

Summer-2016 Examinations

Subject Code: 17507

Model Answer

Page 1 of 42

Important suggestions to examiners:

- 1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme.
- 2) The model answer and the answer written by candidate may vary but the examiner may try to assess the understanding level of the candidate.
- 3) The language errors such as grammatical, spelling errors should not be given more importance. (Not applicable for subject English and communication skills)
- 4) While assessing figures, examiner may give credit for principle components indicated in a figure. The figures drawn by candidate and model answer may vary. The examiner may give credit for any equivalent figure drawn.
- 5) Credits may be given step wise for numerical problems. In some cases, the assumed constant values may vary and there may be some difference in the candidate's answers and model answer.
- 6) In case some questions credit may be given by judgment on part of examiner of relevant answer based on candidate understands.
- 7) For programming language papers, credit may be given to any other program based on equivalent concept.

Q.1 A)	Attempt any three :(3x4=12)			
a)	Define electric drive. State advantages and disadvantages of electric drive.	•		
Ans:	Drive:	(1 Mark)		
	It is a machine which gives mechanical power. e.g. drives empl motors are known as electric drives.	oying electric		
	Following advantages of electric drive: (Any Three advantages expe	ected: 1/2 each)		
	1. It is more economical.			
	2. It is more clean.			
	3. No air pollution.			
	4. It occupies less space.			
	5. It requires less maintenance.			
	6. Easy to start and control.			
	7. It can be remote controlled.			
	8. It is more flexible.			
	9. Its operating characteristics can be modified.			
	10. No standby losses.			
	11. High efficiency.			
	12. No fuel storage and transportation cost.			

		Summer-201	6 Examinations	
S	bubject Code: 17507	Model	Answer	Page 2 of 42
	13. Less maintenanc	e cost.		
	14. It has long life.			
	15. It is reliable sour	ce of drive.		
	Following disadvantag	ges of electric drive:	(Any Three disadvantage	es expected: 1/2 each)
	1. It is used only w	here electricity is available	lable.	
	2. On failure of sup	ply (electricity) it car	not be used.	
	3. It is not self-cont	ain.		
b)	Explain in brief the caus	ses of failure of heat	ing elements.	
Ans:	Following of the differen	t causes of failure of	heating element:	(4 Mark)
	i) Formation of hot sp	pot:		
	Hot spot on heat	ing element is the poi	nt which is at higher temper	ature than remaining
	heating element portion	on. So there is possible	lity of breaking of heating e	lement at hot spot.
	ii) Due to oxidization:			
	At high temperat	ture material gets oxid	lized which may cause failu	re of heating element.
	iii) Due to corrosion:			
	If heating element rusting of heating elem	nt is directly exposed ment which causes fa	to chemical fumes then there lure of heating element.	e is possibility of
	iv) Mechanical Failure	:		
	Measure heating cooling of heating ele	element alloy contain ment, it may break (f	n iron which is brittle. Due to ail) due to small mechanical	o frequent heating & injury also.
c)	Define : i) Luminous flux i	i) Luminous intensity	iii) Space to height ratio iv) U	tilization factor.
Ans:			(Each	definition : 1 Mark)
	1) Luminous flux (F):- The total	energy radiated by a	source of light in all directio	ns in unit is called
	Luminous flux. And it	s unit is Lumen		ns in ann is canca
		-		

		Summer- 2016 Examinations	
S	Subject Code: 17507	Model Answer	Page 3 of 42
	Lum	ninous flux is commonly called light output and is me	easured in lumens (lm).
	··· · · · · · · · · · · · · · · · · ·		
	II) Luminous inte	unsity:-	uminous flux emitted by
	source per unit	solid angle is called the luminous intensity of the so	ource. And its unit is
	Candela		
		OR	
	<i>I</i> =	$=\frac{\phi}{w} (Where \ \phi = lu\min ous \ flux, w = Solid \ Angle)$	
	iii) Space-Height r	catio:	
	Space	height ratio – Space between lamps	
	space I	$\frac{Height \ f \ lamps \ above \ working \ p}{Height \ of \ lamps \ above \ working \ p}$	lane
	iv) Utilization fac	ctor:-	
	It is a	defined as the ratio of total lumens reaching the wor	king plane to the total
	lumens given o	out by the lamp. Its value is always less than one.	
b	State any four caus	uses of low power factor	
Ans:	Following are the	e Causes of low power factor: - (Any four causes	expected: 1 Mark each)
	1. Magnitude o	of Magnetizing Current (I μ):-	
	1. <u>Magnitude o</u> As ma	of Magnetizing Current (I μ):-	
	1. <u>Magnitude o</u> As ma	of Magnetizing Current (I μ):- nagnetizing current increases, power factor reduces.	
	 Magnitude o As ma Due to use o 	of Magnetizing Current (I μ):- nagnetizing current increases, power factor reduces. of Induction Motor:-	
	 Magnitude o As ma Due to use o Most 	of Magnetizing Current (I μ):- nagnetizing current increases, power factor reduces. of Induction Motor:- st of industrial drives, agriculture pumps, lift, irrigation	on pump set uses I.M.
	 Magnitude of As main 2. <u>Due to use of</u> Most which works 	of Magnetizing Current (I μ):- nagnetizing current increases, power factor reduces. of Induction Motor:- st of industrial drives, agriculture pumps, lift, irrigations as at lagging power factor, and so power factor reduce	on pump set uses I.M. es.
	 Magnitude of As mails Due to use of Most which works Due to use of Most which works 	of Magnetizing Current (I μ):- nagnetizing current increases, power factor reduces. of Induction Motor:- st of industrial drives, agriculture pumps, lift, irrigation as at lagging power factor, and so power factor reduces of Transformer: -	on pump set uses I.M. es.
	 Magnitude of As mails Due to use of Most which works Due to use of All transform 	of Magnetizing Current (I μ):- nagnetizing current increases, power factor reduces. of Induction Motor:- st of industrial drives, agriculture pumps, lift, irrigation as at lagging power factor, and so power factor reduce of Transformer: - mers works at lagging power factor, so power factor	on pump set uses I.M. es. of system reduces.
	 Magnitude of As mails Due to use of Most which works Due to use of All transform Due to weld 	to f Magnetizing Current (I μ):- magnetizing current increases, power factor reduces. <u>of Induction Motor:-</u> set of industrial drives, agriculture pumps, lift, irrigation as at lagging power factor, and so power factor reduce <u>of Transformer: -</u> mers works at lagging power factor, so power factor <u>ling transformer:</u> -	on pump set uses I.M. es. of system reduces.
	 Magnitude of As ma <u>Due to use of</u> Most which works <u>Due to use of</u> All transform <u>Due to weldi</u> Welding transform 	The provide the provided HTML	on pump set uses I.M. es. of system reduces. o.f. of the system.
	 Magnitude of As ma Due to use of Most which works Due to use of All transform Due to welding Welding transform Due to induct 	the formagnetizing Current (I μ):- magnetizing current increases, power factor reduces. of Induction Motor:- est of industrial drives, agriculture pumps, lift, irrigation as at lagging power factor, and so power factor reduce of Transformer: - mers works at lagging power factor, so power factor ling transformer: - nsformers are operated at low p.f. which reduces pre- ctance of transmission & distribution Line: -	on pump set uses I.M. es. of system reduces. o.f. of the system.
	 Magnitude of As ma Due to use of Most which works Due to use of All transform Due to weld Welding transform Due to induct 	of Magnetizing Current (I μ):-hagnetizing current increases, power factor reduces.of Induction Motor:-st of industrial drives, agriculture pumps, lift, irrigationas at lagging power factor, and so power factor reducesof Transformer: -mers works at lagging power factor, so power factorling transformer: -nsformers are operated at low p.f. which reducesproduct of transmission & distribution Line: -In case of AC transmission & distribution lines, i	on pump set uses I.M. es. of system reduces. o.f. of the system. nductance is present
	 Magnitude of As ma Due to use of Most which works Due to use of All transform Due to weld Welding trans Due to induce which the magnitude 	of Magnetizing Current (I μ):-hagnetizing current increases, power factor reduces.of Induction Motor:-st of industrial drives, agriculture pumps, lift, irrigationas at lagging power factor, and so power factor reducesof Transformer: -mers works at lagging power factor, so power factorling transformer: -nsformers are operated at low p.f. which reducesptctance of transmission & distribution Line: -In case of AC transmission & distribution lines, ihain cause of low power factor is.	on pump set uses I.M. es. of system reduces. o.f. of the system. nductance is present
	 Magnitude of As ma Due to use of Most which works Due to use of All transform Due to weld Welding trans Due to induce which the m Series React 	of Magnetizing Current (I μ):-hagnetizing current increases, power factor reduces.of Induction Motor:-st of industrial drives, agriculture pumps, lift, irrigationas at lagging power factor, and so power factor reducesof Transformer: -mers works at lagging power factor, so power factorling transformer: -nsformers are operated at low p.f. which reducespctance of transmission & distribution Line: -In case of AC transmission & distribution lines, ihain cause of low power factor is.	on pump set uses I.M. es. of system reduces. o.f. of the system. nductance is present

	Summer-2016 Examinations
S	ubject Code: 17507Model AnswerPage 4 of 42
	7. Industrial electrical heating furnaces:-
	Induction and arc furnace used in steel manufacturing industry works at low p.f.
	which reduces p.f. of the system.
	8. <u>Arc Lamp</u> :-
	Arc lamp & electric discharge lamps operates at low p.f.so p.f. of the system reduces.
	9. Equipments operated at light load:-
	P.f. falls if equipments like alternator, transformer, I.M. etc are not operated at full load.
	10. Improper repairs and maintenance:-
	P.f. falls if proper maintenance or repairs of equipments are not done.
Q.1B)	Attempt any ONE: (1x6=6)
a)	drive.
Ans:	(Each Definition: 1 Mark, Advantages: 2 Mark & disadvantages : 2 Mark)
	1. Definition of Group drive:-
	In a group drive single large capacity electric drives is used to run number of
	machines through a long common shaft as shown in fig. is known as group drive.
	2. Definition of Individual drive:-
	In this type of drive each machine has its own separate electric drive (motor). It may be directly or indirectly coupled
	uneerly of multeerly coupled.
	Advantages of Group Drive:- (Any two advantages expected: 1/2 Mark each)
	1. Initial Cost –
	A cost of single motor of large capacity is less then cost of number of small
	capacity motors for same H.P.
	2. Diversification of load –
	All the machines and tools may not work at a time, so we can select main motor
	of slightly small capacity (HP) than the total requirements of individual machines.
	3. Over load capacity –
	Group drive has higher over load capacity. E.g. 100% overload on individual
	machine would cause only 8 to 10 % overload on main motor.
	4. Space required –

	Summe	er– 2016 Examinations	
Subject Code: 17507		Model Answer	Page 5 of 42
Less			
5. Maintenance cost -	-		
Maintenand	ce cost of singl	e motor of large capacity is less	than maintenance cost of
number of small m	otors of total I	HP.	
6. Efficiency and Pow	ver Factor –		
If group dr	rive is run at ne	early equal to full load than Effic	eiency and Power Factor
of group drive will	be higher		
Disadvantages of Group	Drive:-	(Any Two disadvantages exp	ected: 1/2 Mark each)
1. Flexibility:-			
Flexibility is	lost due to co	mmon shaft for number of mach	ines.
2. Safety:-			
It is less safe	e.		
3. Reliability:-			
Its relia	ability is less a	t the time of breakdown and mai	ntenance of single large
motor, Because, al	l the machines	operations are required to be sho	ut down at the time of
breakdown and ma	intenance of s	ingle large motor.	
4. Mechanical power	transmission	losses:-	
Considerabl	le power loss ta	akes place for transfer of mechar	nical energy from shaft to
machine.			
5. Speed control:-			
Speed con	ntrol of individ	lual machine is difficult, it requi	res special arrangement.
6. Addition / Alteration	on:-		
Possibili	ty of addition of	or alteration in existing system is	limited.
7. Efficiency and Pow	ver Factor: –		
If grou	p drive is run a	at reduced load then Efficiency a	nd Power Factor of
group drive will be	e less.		
Advantages of Individua	<u>l Drive</u> :-	(Any Two advantages exp	ected: 1/2 Mark each)
1. Flexibility:-			
It has more	flexibility that	is machine can be placed in any	desired position and can

Summer-2016 Examinations Mo<u>del Answer</u> Subject Code: 17507 Page 6 of 42 be shifted whenever needed. 2. Safety:-Working conditions are more safe. 3. Reliability:-It has high reliability, because breakdown of single motor causes only one machine operation required to be shut down and not all machines. 4. Mechanical power transmission losses:-Less power loss takes place for transfer of mechanical energy from shaft to machine. 5. Speed control:-Speed control is easily possible. 6. Addition / Alteration:-Possibility of addition or alteration in existing system is easily possible. 7. Efficiency and Power Factor: -If it is run at full load than Efficiency and Power Factor of group drive will be high. If there is no load it can be stopped thus no load losses can be eliminated. **Disadvantages of Individual Drive:-**(Any Two disadvantages expected: 1/2 Mark each) 1. Initial Cost -Initial cost is high. 2. Diversification of load -Diversification of load on individual machine is not possible. 3. Over load capacity -Over load capacity is less. 4. Space required – More 5. Maintenance cost – Maintenance cost is more as number of drives are more. 6. Efficiency and Power Factor -If it is run at reduced load then Efficiency and Power Factor of individual drive will be less.

S	Sub	ject Code	Summer– 2016 :: 17507 <u>Model A</u>	Examinations Answer	Page 8 of 42		
	b) By Separation of two current carrying electrodes suddenly:-						
	Figure:						
	Principle of Arc Formation 2. By Seperation of two Current Carrying electrode Suddenly. Ac supply 3 & 2 - electrode & Ac su						
	(Operation	n:-				
		≻ Ano	other way to produce arc is to short cir	cuit two current carry	ying electrodes as shown in		
		fio	(a) and suddenly withdraw them then	there will be spark b	etween two electrodes as		
		aha	we in figure (b)	there will be spuik b			
	shown in figure (b)This arc then produce heat energy which is utilized for melting the charge.						
		≻ In t	his method high voltage is not necessa	ary to produce the arc			
		≻ <u>Ch</u>	aracteristics of Arc:				
1			1. Arc is conducting.				
			2. Arc has negative temperature coeff	ficient of resistance.			
Q.2	A	ttempt a	ny FOUR :		(4x4=16 Mark)		
a) Ans:	C	ompare	electric braking over mechanical br	aking.	nt exnected• 1 Mark each)		
1 11130		Sr.No	Electric Braking	Mechan	ical Braking		
		1	It is most reliable braking system	In mechanical heat	xing heat is produced at		
		L	it is most renable braking system.	break block & break	shoes, which may be		
				source of failure of l	break.		
		2	Breaking actuation time is small as	Breaking actuation t	ime is more as low		
	higher value of braking retardation value of braking retardation is obtained is obtained		ardation is obtained				

Summer-2016 Examinations

5	Subject Code	e: 17507 Model	Answer	Page 9 of 42
	usjeer cour			
	3	Electrical braking is smooth & gradual.	Where as if mechanical breaks a correctly adjusted then there are sudden braking which is dis -cor passenger.	re not chances of nfortable to
	4	Life of braking system is more.	Life of braking system is less.	
	5	There is less wear & tear of brake shoes, break block etc. so there is less maintenance cost.	There is more wear & tear of bra break block etc. so there is more maintenance cost.	ke shoes,
	6	Higher speeds are possible even when train is going down the gradient, as breaking system is reliable.	Higher speeds are not possible with a speed of the speed of the second s	vhen train reaking
	7	Higher speeds of train is possible as braking system is reliable so pay load capacity increases.	Higher speeds of train is not pos braking system is not reliable so capacity decreases.	sible as pay load
	8	In addition to electrical braking there must be arrangement of mechanical braking for final stop.	No additional arrangement is required	
	9	Special arrangement of circuit extra complication makes electrical braking system costly.	No special arrangement of circuit complication required so system costly.	t extra is less
b)	Define ele	ctric heating. Classify the electric h	eating methods in detail.	
Ans:	Define ele	ectric heating: - (1)	Definition: 2 Mark & Classificat	ion: 2 Mark)
	Ele	ectric heating is nothing but heat energy	gy is obtain or created by the use o	f electrical
	energy.			
	<u>Electric</u>	heating are classified as below:		
	1) <u>Powe</u>	er frequency electric heating:		
	i) R	esistance heating:		
		a) Direct resistance heating		
		b) Indirect resistance heating		

S	Subject Code: 17507	Summer– 2016 Examinations <u>Model Answer</u>	Page 10 of 42
	ii) Arc Heating:		
	a) Direct arc l	neating (furnace)	
	b) Indirect arc	e heating	
	2) <u>High frequency elect</u>	tric heating:	
	iii) Induction Heatir	ng:	
	a) Direct core t	ype induction heating (furnace)	
	b) Vertical core	e type induction heating or Ajax Wyatt induction h	neating
	c) Indirect core	type induction heating	
	d) Core less ind	uction heating	
	iv) Eddy Current he	ating	
	v) Dielectric heatin	g	
c)	State any six requirement	ts of an ideal traction system.	
Ans:	(Any First Two 1. It should be Pol	point : 1 Mark each & Reaming any four point lution free.	t : 1/2 Mark each)
	2. It should have le	ow capital, Running and maintenance cost.	
	3. It should have q	uick starting time.	
	4. It should have h	igh starting torque.	
	5. It should have h	igh rate of acceleration & retardation.	
	6. Highest speeds	are possible.	
	7. It should have e	asy speed control method.	
	8. Its braking syst	em should be reliable and causes less wear.	
	9. It should have b	etter riding quality (less vibration)	
	10. It should be free	e from unbalance forces i.e. coefficient of adhesior	n should be more.
	11. It should have le	ower centre of gravity.	

Subject Code: 17507 <u>Model Answer</u>	Page 11 of 42
12. The locomotive should be self-contained and able to run on an	y route
13. There should be no standby losses.	
14. It should have high efficiency	
15. Regenerative braking should be possible.	
16. The wear caused on the track should be minimum.	
17. Equipment should be capable of overloads for short periods.	
18. Capability of withstanding voltage fluctuations.	
19. Parallel running usually more than one motor (2 or 4 motors) s	should be possible.
20. Traction system should be clean & long life.	
21. There should be no interference to the communication lines ru	nning along the lines.
d) Write the different systems of track electrification.	
Ans: Following are the different track electrification system:	(4 Marks)
1. D.C. Supply system:-	
1. Direct current track electrification:	
 Direct current track electrification: > 600V, 750V DC for tramways 	
 Direct current track electrification: 600V, 750V DC for tramways 1500V, 3000V DC for Train (Urban and sub-urban services) 	s)
 Direct current track electrification: > 600V, 750V DC for tramways > 1500V, 3000V DC for Train (Urban and sub-urban services 2. A.C. Supply system:- 	s)
 Direct current track electrification: > 600V, 750V DC for tramways > 1500V, 3000V DC for Train (Urban and sub-urban services 2. A.C. Supply system:- 2. 1-Ph, 25KV,standard frequency AC supply system: 	s)
 Direct current track electrification: ▶ 600V, 750V DC for tramways ▶ 1500V, 3000V DC for Train (Urban and sub-urban services 2. A.C. Supply system:- 2. 1-Ph, 25KV,standard frequency AC supply system: ▶ 1-Ph, 25 KV , 50 Hz 	s)
 Direct current track electrification: > 600V, 750V DC for tramways > 1500V, 3000V DC for Train (Urban and sub-urban services 2. A.C. Supply system:- 2. 1-Ph, 25KV,standard frequency AC supply system: > 1-Ph, 25 KV , 50 Hz 3. 1-Phase, low frequency AC Supply system: 	s)
 Direct current track electrification: > 600V, 750V DC for tramways > 1500V, 3000V DC for Train (Urban and sub-urban services 2. A.C. Supply system:- 2. 1-Ph, 25KV,standard frequency AC supply system: > 1-Ph, 25 KV , 50 Hz 3. 1-Phase, low frequency AC Supply system: > 1-Ph, 15/16 KV, 16.2/3 Hz or 25 Hz 	s)
 Direct current track electrification: ▶ 600V, 750V DC for tramways ▶ 1500V, 3000V DC for Train (Urban and sub-urban services 2. A.C. Supply system:- 2. 1-Ph, 25KV,standard frequency AC supply system: ▶ 1-Ph, 25 KV , 50 Hz 3. 1-Phase, low frequency AC Supply system: ▶ 1-Ph, 15/16 KV, 16.2/3 Hz or 25 Hz 4. 3-Ph, Low frequency AC supply system; 	s)
 Direct current track electrification: ▶ 600V, 750V DC for tramways ▶ 1500V, 3000V DC for Train (Urban and sub-urban services 2. A.C. Supply system:- 2. 1-Ph, 25KV, standard frequency AC supply system: ▶ 1-Ph, 25 KV , 50 Hz 3. 1-Phase, low frequency AC Supply system: ▶ 1-Ph, 15/16 KV, 16.2/3 Hz or 25 Hz 4. 3-Ph, Low frequency AC supply system; ▶ 3-Ph, 3.3/3.7 KV, 16 2/3 Hz or 25 Hz 	s)
 Direct current track electrification: ▶ 600V, 750V DC for tramways ▶ 1500V, 3000V DC for Train (Urban and sub-urban service) 2. A.C. Supply system:- 2. 1-Ph, 25KV, standard frequency AC supply system: ▶ 1-Ph, 25 KV , 50 Hz 3. 1-Phase, low frequency AC Supply system: ▶ 1-Ph, 15/16 KV, 16.2/3 Hz or 25 Hz 4. 3-Ph, Low frequency AC supply system; ▶ 3-Ph, 3.3/3.7 KV, 16 2/3 Hz or 25 Hz Composite system:- 	s)
 Direct current track electrification: ▶ 600V, 750V DC for tramways ▶ 1500V, 3000V DC for Train (Urban and sub-urban services 2. A.C. Supply system: 2. 1-Ph, 25KV, standard frequency AC supply system: ▶ 1-Ph, 25 KV , 50 Hz 3. 1-Phase, low frequency AC Supply system: ▶ 1-Ph, 15/16 KV, 16.2/3 Hz or 25 Hz 4. 3-Ph, Low frequency AC supply system; ▶ 3-Ph, 3.3/3.7 KV, 16 2/3 Hz or 25 Hz Composite system: 5. 1-Ph AC (1-ph, 25KV) – DC Supply System 	s)

S	Subject Code: 17507		Summer– 2016 Examinations <u>Model Answer</u>	Page 13 of 42		
	c) Combination of Elevators					
	 ii) According to Speed of Elevator :- a) Low speed Elevator b) Medium speed Elevator c) High speed Elevator iii) According to capacity of Elevator :- 					
	a) Light duty Elevator					
	a) Light duty Elevator					
	(c) Heavy duty Elev	ator			
	Ċ	l) Extra Heavy dut	v Elevator			
	iv) A	ccording to power	r unit (elevator machine):-			
	á	a) Drum Elevator				
	t) Traction Elevato	r			
b) i)	Compare dir	ect resistance hea	ting and indirect resistance hea	ting with suitable diagram.		
Ans:						
	Sr.No.	Point	Direct resistance heating	Indirect resistance heating		
	1	Working Principle	When current is passed through charge heat is produced due to I^2R losses taking place in the charge. Where, <u>R</u> is the resistance of the charge and <u>I</u> be the current passed through charge.	 When current is passed through heating element then heat is produced due to I²R losses taking place in the heating element. Heat is transferred towards charge mainly be radiation or sometimes by conduction 		
	2	Heat is transfer loss.	There is no heat is transfer loss.	There is heat is transfer loss.		
	3	<u>Temperature</u> obtained:	Temperature obtained is more than in direct resistance heating as heat is directly produced in charge	Temperature obtained is less than direct resistance heating as heat is not directly produced in charge		
	4	Definition:	As heat is produced in the charge itself hence its name is direct resistance heating.	As heat is produced in the heating element and then it is transferred towards charge which is to be heated. Hence its name is indirect resistance furnace/oven.		

Summer-2016 Examinations

Model Answer Subject Code: 17507 Page 14 of 42 It has high efficiency. Overall efficiency is less 5 Efficiency: than direct resistance heating due to heat transfer loss. It is used for Room heater, 1. This type of heating used 6 Application: for industrial purpose Electric Iron, Hair dryer, Hot 2.Salt bath heating: This plate, Electric water heater, utilized for the purpose of Electric toaster and Electric carbonizing, tempering, oven etc quenching and hardening of steel tools 3. Heating of water in boiler Direct heating 7 Diagram ACIDOSUPPHY ning low vtg , high current Heating chember Thermal insulation electrodes in kled High stancepowder Heating Thermal charge I R charge Heating element Electrodes are made up of Names of Material used for 8 carbon or graphite. manufacturing of heating used: element i) Nichrome ii) Constantan or Eureka iii) Nickel-chromium iv) Ironchromium-Aluminimum v) Silicon carbonate Explain the principle of dielectric heating. b) ii) Figure of dielectric heating: Ans: Dielectric Heating. metal plate job of solid HV (20 to 25 KV) dielecteic material & HF (10 to 3 MHZ) supply or equivalent figure **Principle of Dielectric heating:** For heating non-metallic material (dielectric material) for e.g. Glass, plastic, wood, etc. dielectric heating is used. Material to be heated is placed between two metallic plates as shown in figure (1) across which a high voltage (20 to 25 KV) and high frequency (10 to 30 MHz) AC supply is

S	Summer- 2016 ExaminationsSubject Code: 17507Model Answer	Page 16 of 42
c)	A electric motor has load variations as given below :i) Torque 250 Nm for 20 min.ii) Torque 150 Nm for 10 min.iii) Torque 300 Nm for 10 min.iv) Torque 200 Nm for 20 min. If speed rpm find the power rating of the motor.	d of the motor is 750
Ans:	i) 250 Nm for 20 min Speed of motor : 750 mm	
	i) 250 Nm for 10 min. Speed of motor $(KW) = 2$	
	$\begin{array}{c} \text{iii} \text{iii} \\ \text{iii} \\ 300 \text{ Nm} \text{for 10 min} \\ \end{array}$	
	iv 200 Nm for 20 min	
	Duty Cycle $(T) = t_1 + t_2 + t_4 + t_4$	(1 Marks)
	-20+10+10+20	
	= 20 + 10 + 10 + 20 = 60 Min	(1 Marks)
	rating of motor (Torque) = $\sqrt{\frac{T_1^2 \times t_1 + T_2^2 \times t_2 + T_3^2 \times t_3 + T_4^2 \times t_4}{T}}$	(1 Marks)
	rating of motor (Torque) = $\sqrt{\frac{250^2 \times 20 + 150^2 \times 10 + 300^2 \times 10 + 20}{60}}$	$\overline{00^2 \times 20}$
	rating of motor (Torque) = $\sqrt{\frac{3175000}{60}}$	
	rating of motor (Torque) = $\sqrt{52916.6666}$ Nm	
	rating of motor (Torque) = 230.0362 Nm	(1 Mark)
	$\therefore rating of motor (watt) = \frac{2 \pi N T}{60}$	(1 Mark)
	rating of motor (watt) = $\frac{2 \pi \times 750 \times 230.0362}{60}$	
	rating of motor (watt) = 18057.8439 Watt	(1 Mark)
	rating of motor $(Kw) = \frac{18057.8439}{1000}$	
	rating of motor $(kw) = 18.057 \ kW$ i.e.	
	\therefore rating of motor (kw) = 18 kW	(2Mark)

Summer-2016 Examinations Subject Code: 17507 **Model Answer** Page 17 of 42 **Q.4** A) **Attempt any THREE :** (3 x 4 =12 Marks) Define welding. State the requirements of good weld. a) **Define welding**: (Definition: 2 Marks & Requirement: 2 Marks) Ans: It is the process of joining two similar or dis-similar metals by application of heat with or without application of pressure and addition of filler material. The good welding has following requirements:-(Any Two requirement expected: 1 Marks each) 1) Welding joints must be strong and reliable 2) Joint (welding) is made by proper welding technique. 3) Surface of job should be uniformly welded. 4) Welding Should be free from following defects like:i) Cracks (cold crack or hot crack) ii) overlap iii) porous iv) blow holes v) incomplete penetration vi)Excess penetration vii) incomplete fusion viii)Suck buck ix)under flush x)burn through 5) Even counter & width of surface welding. State the laws of illumination. b) Ans: Laws of illumination:-(Each laws explanation: 1 Mark & each Figure : 1 Mark) 1. Inverse Square Law:-Intensity of illumination produced by a point source varies inversely as square of the distance from source. **Distance from Source** 3D 2D Area 9A Δ Intensity Illuminance L. L/4 L/9 (lux) OR Ε Where, I = intensity d = Distanceand

Summer-2016 Examinations **Model Answer** Subject Code: 17507 Page 18 of 42 2. Lamberts Cosine Law: According to this law, Illumination at any point on a surface is proportional to the cosine of the angle between the normal at that point and the direction of luminous flux 100% Cosine Law: $E_{\theta} = E * \cos(\theta)$ 0° 301 30 87% 100% 60 60° 50% 85 Fig. 6.3 Lambert's cosine law. Fig. 6.5 Lambertian surface. **Compare block rate tariff and flat rate tariff (any four points)** c) (Any Four Point expected: 1 Mark each) Ans: S.No Block rate tariff Flat rate tariff In case of block rate tariff there are In case of **flat rate tariff** there are no 1 blocks of units consumed blocks of units consumed 2 Each block tariff rate/unit (KWH) is There is flat rate/unit for actual different energy consume 3 Plus consumer has to pay fix charges. No fix charges have to be paid by consumer. 4 Even if consumer has not consume the If consumer has not consume the energy he has to pay fix charges energy he has not require to pay fix charges 5 Rate Schedule: Number of units consume = Current Reading – Previous Reading of Consumption Fixed/Dema Energy energy meter. slab (kWh) nd Charges Charges (Rs.kWh) 0-100 units Single Phase: 101-300 units Rs..../Month 301-500 units Three 501-1000 Phase: units

Rs..../Month

Above 1000 units (balance

units

Summer-2016 Examinations

S	ubject Code: 1	.7507	Model Answer	Page 19 of 42		
	6	The consumers wh energy (KWH) sha charges., The consumers wh energy (KWH) sha charges.	nich consume less all have to pay fewer nich consume more all have to pay more	No such discrepancy in this type of Tariff		
	7	Due to block rate to use minimum energy bill. So this helpful from energy of view.	tariff consumer will rgy to reduce its s type of tariff is gy conservation point	This type of tariff is useful to consumers whose power consumption is less		
d)	State any for	<u>ir advantages of g</u>	ood power factor for e	lectric supply system.		
Ans:	Advantages	of good power fac	ctor for electric supply	system:		
			(Any Four Adv	vantages are expected: 1 Mark each)		
	We know that	.t,				
	$P = \sqrt{3} V_L I_L \cos \phi$ > For same power to be transmitted at same voltage over a same distance $I \alpha \frac{1}{\cos \phi} \alpha \frac{1}{P. f}$					
	> Fro	om above equation i	it is seen that as power f	actor increases current decreases, due to		
	dec	creases in current, s	system has following adv	vantages		
		((Any Four advanta	ges expected)		
	1. Cross	section of conduct	or reduces:			
		Cross section of	conductor $\alpha I \alpha \frac{1}{P. f}$			
	reduce	As P.F. increases c es hence its cost rec	current reduce so; cross s duces	section of conductor and its weight		
	2. Design	n of supporting St	ructure:			
	lighte	As weight of cor r, so its cost reduce	nductor reduces design o es.	f supporting structure (tower) becomes		

	Sum	nmer– 2016 Examinations	
S	Subject Code: 17507	Model Answer	Page 20 of 42
	3. Cross section of terminal (con	ntacts) reduces:	
	As power factor increa bar and contacts etc decreases.	ases, current reduces. hence cross sectio	n of switchgear bus
	4. Copper losses reduces:		
	As power factor increases of efficiency increase.	current reduces. So copper losses reduce	es. As a effect
	5. Voltage drop reduces:		
	As P.F. increases, curren improved (better)	nt decreases. So voltage drop decreases,	So regulation gets
	6. Handling capacity (KW) of eq	quipment increases:	
	As power factor increa	ases, handling capacity of each equipme	ent such as
	Alternator, transformer increas	ses	
	7. KVA rating of equipments red	luces:	
	As P.F. increases, currer alternator, transformer etc decr	nt decreases. So KVA rating of all equip reases, so its capital cost reduces.	oments for eg-
	8. Cost per unit (KWH) reduces:	:	
	From all above advant distribution decreases, so cost/	tages, it is seen that cost of generation, t /unit reduces.	ransmission &
	Also performance i.e. efficiency	⁷ & regulation gets improved at high pov	wer factor
O 4D)	Attempt over ONE		
<u>Q. 4D)</u> a)	Attempt any ONE Define resistance welding State the	00 Marks types of resistance welding and eynla	in any two in brief
Ans:	Definition of Resistance welding :-	Types of resistance welding and expla	(1 Mark)
	In resistance welding su	ufficiently heavy current at low voltage	is passed directly
	through two metals in contact to be	e welded.	15 passed uncerty
	Heat is produced due to utilized to obtain welding temperate	I ² R losses where 'R' is the contact resist ture (to become a plastic state)	tance. This heat is

Summer-2016 Examinations Mo<u>del Answer</u> Subject Code: 17507 Page 22 of 42 under pressure Sufficiently heavy current at low voltage is passed directly through two metals in contact to be welded. Heat is produced due to I^2R losses where 'R' is the contact resistance. \geq \geq This heat is utilized to obtain welding temperature (to become a plastic state) When welding temperature is reached supply is cut down and external pressure is applied \geq simultaneously across the job to complete weld. Magnitude of current varies from 1000A to 10000A.and the voltage between electrodes is usually less than 2V. The period of flow of current and magnitude of current depends upon thickness of sheet \geq (job) to be welded. 2) Seam Welding: Seam Welding Timet Dile Etyp Acsupply ich Welding x mer or equivalent figure **Explanation**: Seam welding is nothing but series of continuous spot welding It consists of: > Transformer used for seam welding is designed for low voltage and high current secondary. Transformer is oil cooled \geq \triangleright There are two electrodes, in this type beam or roller type electrodes are used. Working: Job is kept in between two electrodes under pressure. This pressure is kept constant \geq

	Summer-2016 Examinations	
S	Subject Code: 17507 <u>Model Answer</u>	Page 26 of 42
b)	A factory has a maximum demand of 250 kW with a load factor of 0.6. The f are offered. a) Two part tariff Z 70/kW of M.D./Year + 4 paise/kWh. b) A flat rate of 10 p Calculate tariff in both the cases and state with the reason which of the two w	ollowing tariffs paise/kWh. vill be cheaper.
Ans:	 No. of Units consume in One Year = Load Factor×M.D(KW)×8760 = 0.6×250×8760 = 1314000 Kwh Case-I: Energy Bill :- 	(1/2 Mark) (1 Mark)
	= (Tariff given Rs. 70 of M.D. / year + Rs. 4 paise / Kwh)= ((250 × 70) + (1314000 × 4/100))= (Rs. 17500 + Rs.52560)	(1/2 Mark)
	 = 70060 Rs. Case-II: Energy Bill :- = (Tariff given flat rate of 10 Paise / Kwh) = (1314000 × 10/100)) = 131400 Rs. According to energy bill Case-I is economical For industrial consumer Case-I is economical 	(1 Mark) (1 Mark) (1 Mark) (1 Mark)
Q.5	Attempt any FOUR : (4	x4=16 Marks)
a)	Explain in brief the construction and working of sodium vapour lamp.	
Ans:	(Figure: 1 Mark, Construction: 1.5 Marks & Workin	g : 1.5 Marks)
	Ballast Gapacitor Ignitor N equivalent figure	Vaceum Hube Disklarge tube inert gases sectium (metal gam) t Neon & Argont Nitrogen etc.

Subject Code: 17507

Summer– 2016 Examinations Model Answer

	Constru	iction		
	\succ	➢ HPS lamps consist of an arc tube (inner) enclosed by an outer tube.		
	\triangleright	Vacuum is created bet	ween the inner & outer glass t	ube to prevent heat loss.
	≻	The arc tube is made f	from a special glass that can wi	ithstand to high temperatures
	\triangleright	Arc tube is U Shape		
	\triangleright	The arc tube contains	xenon / neon gas (starting gas)	, sodium and mercury and two
		electrodes.		
	\triangleright	IT require a ballast to	give high voltage at staring to	produce the arc (The ballast provides
		a high-voltage pulse (2,	500 V) for one microsecond for la	mp start.)
	\triangleright	There is an igniter whi	ich sends a pulse to start the di	scharge.
		To improve the power	factor a capacitor is connected	across the supply (PF is low @
		$(3 \log)$		
		U.S lag.)		
	Workin	<u>rinciple</u>	e starting electrodes.	
	VV OI KIII	working rrinciple:		
	\triangleright	When the lamp is turned on, a high voltage at staring is applied across two electrodes, to initiate an are which discharges and unperizes, when a figure are staring as a diverse and unperizes when a staring is a diverse.		
		initiate an arc which discharges and vaporizes xenon /neon gas (starting gas), sodium		
	 The energized metal atoms emit light. 			
	➢ After 2 to 5 minutes lamp will glow 100 %.			
	For running the lamp low voltage of about 165 v is sufficient.			ufficient.
	The color of light produce is yellowish.			
b)	Compa	re ac welding to dc we	lding (any four points).	
Ans:	•	(Any Four point Expected: 1 Mark each)		
	S.No	Points	AC Welding	DC Welding
	1	Supply equipment used	Welding Transformer	DC differential Compound Generator, or Rectifier
	2	Heating Effect	Not Uniform	Uniform
	3	Temperature Obtain	Less	More
	4	Possibility of Arc Blow	No Possibility	More Possibility

Summer-2016 Examinations

S	Subject Code: 17507	Summer– 2016 Examinations <u>Model Answer</u>	Page 29 of 42
	3) Circuit breaker (C.B):	•	
	\succ It is connected in be	etween current collecting devices and tap changing	g transformer.
	SF6 circuit breake	er is used.	
	To disconnect locor	motive equipments whenever there is fault.	
	It opens automatica	lly when train passes neutral zone (from zone No.	1 to Zone No.2)
	4) On load tap changing (transformer:	
	It changes the ta vary the voltage for speed	ap without disconnecting the load on transformer. d control of traction motor.	Its purpose is to
	5) Traction Transformer:	:	
	It step down inp (1500V/3000V).	out voltage 25 KV to working voltage of traction r	notor
	6) Rectifier:		
	It converts seco	ndary voltage of transformer into DC supply.	
	7) Filter circuit (smoothi	ng reactor):	
	It is used to obt	ain pure DC supply.	
	8) Motor control unit: It	controls operation of traction motor.	
	9) Traction Motor:		
	It gives mechan	ical power to run the train DC series motor is used	d as traction motor.
d)	"DC series motor is user characteristics.	d for traction purpose". Justify your answ	er with any four
Ans:		(41	Marks)
	Due to following characte	eristics and advantages, DC series motor is suit	able for traction
	1) Characteristics:	We know that,	
	Armature current (Ia	a) Armature Current (Ia) Torque (T a)
	Ch		

		Summer–2016 Examinations	
8	ubject Code: 17507	<u>Model Answer</u>	Page 30 of 42
	Advantages:		
	1. DC Series mot	tor robust in construction and capable to withstand ag	ainst continuous
	vibration.		
	2. DC series mot	or weight is 1.5 times less than 1-Ph AC series motor	for same H.P.
	3. DC Series mot	tor has high starting torque.	
	4. DC Series mot	tor has high rate of acceleration and retardation.	
	5. DC Series mot against overlo	tor is variable speed motor. Due to these characteristic ad.	es motor is protected
	6. DC Series mot decreases.	tor speed-torque characteristics are such that as torque	e increases speed
	7. DC series mot the basic requi	tor has develops high torque at low speeds, low torque irement of traction unit.	e at high speed, this is
	8. Commutating	property of series motor is good so we get sparkles co	ommutation.
	9. Torque is unaf	fected by variation in supply voltage.	
	10. DC Series mot	tor maintenance cost is less.	
	11. When DC serie	es motor are running in parallel the all motors share a	lmost equal load.
	12. Torque obtaine	ed by DC series motor is smooth and uniform, so it in	nproves riding quality.
e)	Write any six desira	ble characteristics of traction motors.	
Ans:	(Any First '	Two point : 1 Mark each & Reaming any four point	nt : 1/2 Mark each)
	Traction motor shou	ld posses Following Characteristics :	
	A) Mechanical Proj	perties or characteristics:	
	1) It should be si	mple in design	
	2) It should be ro	bust in construction to withstand against continuous	vibrations.
	3) Weight of mot	tor per HP should be minimum in order to increase pa	y load capacity.

	Summer-2016 Examinations	
Subject Code: 17507	Model Answer	Page 31 of 42
4) It must be small	in overall dimensions, especially in overall diam	neter.
5) It must have tota dust, mud, water	ally enclosed type enclosure to provide protection r etc. in drive.	n against entry of dirt,
6) When motors ar there is unequal	re running in parallel they should share almost eq wear & tear of driving wheels)	ual load. (even when
7) It should have h	igh coefficient of adhesion.	
8) It should have lo	ower center of gravity.	
C) Electrical Property	ties or characteristics:	
9) It should have h	igh starting torque.	
10) It should posses	s high rate of acceleration & retardation.	
11) It should be vari	iable speed motor.	
12) Its speed-torque speed and low to	e characteristics should be such that it should proc oque at high speed.	duce high torque at low
13) Motor must be c	capable of taking excessive overload in case of en	mergency.
14) It should have si	imple speed control methods.	
15) Electrical brakin regenerative bra	ng system should be reliable, easy to operate and iking is possible.	control, especially
16) Motor should dr restore again.)	raw low inrush current (Starting current, and if su	apply is interrupted and
17) It should withsta	and for voltage fluctuation without affecting its p	performance.
18) It should have h	igh power to weight ratio.	

S	bubject Code: 17507	Summer– 2016 Examinations <u>Model Answer</u>	Page 32 of 42
	C) General Properties or chara	acteristics:	
	19) It should have low initial	cost.	
	20) It should have less maint	enance cost.	
	21) It should have high effici	iency.	
	22) It should have long life.		
Q.6	Attempt any TWO of the follo	wing :	16 Marks
a)	A resistance oven employing N is rated at 16 kW. If temper temperature of charge is 500° 0.57 Emissivity e = 0.9, Spec	Nichrome wire is to be heated from 220V, 1 rature of element is to be limited to 11 C, find diameter and length of wire. Radia ific resistance of Nichrome = 109x10 ⁶ ohm	1-phase, supply and 70°C and average ting efficiency, K = cm
Ans:	Given Data: $T_1 = 1170^{\circ}C = 1170+273 =$	= 1443 ⁰ K	
	$T_2 = 500^{\circ}C = 500 + 273 = 7$	773 ⁰ K	
	Radiation efficiency = 0.57, spec (NOTE :_ This problem is)	cific resistance of Ni-Cr = 1.016x10 ⁻⁶ ohm m, solved by taking value Specific resis	emissivity = 0.9. tance of Ni-Cr =
	1.016×10^6 and also by tak	king value Specific resistance of Ni-C	$cr = 1.016 \times 10^{-6}$:
	Give marks to both answe	rs)	
	Solution By take Specific resist	tance of Ni-Cr = 1.016×10^6 :	
	$\mathbf{H} = 5.72 \times 10^4 \ k.e \left[\left(\frac{T_1}{100} \right)^2 \right]$	$\frac{1}{10}^{4} - (\frac{T_2}{1000})^{4} w/m^2$ OR	
	$\mathbf{H} = 5.72 \times k.e \left[\left(\frac{T_1}{100} \right)^4 \right]$	$-(\frac{T_2}{100})^4$] w/m^2	(1 Mark)
	$H = 5.72 \times 0.57 \times 0.9$ [($\left(\frac{1443}{100}\right)^4 - \left(\frac{773}{100}\right)^4] w/m^2$	
	$\mathbf{H} = 11.4749 \times 10^4 \ w/m$	m ²	(1 Mark)
	$\therefore \frac{l}{d^2} = \frac{V^2 \pi}{4 P \rho}$	Equation No.1	(1 Mark)

	Summer– 2010 Examinations	
Subject Code: 17507	Model Answer	Page 33 of 42
l	$(220)^2 \pi$	
$\therefore \frac{1}{d^2} = \frac{1}{4 \times 1}$	$16 \times 1000 \times 1.09 \times 10^{6}$	
l		
$\therefore \frac{1}{d^2} = 2.17$	$^{\prime}9660 \times 10^{-0}$	(1 Mark)
		(I Mark)
Heat Dissipated = Ele	ectrical Power I/p	
$\pi d l H$	I = P	
		(1/2 Mark
$\pi \ d \ l \ 11.$	$.6749 \times 10^4 = 16000$	
d l = 0.0	043623	(1 Maala
	Equation No.3	(1 Mark
$\therefore \frac{l}{d}$	$\frac{d}{d^2} = 2.179660 \times 10^{-6}$	
:. <i>l</i>	$d^{2} \times 2.179660 \times 10^{-6}$	
		(1/2 Mark)
By Simplify :		
$\therefore 2.179 \times 10^{-6} \times d^2$	$^{2} \times d = 0.043623$	
$d^3 = \frac{0.043623}{0.043623}$	_	
2.179×10 ⁻	-6	
$\therefore d^3 = 20022.94$		
$\therefore d = 27.1545$	mtr	
		(1/2 Mark)
Substitute Value of 'd' i	in Equation No.3 to calculate 'l':	
$\therefore d l = 0.$	043623	
		(1/2 Mark)
$\therefore l = \frac{0.0}{100}$	043623	
27	7.154	
$\therefore l = 1.60$	×10 [,] mtr	(1 Mark)
Answer:-		(*******)
$l = 1.6 \times 10^{-3} m$: Diameter $d = 2715 \text{mtr}$	
	Dumeter u – 27.15 mu	

Subject Code: 1750'	Summer - 2016 Examinations7Model Answer	Page 34 of 42
Solution By take	e Specific resistance of Ni-Cr = 1.016 x 10 ⁻⁶ :	
H = 5.7	$72 \times 10^4 \text{ k.e} \left[\left(\frac{T_1}{1000} \right)^4 - \left(\frac{T_2}{1000} \right)^4 \text{ w/m}^2 \right] $ OR	
$\mathbf{H}=5.7$	72× k.e [$(\frac{T_1}{100})^4 - (\frac{T_2}{100})^4$] w/m ²	(1 Mark)
H = 5.72	2× 0.57×0.90[$(\frac{1443}{100})^4 - (\frac{773}{100})^4$] w/m ²	
$\mathbf{H} = 11.4$	$4749 \times 10^4 \ w/m^2$	(1 Mark)
\Rightarrow Thick	mess : $0.3 mm$ $\therefore 0.3 \times 10^{-3} m$	
>	$\therefore \frac{l}{d^2} = \frac{V^2 \pi}{4 P \rho}$ = Equation No.1	(1 Mark)
	$\frac{l}{d^2} = \frac{(220)^2 \pi}{4 \times 16 \times 1000 \times 1.09 \times 10^{-6}}$	
	$\frac{l}{d^2} = 2179660$ Equation No.2	(1 Mark)
Heat Dissipa	ted = Electrical Power I/p	
	$\pi \ d \ l \ H = P$	(1/2 Mark)
	$d \ l = 0.043623$	(1/2 Mark)
By Simplifyi	ng: $d^2 l^2 = 1.00207 \times 10^{-3}$	
	$d^{2} = \frac{1.90297 \times 10^{-3}}{12}$	
Substitute Va	l alue of d^2 in Equation No 1 :	
Substitute Ve	$\therefore \frac{l}{\frac{1.90297 \times 10^{-3}}{l^2}} = 2179660$	(1/2 Mark)

Su	Summer- 2016 Examinationsubject Code: 17507Model Answer	Page 35 of 42
	$\therefore l^3 = 2179660 \times 1.90297 \times 10^{-3}$	
	$\therefore l = 16.06 m$	(1 Mark)
	Substitute Value of 'l' in Equation No.2 to calculate 'd' :	
	$\therefore \frac{l}{d^2} = 2179660$	(1/2 Mark)
	$\therefore d = 2.7144 \times 10^{-3} mtr$ $\therefore d = 2.714 mm$	(1 Mark)
	Answer: \therefore Length $l = 16.06 mtr$ \therefore Diameter $d =$	= 2.714 <i>mm</i>
b) 1 Ans: 0	seconds ii) Free running for 10 minutes iii) Uniform dece the train iv) A stop time of 5 minutes. Find the distance between the stations, average and scheduled s Given Data:	eleration of 6 kmphps to stop
	Trapezoidal curve, Vmax time	
	$t_1 = 25 \text{ sec}$ $t_2 = 10 \text{ min} = 600 \text{ sec}$ $T_{\text{stop}} = 5 \text{ min} = 600 \text{ sec}$ acceleration $\alpha = 6 \text{ km phps}$ retardation $\beta = 600 \text{ sec}$	= 300 sec 5 km phps
	$a = \frac{V_{\text{max}}}{t_1}$	(1/2 Mark)
	$V_{\text{max}} = t_1 \times \alpha = 25 \times 6$ $V_{\text{max}} = 150 \text{ Km/ hr}$ Answ	/er (1/2 Mark)
	$\beta = \frac{V_{\text{max}}}{t_3}$	(1/2 Mark)

Answer Page 36 of 42 Answer (1/2 Mark) $D\alpha$) = (1/2 Mark)
(1 /2 Mark) Dα) = (1/2 Mark)
Answer (1 /2 Mark) Dα) = (1/2 Mark)
Dα) = (1/2 Mark)
(1/2 Mark)
Answer (1/2 Mark)
=
(1/2 Mark)
Answer (1/2 Mark)
(1/2 Mark)
(1/2 Mark)
running
+ 25
(1/2 Mark)
-

	Summer-2016 Examinations
S	ubject Code: 17507Model AnswerPage 37 of 42
	OR Student may solve by using following formula also $V_{\text{max}} = \frac{T - \sqrt{T^2 - 4K3600D}}{2K}$ But, $K = \frac{\alpha + \beta}{2(\alpha \times \beta)}$
	$Time 'T' = t_1 + t_2 + t_3 = 25 + 600 + 25$ $Time 'T' = 650 SecAnswer(1/2 Mark)$
	$\succ \qquad V_{av} = \frac{3600 D}{Time} \qquad (1/2 \text{ Mark})$
	$V_{av} = \frac{3600 \times 26.04168}{650}$
	$V_{av} = 144.2308 \ Km / hrAnswer (1/2 Mark)$ $V_{schv} = \frac{3600 D}{T + T_{stop}}(1/2 Mark)$
	$V_{schv} = \frac{3600 \times 26.04168}{650 + 300}$
	$V_{schv} = 98.6842 \ Km \ / \ hr Answer (1 \ /2 \ Mark)$
c) i) Ans:	Derive the equation of most economical power factor. Derivation: (4 Mark)
	$ \begin{array}{c c} & \mathbf{K} \mathbf{VAR} \in \mathbf{Qc} \\ & \mathbf{K} \mathbf{VAR} \in \mathbf{Qc} \\ & \mathbf{A} \mathbf{A} \mathbf{A} \mathbf{A} \mathbf{A} \mathbf{A} \mathbf{A} \mathbf{A}$
	Let, P = Active power KW

Summer – 2016 Examinations Subject Code: 17507 Model Answer Page 38 of 42			
S_1 $S_2 = KVA$ Maxir	num demand before and after improving power f	factor	
$S_1, S_2 = \mathbf{I}$ or \mathbf{I} in the second s	active neuror before & after improving power for	ator	
$Q_1, Q_2 = Lagging real$	active power before & after improving power fac		
$Q_{\rm C}$ = Leading Reaction	ive power drawn by Capacitor		
$\cos\phi_1 = \text{Initial Pow}$	er factor		
$\cos\phi_2 = \text{Improved I}$	Power factor		
Rs $X = Tariff charge$	es towards M.D. (KVA) /year		
Rs Y = Expenditure improving ap	towards KVAr to be neutralized per year (Expen	diture towards P.F.	
1) Before improving Power	factor:		
	$Q_1 = P \tan \phi_1$		
	$\cos \phi_1 = \frac{P}{S_1}$		
	$S_1 = \frac{P}{\cos \phi_1}$		
	$\therefore \text{KVA}_1 (S_1) = P \sec \phi_1$		
2) After improving Power fa	actor:		
	$Q_2 = P \tan \phi_2$		
	$\cos\phi_2 = \frac{P}{S_2}$		
	$S_2 = \frac{P}{\cos \phi_2}$		
3) Saving in KVA charges:	$\therefore \text{KVA}_2 (\mathbf{S}_2) = \mathbf{P} \sec \phi_2$		
-, <u></u>	$= \operatorname{Rs} X (S_1 - S_2)$		

	Summer-2016 Examinations	
Subject Code: 17507	Model Answer	Page 39 of 42
	$= \operatorname{Rs} X \left(\operatorname{P} \sec \phi_1 - \operatorname{P} \sec \phi_2 \right)$	
	$= \operatorname{Rs} X . P (\operatorname{sec} \phi_1 - \operatorname{sec} \phi_2)$	
4) Expenditure towards	KVAr to be neutralized:	
= Rs Y (Q ₁	-Q ₂)	
= Rs Y (Pt	$\tan \phi_1 - P \tan \phi_2$)	
= Rs YxP ($\tan \phi_1 - \tan \phi_2$)	
5) Net Saving:		
= Saving in	KVA charges - Expenditure towards KVAr to b	be neutralized.
= [Rs X .P	$(\sec \phi_1 - \sec \phi_2)] - [\operatorname{Rs} Y (\operatorname{P} \tan \phi_1 - \operatorname{P} \tan \phi_2)]$	2)]
Saving will be ma	aximum when differentiate above equation with	respect to ϕ_2 and equate
to zero.		
$\frac{\mathrm{d}s}{\mathrm{d}\phi_2} = \frac{1}{c}$	$\frac{\mathrm{d}}{\mathrm{d}\phi_2} \left[\operatorname{Rs} X \operatorname{P} (\operatorname{sec} \phi_1 - \operatorname{sec} \phi_2) \right] - \left[\operatorname{Rs} Y \operatorname{P} (\tan \phi_1 - \operatorname{Sec} \phi_2) \right] = \left[\operatorname{Rs} Y \operatorname{P} (\operatorname{tan} \phi_1 - \operatorname{Sec} \phi_2) \right]$	$-\tan\phi_2$)
	$= 0 - X \operatorname{P} \operatorname{sec} \phi_2 \times \tan \phi_2 - 0 + Y \operatorname{P} \operatorname{sec}^2 \phi_2$	
	$0 = -\operatorname{Rs} X \operatorname{P} \sec \phi_2 \cdot \tan \phi_2 - 0 + \operatorname{Rs} Y \operatorname{P} \sec^2 \phi_2$	\mathbf{b}_2
$\operatorname{Rs} X \operatorname{P} \operatorname{sec} \phi_2. \tan \phi_2 = \operatorname{Rs} Y \operatorname{P} \operatorname{sec}^2 \phi_2$		
	$\therefore \operatorname{Rs} X \ \tan \phi_2 = \operatorname{Rs} Y \ \sec \phi_2$	
	$\therefore \operatorname{Rs} X \ \frac{\sin \phi_2}{\cos \phi_2} = \operatorname{Rs} Y \ \frac{1}{\cos \phi_2}$	
	$\therefore \operatorname{Rs} X \ \sin \phi_2 = \operatorname{Rs} Y$	
	$\therefore \sin \phi_2 = \operatorname{Rs} \frac{Y}{X}$	
6)	$\therefore \sin^2 \phi_2 + \cos^2 \phi_2 = 1$	

S	Summer– 2016 Examinations Subject Code: 17507 <u>Model Answer</u>	Page 40 of 42			
	$\cos^2 \phi_2 = 1 - \sin^2 \phi_2$				
	Most economical power factor = $Cos \ \phi_2 = \sqrt{1 - (Y/x)^2}$				
	Most economical power factor at which maximum saving will occurs				
c) ii)	State the methods of power factor improvement. Explain any one of them.				
Ans:	Methods of power factor improvement:-	(2 Marks)			
	1) By use of static capacitor (Condenser)				
	2) By use of over excited synchronous motor (Synchronous condenser)				
	3) By use of over excited Schrage motor				
	4) By use of phase advancer.				
	Explanation:				
	1) The static capacitor method of power factor improvement.	(2 Marks)			
	Before connecting capacitor Phasor diagram				
	After connecting capacitor phasor diagram				
	$\cos \varphi_1 = \min \alpha$ Power factor				

Summer– 2016 Examinations Model Answer

Page 42 of 42

Observation:

Subject Code: 17507

From above vector diagram & power triangle calculations, if capacitor is connected across load than following observations are observed.

S.No.	Parameter	Effect
1	Power factor	Improves
2	Magnetizing current ($I\mu$)	Reduces
3	Total current	Reduces
4	Lagging reactive power (KVAr)	Reduces
5	Apparent power (KVA)	Reduces

> Connection diagram to connect capacitor to improve power factor (Delta connection)

or equivalent figure

$$(Cph) = \frac{KVAR}{3\omega V^2}$$
 Farad

$$\omega = 2\pi f$$

> 3-ph Star connected Capacitor Bank:

-----END-----