60 N/mm ² 1. Diameter of rivet Since the thickness of plate is greater than 8 mm, therefore diameter of rivet hole, d = 6vt = 6v10 = 18.97 mm , we see that according to IS : 1928 - 1961 (Reaffirmed 1996), the standard diameter of rivet hole (d) is 19 mm and the corresponding diameter of the rivet is 18 mm. Ans. 2. Pitch of rivets Let p = Pitch of rivets. Since the joint is a single riveted double strap butt joint therefore there is one rivet per pitch length (i.e. n = 1) and the rivets are in double shear We know that tearing resistance of the plate, P1 = (p-d)tx dt = (p-19)10x80=800(p-19)N(i) and shearing resistance of the rivets, pa n x 1.875 x $\pi$ /4xd ² x $\tau$ (Rivets are in double shear) = 1 x 1.875 x $\pi$ /4xd ² x $\tau$ (Rivets are in double shear) = 1 x 1.875 x $\pi$ /4xd ² x $\tau$ (Rivets are in double shear) = 1 x 1.875 x $\pi$ /4 (19) ² 60 = 31900 N(: n = 1)(ii) From equations (i) and (ii), we get 800 (p - 19) = 31 900 p - 19 = 31 900/800 = 39.87 or p = 39.87 + 19 = 58.87 say 60 mm According to I.B.R., the maximum pitch of rivets, Pmax = C.t + 41.28 mm we find that for double strap butt joint and 1 rivet per pitch length, the value of C is 1.75. Pmax = 1.75 x 10 + 41.28 = 58.78 say 60 mm From above we see that p =Pmax = 60 mm Ans.		



•		
t1 = 0.625 t = 0.625 x 10 = 6.25 mm Ans.		
Efficiency of the joint		
We know that tearing resi tance of the plate,		
Pt= (p - d) t x σt = (60 - 19) 10 x 80 = 32 800 N		
and shearing resistance of the rivets,		
Ps = n x 1.875 x $\pi$ /4 x d ² x $\tau$ = 1 x 1.875 x $\pi$ /4 x 19 ² x 60=31900N		
Strength of the joint		
= Least of P, and Ps = 31900 N		
Strength of the unriveted plate per pitch length		
P= p x t x ot = 60 x 10 x 80 = 48 000 N		
Efficiency of the joint,		
η =Least of Pt and Ps /P = 31 900/48000= 0.665 or 66.5% Ans.		
Following are the advantages and disadvantages of the screwed joints.		
Advantages		
1. Screwed joints are highly reliable in operation.		
2. Screwed joints are convenient to assemble and disassemble.		
3. A wide range of screwed joints may be adopted to various operating		
conditions.		
4. Screws are relatively cheap to produce due to standardisation and highly		
efficient manufacturing processes.		
Disadvantages		
The main disadvantage of the screwed joints is the stress concentration in		
the threaded portions which are vulnerable points under variable load		
conditions.		
Note: The strength of the screwedjoints is not comparable with that of		
riveted or welded joints		
	We know that tearing resi tance of the plate, Pt= (p - d) t x ot = (60 - 19) 10 x 80 = 32 800 N and shearing resistance of the rivets, Ps = n x 1.875 x $\pi$ /4 x d ² x t = 1 x 1.875 x $\pi$ /4 x 19 ² x 60=31900N Strength of the joint = Least of P, and Ps = 31900 N Strength of the unriveted plate per pitch length P= p x t x ot = 60 x 10 x 80 = 48 000 N Efficiency of the joint, $\eta$ =Least of Pt and Ps /P = 31 900/48000= 0.665 or 66.5% Ans. Following are the advantages and disadvantages of the screwed joints. Advantages 1. Screwed joints are highly reliable in operation. 2. Screwed joints are convenient to assemble and disassemble. 3. A wide range of screwed joints may be adopted to various operating conditions. 4. Screws are relatively cheap to produce due to standardisation and highly efficient manufacturing processes. Disadvantages The main disadvantage of the screwed joints is the stress concentration in the threaded portions which are vulnerable points under variable load conditions. Note: The strength of the screwedjoints is not comparable with that of	We know that thickness of cover plates, t1 = 0.625 t = 0.625 x 10 = 6.25 mm Ans. Efficiency of the joint We know that tearing resi tance of the plate, Pt= ( $p - d$ ) t x ot = (60 - 19) 10 x 80 = 32 800 N and shearing resistance of the rivets, Ps = n x 1.875 x $\pi$ /4 x d ² x t = 1 x 1.875 x $\pi$ /4 x 19 ² x 60=31900N Strength of the joint = Least of P, and Ps = 31900 N Strength of the unriveted plate per pitch length P= p x t x ot = 60 x 10 x 80 = 48 000 N Efficiency of the joint, η =Least of Pt and Ps /P = 31 900/48000= 0.665 or 66.5% Ans. Following are the advantages and disadvantages of the screwed joints. Advantages 1. Screwed joints are highly reliable in operation. 2. Screwed joints are convenient to assemble and disassemble. 3. A wide range of screwed joints may be adopted to various operating conditions. 4. Screws are relatively cheap to produce due to standardisation and highly efficient manufacturing processes. Disadvantages The main disadvantage of the screwed joints is the stress concentration in the threaded portions which are vulnerable points under variable load conditions. Note: The strength of the screwedjoints is not comparable with that of







	FED= FCD FED= FCD FED=40KN FBD=0 (iii)At point B FBECos45°=FBCCos45° FBE=FBC FBE=FBC FBE=FBC FBE=56.56KN FAB +FBESin45°=0 FAB=-113.12KN		
b ii	In order to make the joints leak proof or fluid tight in pressure vessels like steam boilers, air receivers and tanks etc. a process known as <b>caulking</b> is employed. In this process, a narrow bunt tool called caulking tool about 5 mm thick and 38 mm in breadth is used. The edge of the tool is ground to an angle of 80°. The tool is moved after each blow along the edge of the plate, which is planned to a bevel of 75° to 80° to facilitate the forcing down of edge. A more satisfactory way of making the joints staunch is known as <b>fullering</b> which has largely superseded caulking. In this case, a fullering tool with a thickness at the end equal to that of the plate is used in such a way that the greatest pressure due to the blows occur near the joint, giving a clean finish, with less risk of damaging the plate.	02 marks	
		02 marks	04



