

Subject Code: 17417

Model Answer

Page 1 of 29

Important suggestions to examiners:

- 1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme.
- 2) The model answer and the answer written by candidate may vary but the examiner may try to assess the understanding level of the candidate.
- 3) The language errors such as grammatical, spelling errors should not be given more importance. (Not applicable for subject English and communication skills)
- 4) While assessing figures, examiner may give credit for principle components indicated in a figure. The figures drawn by candidate and model answer may vary. The examiner may give credit for any equivalent figure drawn.
- 5) Credits may be given step wise for numerical problems. In some cases, the assumed constant values may vary and there may be some difference in the candidate's answers and model answer.
- 6) In case some questions credit may be given by judgment on part of examiner of relevant answer based on candidate understands.
- 7) For programming language papers, credit may be given to any other program based on equivalent concept.

Q.1	Attempt any TEN of the following: 20				
i)	State the necessity of transmission of electricity.				
Ans:	Because of following points there is necessity of transmission of power:-				
	(Any Two Points are Expected)				
	1. Electrical load on power system is not concentrated at one place but it is widely spread.				
	2. Load points are located away from generating station.				
	3. Due to limitation of site selection criteria of major generating Station (HPP, TPP & NPP)				
	are located far away from load centers and hence the electricity need to transmit from				
	generating stations to the point of actual utilization of it (consumers) for this purpose				
	transmission electricity is necessary				
b)	State voltage's at different levels from generation to distribution: (i) Generation voltage (ii) Primary transmission voltage (iii) Secondary transmission voltage (iv) Primary distribution voltage				
Ans:	Voltage's at different levels from generation to distribution: (Each Level: 1/2 Mark)				
	i) Generation Voltage : 3.3KV, 6.6KV,11KV and 17.5 KV etc.				
	ii) Primary Transmission voltage :- 220 KV, 400KV, 765 KV (750 KV)				
	iii) Secondary Transmission voltage :- 220 KV, 132 KV, 110 KV, 66 KV				
	iv) Primary Distribution voltage :- 33 KV, 22KV, 11 KV and for long distance line it				
	may be 66 KV				

Model Answer

Page 2 of 29

c)	State any four components of transmission line.
Ans:	Following are the some components of transmission Line:-
	(Any four components are expected: 1/2 Mark each, Total 2 Marks)
	1. Supporting structure (pole)
	2. Line insulator
	3. Overhead conductor
	4. 'V' Cross arm
	5. Top pin support
	6. Two Pin Cross arm
	7. Four pin cross arm
	8. Stay set (Stay wire of 7/8 or 7/10 SWG)
	9. Lighting arrestors
	10. Guarding wires
	11. Continuous earth wire
	12. Cables
	13. Fuses and Isolating switches
	14. Different types of Clamp (A-type, B-Type)
	15. Bird guards
	16. Vibration damper
	17. Jumpers
d)	State the long form of (i) AAC (ii) AAAC
Ans:	The long form of (Each long form: 1 Mark, Total 2 Marks)
	1. AAC : All Aluminum Conductor
	2. AAAC : All Aluminum Alloy Conductor
e)	State the effect of line parameters on performance of transmission line.Following are the effect on performance of transmission line:
Ans:	
	(Each effect: 1/2 Mark, Total 2 Marks)
	1. Due to resistance (R), voltage drop in transmission line & copper losses in transmission line
	produces.

S	SUMMER- 2016 ExaminationsSubject Code: 17417Model Answer	Page 3 of 29
	2. Due to inductance (L) voltage drop in transmission line produces.	
	3. Capacitor (C) draws charging current through transmission line. This charge	ging current
	produces additional copper losses & voltage drop in transmission line.	
	4. Due to above reasons, transmission line efficiency, voltage regulation & al	so power factor
	of transmission line gets affected.	
f)	State desirable properties of cable (any four points).	
Ans:	Following are the main desirable properties of cables: (Any Four Points are l	Expected)
	(Any Four properties expected: 1/2Mark each, Total 1. Stranded Conductor:	2 Marks)
	The conductor used for cable should be stranded specially for larg	e size of cable.
	2. Annealed Conductor:	
	Annealed conductor should be used to become conductor soft.	
	3.Tinned conductor:-	
	Tinned conductor should be used so that conductor will not stick with insul	ation.
	3. Cross Section Of Conductor:	
	Cross Section Of Conductor should be proportional to magnitude of	of current.
	4. Insulation Thickness:	
	The insulation thickness provided to cable should be proportional voltage. To give high degree of safety and reliability.	to magnitude of
	5. Mechanical Protection:	
	Especially underground cable should be provided with mechanica (armouring). So that it will withstand against rough handling and mecha	-
	6. Life:	
	The material used for cable should have long life.	

Subject Code: 17417

Model Answer

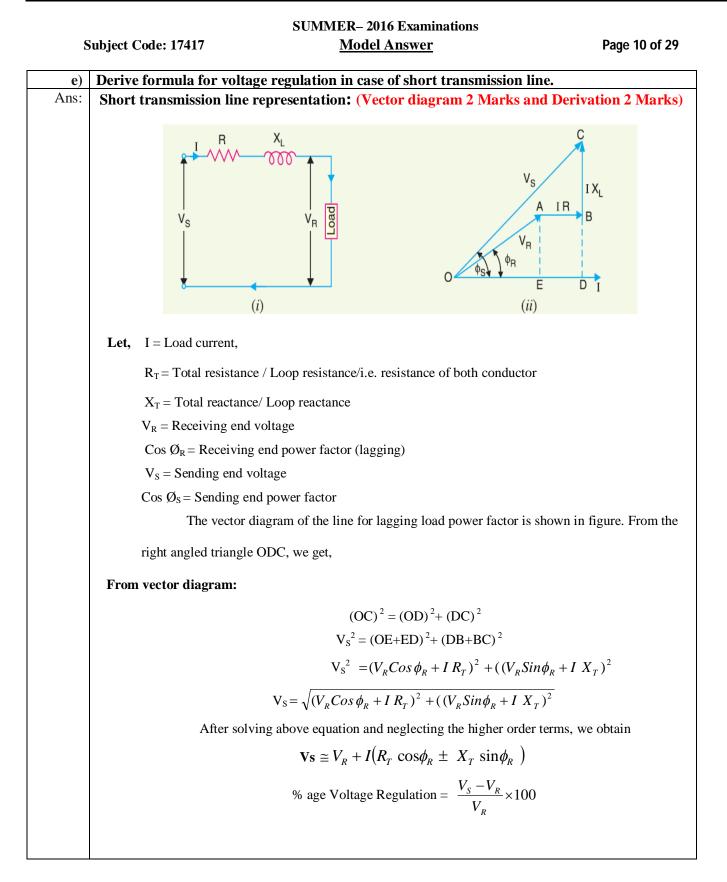
Page 4 of 29

Ans:	Following are HVDC transmission line in India.(1 Mark for each, Total 2 Marks)(Any Two Lines are Expected)					
	S.N.	From	То			
	1	Rihand (U.P) (from 1990)	Dadri			
	2	Talcher- is the biggest HVDC transmission passes through Orissa (A.P) Tamilnadu & Karnataka	Kolar			
	3	Chandrapur- Padghe (Maharashtra) in Western Region	Padghe (Maharashtra)			
	4	Bersoor (M.P.)	Lower Sileru (Arunachal Pradesh)			
	5	Connecting Northern region (Sasaram- Pusawali)	Eastern Region			
	6	Connecting Northern region (Vindhyachal)	Western Region			
h) Ans:		naximum HVDC transmission voltage in India. num HVDC transmission voltage in India: Maximum HVDC Transmission Voltage in In	(2 Marks) dia is ± 500 KV.			
i) Ans:	Draw vector diagram at leading P.F. in transmission line? State its effect on regulation. vector diagram at leading P.F. in transmission line:					
	(1 Mark for Vector diagram, 1 Mark for effect , Total 2 Marks)					
		I Vsph IX	ph [Rph			
		[°] Rph	or equivalent figure			
	Effect on regulation:					
		t Leading power factor receiving voltage is more than				

SUMMER-2016 Examinations Subject Code: 17417 **Model Answer** Page 5 of 29 State four requirements of a distribution system. j) (Any Four requirements expected: 1/2Mark each, Total 2 Marks) Ans: Distribution system should posses following properties or requirements:-1) Proper Study of the area carefully & estimate the load densities, present and future 2) As far as shortest route should be selected 3) As close as possible to the road for easy approach during construction & for easy maintenance. 4) Route in direction of possible future load. 5) Angle points should be less. 6) Select the transformer size & conductor size from the result of load study. 7) Determine the load centers 8) **Design of Layout:** layout should be simple in design. 9) **Distribution system:** It should follow standards in electricity rules for-Installation \geq Protection \triangleright Safety \geq Quality supply to consumers \triangleright Operation & maintenance of lines & sub-station 10) Maximum Flexibility and Expendability in future 11) Make the system with minimum distribution losses. 12) Proper clearances should be maintained from safety point. 13) **Time required for completion:** Time required for completion of work should be less.

S	Subject Code: 17417	SUMMER– 2016 Examinations <u>Model Answer</u>	Page 6 of 29		
	14) Initial Cost: It	should be less.(To make the system economicated	al)		
	15) Maintenance:	It should be low, easy, less costly & less time co	onsuming.		
	16) Reliability: It	should have high reliability.			
	17) Voltage fluctuation: It should have less voltage fluctuation.				
	18) Voltage Regul	ation :- Within permissible limit			
		f power: - Power should be available whenever a consumers on demand that they may require from			
		form, non-fluctuating flow of power is necessa			
	categories of co		Ty to feed toads of all		
	_	It on nearest distribution system should not affe	ect stability of existing		
	distribution sys	·			
k)	Why radial distribution sy	stem used for short distance.			
Ans:	Radial distribution system		(2Mark)		
	Since there is	only one feeder to distribution transformer center	er (DTC)feed at one		
	point so,				
	1) There is no reliability	y to maintain supply at the time of fault on incor	ning feeder.		
	2) There is no reliability to maintain supply at the time of maintenance of incoming feeder.				
	If the system is used for long distance then it takes more time for fault finding &				
	repairing. Hence radial distribution system is not used for long distance even its initial cost is				
	low Therefore it is used	for short distance only.			
l)		ubstation according to method of constructio			
Ans:	(According to Method of	Any Four Types are expected: 1/2 Mark each Construction:-	ı, Total 2 Marks)		
	1. Indoor Substation: Ir	n this substation all equipments including transfo	ormer are installed		
	under closed construct	ion building is called 'indoor substation.			
	2. Outdoor Substation:	In this substation all equipments including trans	former are installed in		
	air (Open to sky) only	control room is constructed is called outdoor su	bstation		

5	SUMMER- 2016 Examinationsubject Code: 17417Model AnswerPage 7 of 29			
	3. Gas insulated Substation: Space required for GIS is very less even then indoor substation.			
	4. Underground Substation: In underground substation all equipments including transformer			
	are installed under closed construction in underground. Underground substation is preferred			
	in thickly populated area, Space available for building & equipments is limited (In			
	congested place) and where cost of land is very high.			
	5. Pole mounted substation: Generally distribution transformer substation are pole mounted.			
	6. Plinth Substation: Generally large capacity transformers are plinth mounted because its			
	weight is high. Transformer 315 KVA & above are generally plinth mounted.			
	7. Compact/prefabricated substation: Now day's compact or prefabricated distribution			
	substations are more popular. Its appearance is better than pole mounted and plinth mounted			
	distribution substation.			
Q.2	Attempt any FOUR of the following :16 Marks			
a)	State any four applications where HVDC transmission is used through cable only and not by			
a)	State any four applications where HVDC transmission is used through cable only and not by overhead line.			
a)	State any four applications where HVDC transmission is used through cable only and not by overhead line. Applications where HVDC transmission is used through cable only and not by overhead line			
a)	State any four applications where HVDC transmission is used through cable only and not by overhead line. Applications where HVDC transmission is used through cable only and not by overhead line (Any Four applications are expected: 1 Mark each, Total 4 Marks)			
a)	State any four applications where HVDC transmission is used through cable only and not by overhead line. Applications where HVDC transmission is used through cable only and not by overhead line (Any Four applications are expected: 1 Mark each, Total 4 Marks) 1. HVDC is preferred for underground cable when power transmission through			
a)	State any four applications where HVDC transmission is used through cable only and not by overhead line. Applications where HVDC transmission is used through cable only and not by overhead line (Any Four applications are expected: 1 Mark each, Total 4 Marks) HVDC is preferred for underground cable when power transmission through underground cable is greater than 40-50 KM than only HVDC uniqueally suited. 			
a)	State any four applications where HVDC transmission is used through cable only and not by overhead line. Applications where HVDC transmission is used through cable only and not by overhead line (Any Four applications are expected: 1 Mark each, Total 4 Marks) HVDC is preferred for underground cable when power transmission through underground cable is greater than 40-50 KM than only HVDC uniqueally suited. HVDC is preferred for underground cable transmission as incoming line in megacities. 			
a)	State any four applications where HVDC transmission is used through cable only and not by overhead line. Applications where HVDC transmission is used through cable only and not by overhead line (Any Four applications are expected: 1 Mark each, Total 4 Marks) HVDC is preferred for underground cable when power transmission through underground cable is greater than 40-50 KM than only HVDC uniqueally suited. HVDC is preferred for underground cable transmission as incoming line in megacities. HVDC is preferred for underground cable transmission for crossing long lake, ocean etc. 			
a)	 State any four applications where HVDC transmission is used through cable only and not by overhead line. Applications where HVDC transmission is used through cable only and not by overhead line (Any Four applications are expected: 1 Mark each, Total 4 Marks) 1. HVDC is preferred for underground cable when power transmission through underground cable is greater than 40-50 KM than only HVDC uniqueally suited. 2. HVDC is preferred for underground cable transmission <u>as incoming line in megacities.</u> 3. HVDC is preferred for underground cable transmission for crossing long lake, ocean etc. 4. HVDC is preferred for underground cable transmission <u>where atmospheric conditions</u> 			
a)	 State any four applications where HVDC transmission is used through cable only and not by overhead line. Applications where HVDC transmission is used through cable only and not by overhead line (Any Four applications are expected: 1 Mark each, Total 4 Marks) 1. HVDC is preferred for underground cable when power transmission through underground cable is greater than 40-50 KM than only HVDC uniqueally suited. 2. HVDC is preferred for underground cable transmission <u>as incoming line in megacities.</u> 3. HVDC is preferred for underground cable transmission for crossing long lake, ocean etc. 4. HVDC is preferred for underground cable transmission <u>where atmospheric conditions</u> are too bad for overhead transmission line, e.g. High wind pressure, rainfall, icefall etc. 			
a)	 State any four applications where HVDC transmission is used through cable only and not by overhead line. Applications where HVDC transmission is used through cable only and not by overhead line (Any Four applications are expected: 1 Mark each, Total 4 Marks) 1. HVDC is preferred for underground cable when power transmission through underground cable is greater than 40-50 KM than only HVDC uniqueally suited. 2. HVDC is preferred for underground cable transmission <u>as incoming line in megacities.</u> 3. HVDC is preferred for underground cable transmission <u>for crossing long lake, ocean etc.</u> 4. HVDC is preferred for underground cable transmission <u>where atmospheric conditions</u> are too bad for overhead transmission line, e.g. High wind pressure, rainfall, icefall etc. 5. HVDC is preferred for underground cable <u>for underwater power links.</u> 			
a)	 State any four applications where HVDC transmission is used through cable only and not by overhead line. Applications where HVDC transmission is used through cable only and not by overhead line (Any Four applications are expected: 1 Mark each, Total 4 Marks) 1. HVDC is preferred for underground cable when power transmission through underground cable is greater than 40-50 KM than only HVDC uniqueally suited. 2. HVDC is preferred for underground cable transmission <u>as incoming line in megacities.</u> 3. HVDC is preferred for underground cable transmission for crossing long lake, ocean etc. 4. HVDC is preferred for underground cable transmission <u>where atmospheric conditions are too bad for overhead transmission line, e.g. High wind pressure, rainfall, icefall etc.</u> 5. HVDC is preferred for underground cable <u>for underwater power links.</u> 6. HVDC is preferred for underground cable <u>for powering island from onshore.</u> 			



Model Answer Subject Code: 17417 Page 8 of 29 State two chemical and two thermal properties of insulating materials. List any four b) insulating materials used for manufacturing of transmission and distribution insulators. (2 Mark For properties and 2 Mark For names of insulating materials, Total 4 Marks) Ans: 1) Chemical Properties of insulating material:- (1 Mark) (Any two Properties are expected) 1. It should not be hygroscopic (which absorbs moisture). 2. It should have high resistance to acid & alkaline. 3. It should have high resistance to oil. 2) Thermal Properties of insulating material:- (1 Mark) (Any two Properties are expected) 1. It should have high thermal conductivity. 2. It should be non -inflammable. 3. It should withstand at high temperature. 4. Ii should have thermal Stability. 5. Co-efficient of thermal expansion should be low. List of insulating materials used for manufacturing T & D insulators: (2 Mark) (Any two names are expected) 1. Porcelain 2. Glass 3. Steatite 4. Polymer Insulator (Composite conductor) State any four factors on which skin effect depends. What is the effect on transmission c) efficiency and voltage regulation due to skin effect. (2 Mark For factors skin Effect depends and 2 Marks for effect on transmission efficiency Ans: and voltage regulation, Total 4 Marks) **On following factors skin Effect depends**: (Each point : 1/2 Mark Total 2 Marks) 1. Supply frequency: As frequency increases skin effect increases. 2. Cross section of conductor: Skin effect increases with increase in diameter of conductor.

	SUMMER- 2016 Examinations	
8	Subject Code: 17417 <u>Model Answer</u>	Page 9 of 29
	3. Solid conductors have more skin effect than stranded conductors.	
	4. Permeability of conductor material.	
	Following effect on transmission efficiency and voltage regulation due to	
	1 Transmission officiency reduces	(2 Mark)
	 Transmission efficiency reduces. Voltage regulation becomes near (increased) 	
	2. Voltage regulation becomes poor (increases)	
	State any four factors on which proximity effect depends. State two po	oints how proximity
d)	effect can be reduced?	
Ans:	(2 Mark For factors proximity effect depends and 2 Marks for how pro	eximity effect can be
	reduced, Total 4 Marks)	
	Proximity effect depends on following factors:-	
	(Any Four point expected : 1/2 Mark e	ach Total 2 Marks)
	1. Magnitude of frequency.	
	2. Distance between two conductors	
	3. Size of conductor.	
	4. Resistivity conductor material.	
	5. Permeability of conductor material.	
	Due to following points Proximity effect can be reduced:-	
	(Any Two point expected : 1Mark each Tota	al 2 Marks)
	1. By increasing the distance between two conductors i.e. by using longe	er cross arm
	2. By using overhead transmission system instead of underground. Beca	ause in cable distance
	between two conductor is less. So proximity effect is more	
	3. Effects are negligible for small size, small current carrying conductor	
	4. Use DC transmission system instead of AC transmission system to av	void proximity effect,
	Since frequency of DC supply is Zero	

S	SUMMER- 2016 ExaminationsSubject Code: 17417Model AnswerPage 11 of 29
f)	State the equation A, B, C and D constants for short transmission line.
Ans:	Equation A, B, C and D constants for short transmission line:
	(Each equation 1 Mark , Total 4 Marks)
	$A = \frac{V_{S ph}}{V_{R ph}}$ Voltage Ratio
	$B = \frac{V_{S ph}}{I_R}$ Impedance in ohm
	$C = \frac{I_s}{V_{R_{ph}}}$ Conductance in mho
	$D = \frac{I_s}{I_R}$ Current Ratio
Q.3	Attempt any Four of the following : 16 Marks
a)	Under which conditions Ferranti effect occurs state any four conditions? What is Ferranti
Ans:	effect? (Conditions Ferranti effect occurs 2 Marks and Meaning of Ferranti effect 2 Marks, Total
	Marks)
	Due to following Conditions Ferranti effect occurs in transmission line:
	(Any four conditions are expected
	1. When there is no load on transmission line $(I_L = 0)$ Or
	2. When There is no load at receiving sub-station or Lightly loaded Or
	3. When there is sudden load thrown OFF. Or
	4. When there is sudden load shading. Or
	5. When Transmission line is open circuited due to load failure.
	Ferranti effect:- Under any one of the above mention conditions, it is found th
	Ferranti effect:- Under any one of the above mention conditions, it is found th receiving end voltage (V_R) is found to be greater than sending end voltage (V_S) . <u>Th</u>

Subject Code: 17417

Model Answer

Page 12 of 29

b)	State any four factors which affects corona? State two points how corona effect can be reduced.
Ans:	(Factors which affects corona 2 Marks and how corona effect can be reduced 2 Marks, Total
	4 Marks)
	The Following Factors affecting corona:-(Any Four point expected : 1/2 Mark each)1. Magnitude of Voltage :
	If voltage across two conductors is greater than 30 KV/cm, i.e. breakdown voltage
	of air than corona formation starts. Corona will not start if voltage is below 30 KV/cm
	2. Distance between two conductor:
	If spacing between two conductors is very large as compare to their diameter than
	there is no possibility of corona formation. Because value of voltage at which corona
	occurs increases.
	3. Size of conductor:
	If size (Cross section) of conductor is more, than magnitude of voltage required to
	occur the corona increases.
	4. Condition of conductor & Hardware:
	Rough and irregular surface of conductor and hardware will give more corona
	than solid, smooth body conductor & hardware.
	5. Atmospheric Condition:
	As corona takes place due to ionization of air so it depends on condition
	of air so for dry air formation of corona occurs late than in wet air (damp atmosphere
	condition/ rainy season/thunderstorms/fog air becomes more conductivity)
	6. Effect of supply Frequency: Corona loss varies directly as the supply frequency
	7. Effect of density of air: Corona loss increases with the decrease in the density of air (The
	corona loss of transmission line passing through hilly area is higher than that of a similar
	line in plain due to reduced value of air density at high level /altitude)
	Due to following points how corona effect can be reduced:
	(Any two point expected: 1 Mark each)
	1. By increasing distance between two conductor i.e. by using longer cross arm.
	2. By using larger size(diameter) of conductor e.g./ using ACSR, bundled conductor
	3. By using smooth body conductor and hardware.

Subject Code: 17417

<u>Model Answer</u>

Page 13 of 29

:		effect (vi) Corona loss (vii)		Point : 1/2 Mark, Total 4 Mar
	Sr.No	Points	EHV A.C	HVDC
	1	Number of conductor required for single circuit	Three conductors (R.Y.B)	One conductor.& Ground is used as a return path
	2	Capital cost of S/S	Less	More
	3	Skin effect	Present	Absent
	4	Proximity effect	Present	Absent
	5	Ferranti effect	Present	Absent
	6	Corona losses	More	Less
	7	Copper loss	More	Less
	8	String efficiency	Less than 100 %	100 %
		out of Homopolar HVD	OC transmission line	mention polarity of over (4 Marks)
	Draw lay	out of Homopolar HVD	Homopolar DC tra -500/-600/-800 kV	mention polarity of over (4 Marks)
	Draw lay	out of Homopolar HVD	Homopolar DC tra	mention polarity of over (4 Marks)
	Draw lay	Cout of Homopolar HVD Layout of Homopolar HVD Sending end substation Rectifier and Filter unit	Homopolar DC tra	mention polarity of over (4 Marks) nsmission
	Draw lay	Tout of Homopolar HVD Layout of Homopolar HVD Sending end substation Rectifier and Filter unit 3ph step-up transformer	Homopolar DC tra	mention polarity of over (4 Marks) nsmission
	Draw lay	Cout of Homopolar HVD Layout of Homopolar HVD Sending end substation Rectifier and Filter unit	Homopolar DC tra	mention polarity of over (4 Marks) nsmission

Model Answer Subject Code: 17417 Page 14 of 29 Write sequence of operation of isolator and circuit breaker while opening and closing. e) (Sequence of operation while opening 2 Marks and Sequence of operation while closing 2 Ans: Marks, Total 4 Marks) Sequence of operation of Isolator, C.B. while opening & closing is as below: ➢ While Opening: 1. Open circuit breaker 2. Open Isolator 3. Close earthing switch ➤ While Closing: 1. Open earthing switch 2. Close isolator 3. Close circuit breaker State the function of equipments used in substation: (i) Earth switch (ii) Relay (iii) Lighting **f**) Arrester (iv) Auxiliary transformer Function of equipments used in substation: (1 Mark each , Total 4 Marks) Ans: 1) Earth switch: -Its function is to discharge the ground capacitance when line is opening for maintenance purpose by isolator. 2) <u>Relay</u>: It sense the faults & gives signal to trip circuit of C.B. to open. 3) Lightning Arrester: -It is provided for protection of substation against lightning stroke. 4) Auxiliary Transformer (Station transformer): -Its function is to step down the input voltage (11 KV) to distribution voltage (3ph,400V) to give supply to control room, area lighting, staff quarters etc,

Subject Code: 17417

Model Answer

Page 15 of 29

Q.4		ot any FOUR of the fo		16 Marks		
,	Compare Pin type and suspension insulators on given points (i) Position of insulator or cross arm (ii) Position of conductor on insulator (iii) Reaction on cross arm (iv) Possibility					
a)	of flash over due to large birds (v) Maintenance/Replacement cost (vi) Maximum voltage level (vii) Effect on height of supporting structure (viii) Life					
Ans:	level (v	ii) Effect on height of		: 1/2 Mark ,Total 4 Marks)		
	S.No	Points	Pin Type insulator	Suspension or Disc Type insulator		
	1	Position of insulator on cross arm	It is fixed on top of cross arm by using galvanized steel pin. So it is called as pin type insulator.	These insulators are hanging below the cross arm hence its name is suspension type insulator.		
	2	Position of conductor on insulator	On the top of the insulator	Conductor is clamped at the bottom of the insulator in a string		
	3	Reaction on cross arm	More	Less		
	4	Possibility of flash over due to large birds	Due to large birds, flash over is possible because distance between two insulators is less than suspension insulator	As insulators are suspended & distance between two conductors is more than pin type insulator so there is no possibility of flash over due to large birds or similar object.		
	5	Maintenance /replacement cost	If pin type insulator of existing line break down (failure) by any reason. Then it should be replaced by new one	If any insulator in the string of suspension insulator break down/fails then only that insulator/disc in the string require to be replace by new one instead of replacement of whole string unit.		
	6	Maximum voltage level	Maximum voltage level for which pin type insulator is designed is 33KV	Maximum voltage level for which one suspension insulator type insulator is designed is 11KV		
	7	Effect on height of supporting structure	Conductor is fixed on the top of insulator so to maintain minimum ground clearance height of pole required as compared to suspension type insulator is less	As insulators are suspended below the cross arm & conductor is clamped below the insulator so to maintain minimum ground clearance height of pole increase.		
	8	Life	Less	More		

b)

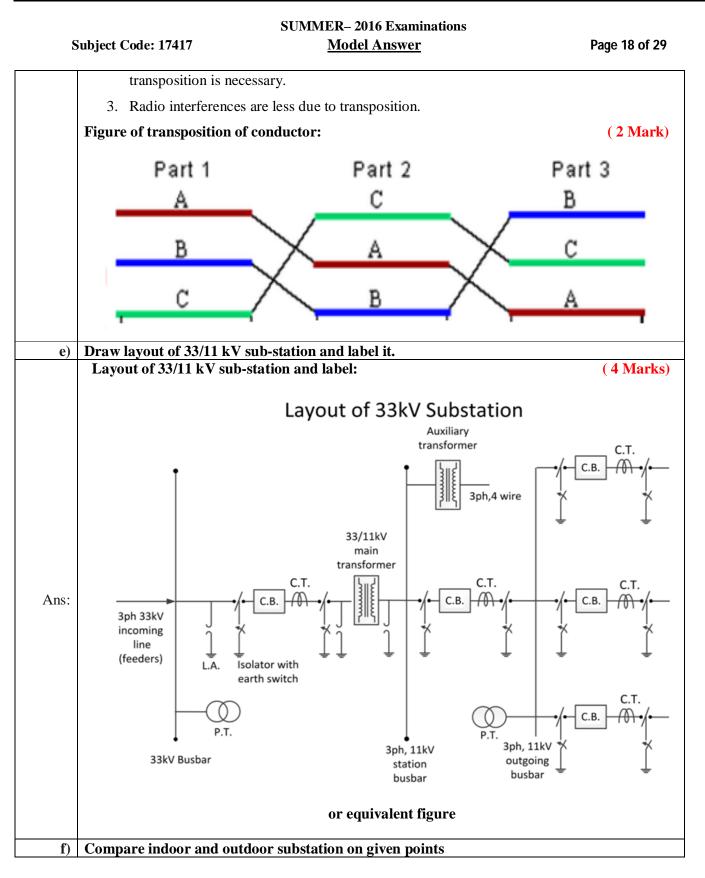
Ans:

Subject Code: 17417

ubject Code: 17417	Model Answer	Page 16 of 29
State four advanta	ages of ACSR conductor. State four trade names of AC	SR conductor.
(Advantages 2 Ma	irks and Trade names of ACSR 2 Marks, Total 4 Mark	s)
Advantages of	ACSR Conductors:- (Any Four expected: 1/2 mark ea	ich ,Total 2 Marks)
1. Due t	to steel re-enforcement, mechanical strength of conductor i	increases
	So we can increase distance between two poles i.e. Span.	
	So number of poles require reduces for same transmission	distance.
	As an effect transmission line cost reduces	
2. As th	e mechanical strength is more ACSR conductors produces	small Sag.
	So height of pole to maintain ground clearance can be redu	iced.
	So cost of pole reduces, as its height reduces	
	Hence transmission cost reduces.	
3. It tak	es advantages of Skin effect. So skin effect is minimized.	
4. Coros	na Loss reduces.	
5. It is 5	0% stronger & 20% Lighter than copper.	

- 6. It is cheaper than copper.

Following are the trade names of ACSR conductor:


(Any Four expected: 1/2 mark each ,Total 2 Marks)

S.No	Brand/Trade name	S. No	Brand/Trade name
1	Mole	16	Tiger
2	Squirrel	17	Wolf
3	Gopher	18	Lynx
4	Weasel	19	Panther
5	Ferret	20	Lion
6	Rabbit	21	Bear
7	Mink	22	Goat
8	Horse	23	Sheep
9	Beaver	24	Koo Doo
10	Raccoon	25	Deer
11	Otter	26	Zebra
12	Cat	27	Elk
13	Dog	28	Camel
14	Leopard	29	Moose
15	Coyote		

S	Subject Code: 17417	SUMMER– 2016 Examination Model Answer	s Page 17 of 29
c)		ance of the line are 5 ohm and	xW power at 0.8 P.F. lagging tota d 5.6 ohm. Determine: (i) Sending
Ans:	$\therefore Cos\phi_R = 0.9 \therefore \sin\phi_R = 0.6$	Resistance 0.5 ohm	Reactance 5.6 ohm
	Step 1: To calculate Sending e Pow		(1/2 Mark)
		$I = \frac{P}{V\cos\phi} , I = \frac{1000 \times 10^{3}}{11 \times 10^{3} \times 0^{3}}$	3 0.8
	I =	113.6363 amp	(1/2 Mark
	Step 2: To calculate Sending e	nd voltage:	
	Vs =	$V_R + I \big(R_T \cos \phi_R - X_T \sin \phi_R $) (1 Mark)
	= 1	$1 \times 10^{3} + 113.6363(5 \times 0.8 - 5.6)$	5×0.6)
		= 11000 +72.7272	
		= 11072.7272 volt	
		Vs = 11.07272 KV	(1/2 Mark
	Step 4:To calculate voltage reg		
	% Vol	tage Regulation = $\frac{V_s - V_R}{V_R} \times 10$	0 (1 Mark)
		$=\frac{11072.7272-11000}{11000}\times10$	
		= 0.6611 %	(1 /2 Mark)
d)			ire of transposition of conductor.
Ans:	(Reasons the transposition 2 M	Iarks and Figure of transpos	ition 2 Marks, Total 4 Marks)
	Reasons the transposition of c	onductor: (Any Two points e	xpected) (2 Mark
	1. Due transposition of con	ductor inductance of each line	is same $L_A = L_B = L_C$, So drop due
	to inductive reactance in	each line is same so voltage at	receiving end between any two
	line become same.		
	2. So to obtain same voltag	e in any two line at receiving e	and $(V_{RY} = V_{YB} = V_{RB})$

Subject Code: 17417

Model Answer

Page 19 of 29

	required		neu for completion (m) Avana	bility of natural light (iv) Spac	
Ans:	(Each Point : 1 Mark, Total 4 Marks)				
	Sr. No.	Points	Indoor substation	Outdoor substation	
	i)	Capital cost	High, as construction work cost is more.	Less, as construction work cost is less.	
	ii)	Time required for completion	More, as construction work is more.	Less, as construction work is less.	
	iii)	Availability of natural light	Natural light is not available even in day time, so there is need of illumination even during a day time. which increases energy consumption charges due to indoor installation	Natural light is available in day time, so there is no need of illumination during day time. So it saves electrical energy & its cost	
	iv)	Space Require	Less	More	
Q.5	Attempt	any FOUR of the foll	owing :	16 Marks	
a)	 a) (i) Minimum clearance between cable and water pipe line when running in para (ii) Minimum clearance between cable and gas/petroleum oil pipe line when running in parallel (iii) If cable is laid through pipe what should be diameter of pipe (iv) When more than one cable is to be laid in the same trench, what should be running in parallel 				
Ans:		cing between two cab <mark>ls of laying of cable 2</mark>	Marks and Precaution while la	ying 2 Marks, Total 4 Marks)	
	Following	g are the different me	ethods of Laying of cable:- (1/2	2 Mark each, Total 2 Marks)	
		Direct laying cable			
		Draw- in system			
		Solid System			
		Cable laid in tray g precaution while la	ying of underground cable in th	ne situation: 1/2 Mark each, Total 2 Marks)	
	i) Mi	nimum clearance betw			
		nimum clearance betw 5 <u>m</u>	veen cable and water pipeline whe		

S	SUMMER- 2016 ExaminationsSubject Code: 17417Model AnswerPage 20 of 2	9
	ii) Minimum clearance between cable and gas/petroleum oil pipeline <u>when</u> <u>running</u> <u>parallel should be 1 mtr</u>	in
	iii) Diameter of pipe is 2 to 3 cm , greater than cable diameter for easy handling of cable.	
	iv) When more than 1 cable is to be laid in the same trench, <u>then minimum 30 cm spacing</u> <u>provided</u>	<u>; is</u>
b)	Give the classification of cables: (i) According with voltage levels (ii) According to numb of core	ers
Ans:		
	1. Classification of cables with their voltage levels:	
	(Any Four points 1/2 Mark each, Total 2 Marks))
	1. Low voltage (tension) cable/LT cable: for operating voltage 1.1 KV.	
	2. High voltage (tension) cable/HT cable: for operating voltage 11 KV.	
	3. Super tension cable/ST cable: for operating voltage 22 KV to 33 KV.	
	4. Extra-Super tension cable: for operating voltage 33 KV to 66 KV.	
	5. Extra-high tension cable (EHT): for operating voltage up to 132 KV	
	6. Extra-super voltage power cables: for operating voltage beyond 132 KV	
	2. Classification of cables According to numbers of cores:	
	(Any Four points 1/2 Mark each, Total 2 Marks) 1. Single Core cable)
	2. Two core cable	
	3. Three core cable.	
	4. Three & half core cable.	
	5. Four core cable	
	6. Six core cable	
	7. Multi core cable	

Subject Code: 17417

SUMMER- 2016 Examinations Model Answer

Page 21 of 29

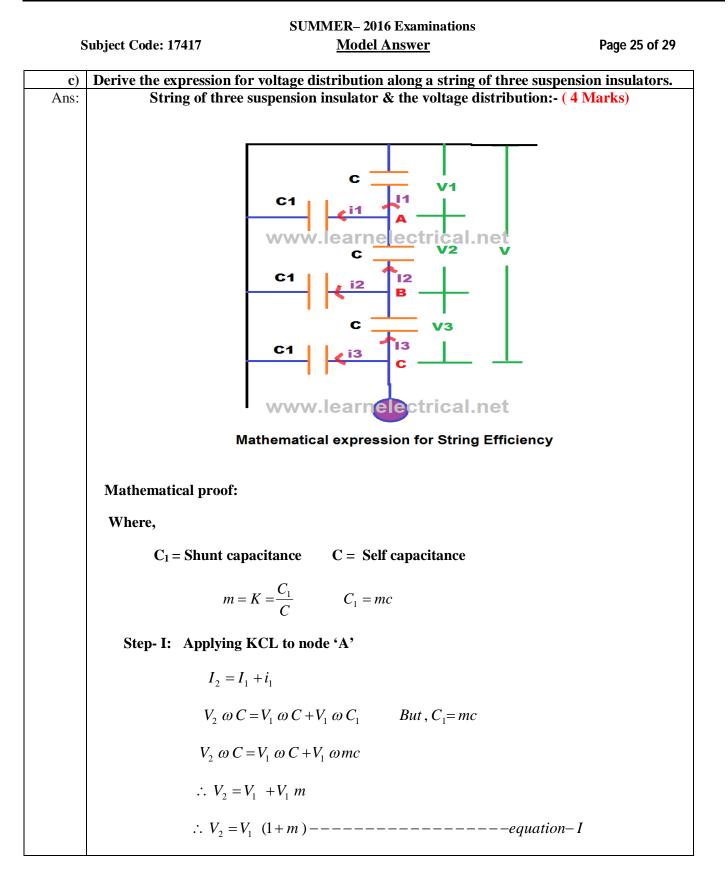
c)	An overhead three phase transmission line -delivers 5000 kW at 22 kV at 0.8 lagging P.F. The resistance and reactance per phase is 4 ohm and 6 ohm respectively. Determine (i sending end voltage (ii) percentage regulation of transmission line
Ans:	Given Data:- PR $P_R = 5000 \text{KW}$ $V_R = 22 \text{KV}$ P.F. = 0.8 lag $R_{ph} = 4 \text{ ohm}$ $X_{ph} = 6 \text{ ohm}$
	Step 1: To calculate current:
	Power P = $\sqrt{3} V_L I_L \cos\phi$ for 3 – ph (1/2 Mark)
	$I = \frac{P}{\sqrt{3} V_{LR} \times \cos \phi} , I = \frac{5000}{\sqrt{3} \times 22 \times 0.8}$
	I = 164.01996 amp (1/2 Mark
	Step 2: To calculate value of sin :
	$\therefore Cos\phi_R = 0.8; \sin\phi_R = 0.6$
	$V_{Rph} \equiv \frac{V_{RL}}{\sqrt{3}}$
	$V_{Rph} \equiv \frac{22}{\sqrt{3}}$
	$V_{Rph} \equiv 12.7017 \text{ KV or } V_{Rph} = 12.7017 \times 10^3 \text{ V}$ (1/2 Marl
	Step 3: To calculate Sending end voltage:
	Sending end phase voltage (V_{Sph}) =
	$= V_{Rph} + I (R_{Ph} \cos \emptyset_R + X_{Ph} \sin \emptyset_R) - (1/2 \text{ Mark})$ =12.7017×10 ³ +164.01996 (4×0.8 + 6×0.6) = 13817.03573V
	=13.81703 KV(1/2 Mark)
	Sending End Line Voltage = $\therefore V_{SL} = \sqrt{3} \times V_{sph}$
	$V_{SL} = \sqrt{3} \times 13.81703$
	= 23.9317 KV (1/2 Mark
	Step 4: To calculate voltage regulation:
	% Voltage Regulation = $\frac{V_{SPh} - V_{RPh}}{V_{RPh}} \times 100$ (1/2 Mar
	$=\frac{13.81703 - 12.7017}{12.7017} \times 100$
	12.7017

Subject Code: 17417

Model Answer

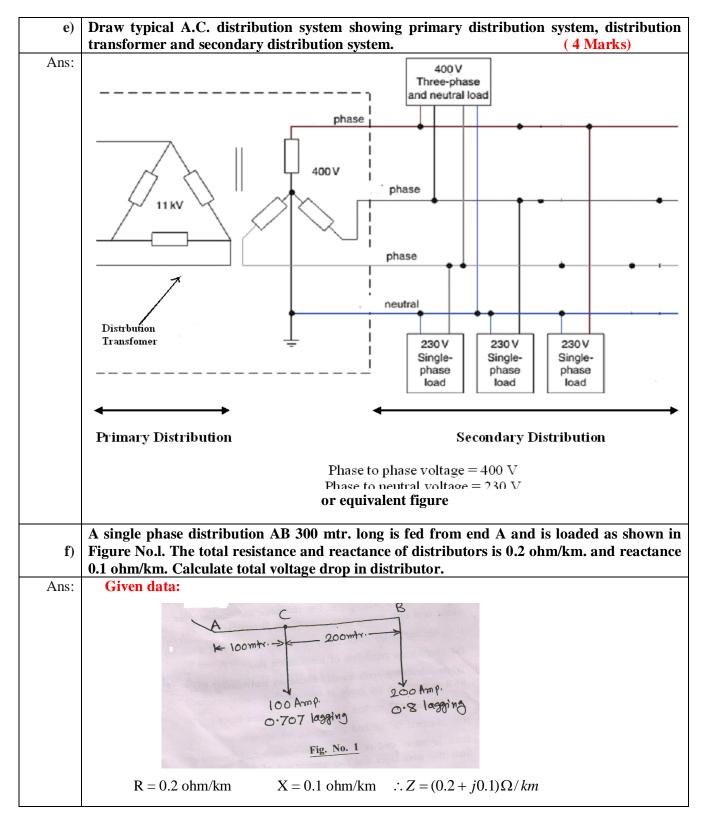
Page 22 of 29

d)	While calculating performance of medium transmission line, what assumptions are made in case of : (i) Noming 'T' method (ii) Nominal 'n' method
Ans:	(Assumptions: (i) Noming 'T' method 2 Marks and Assumptions: (ii) Nominal 'n' method 2
	Marks, Total 4 Marks)
	i) Noming 'T' method Equivalent circuit:-
	Assumptions:
	1. It is assume that line capacitance is connected at centre of transmission line.
	2. It is assume that half of the resistance & reactance per phase are divided in either side of
	capacitance.
	(ii) Nominal π (pi) Method Equivalent circuit :
	Assumption:
	1. It is assumed that capacitance of transmission line is divided into half of the line capacitance is
	connected at receiving end & half of capacitance is connected at sending end.
	2. It is assumed that transmission line resistance & reactance per phase is connected in
	between two half transmission line capacitance
e)	Draw layout of grid or interconnected distribution system. State two advantages and two applications of this system.
Ans:	(Layout 2 Marks, Advantages 1 Marks and application 1 Mark, Total 4 Marks)
	Grid distribution system
	S/S 1 Incoming line(feeder) 1 3ph, 3wire 11/22/33kV
	or equivalent figure



SUMMER-2016 Examinations Subject Code: 17417 **Model Answer** Page 23 of 29 **Advantages:** (Any Two points expected) (1 Mark) 1. Supply to distribution transformer centre is given through two different generating stations or major generating stations 2. It has highest reliability to maintain supply even when there is a fault on any one feeder 3. It has highest reliability to maintain supply even when there was maintenance on any one feeder. **Applications:** (Any Two points expected) (1 Mark) It is used where continuity of supply is most important: - e.g. Electric traction, TV broadcasting centre, AIR, Capital airline, Telephone exchange, Major hospitals, Important government buildings and Major industries etc. Classify distribution system : (i) According to nature of current (ii) According to method f) of construction (iii) According to scheme of connection Ans: **Classification of distribution system:** 1) According to nature of Current : (1 Mark) 1) DC Distribution System 2) AC Distribution System 2) According to Method of construction: -(1 Mark) 1) Overhead distribution system 2) Underground distribution system 3) According to scheme of connection: -(2 Mark) a) Radial (Tree) distribution system b) Ring mains (Loop) distribution system c) Grid (interconnected) distribution system Attempt any FOUR of the following : **Q.6** 16 Marks State any eight requirements or properties of the line supports used in transmission and a) distribution. Ans: Following are the requirements of the line supports used in transmission and distribution: (1/2 Mark each requirements or properties ,Total 4 Marks) 1. High mechanical strength:-It should have high mechanical strength to withstand against -

SUMMER-2016 Examinations Model Answer Subject Code: 17417 Page 24 of 29 \triangleright Wind pressure Load of fabrication Weight of Insulator Weight of conductor etc. \geq 2. Light in weight:-It should be light in weight to reduce-Transportation cost Handling, loading, unloading cost and \geq Erection cost. \geq 3. Effect of atmospheric conditions: It should be withstand even at bad atmospheric condition. 4. High resistance to corrosion: It should have high resistance to corrosion to avoid rusting. 5. Initial & Maintenance cost: It should be less. 6. Easy access: It should be easily accessible for wireman for line work and maintenance work. or They must be easily accessible for point and erection of line conductors 7. Life: It should have longer life. 8. Appearance: It should have good appearance or They must be of pleasing shape State any four factors to be considered while selecting type of line support. b) Ans: (Any Four points expected 1 Mark each, Total 4 Marks) Following are the different factors to be consider while selecting type of Line support: 1. Voltage level 2. Span 3. Application i.e. In urban or rural area 4. Atmospheric condition of area 5. Whether it is used for Transmission or Distribution purpose 6. Whether it is used Temporary purpose or permanent.


S	Subject Cod	SUMMER– 2016 E le: 17417 <u>Model Ans</u>	
	Step	• II: Applying KCL to node 'B'	
		$I_{3} = I_{2} + i_{2}$	
		$V_3 \omega C = V_2 \omega C + (V_1 + V_2) \omega C$	But, $C_1 = mc$ & $V_2 = (m+1)V_1\omega$
		$V_3 \omega C = V_1 (1+m) \omega C + V_1 \omega mc$	$+V_1(1+m)\omega C$
		$V_3 = V_1 (1+m) + V_1 m + V_1 (1+m)$	n) m
		$V_3 = V_1 (1 + m + m + m + m^2)$	
	$V_{3} = V_{1}$	$(1+3m+m^2)$	equation - II
		$\mathbf{V} = \mathbf{V}_1 + \mathbf{V}_2 + \mathbf{V}_3$	
d) Ans:	Compare		tor in case of transmission and distribution. int expected : 1 Mark each, Total 4 Marks)
	Sr.No.	Feeder	Distributor
	1	It is link between receiving substation & distribution transformer	It is link between distribution transformer substation & consumer
	2	It is also called as a High Tension Line	It is also called as a low Tension Line
	3	It is a 3-Ph, 3 wire system.(R-Y-B)	It is a 3-Ph, 4 wires system. (R-Y-B-N)
	4	Feeder voltage is 11KV/22KV/33KV depending upon load	Distributor voltage is for 3-ph consumer- 400V and 1-Ph consumer- 230V
	5	Feeder is high capacity conductors.	Distributors are low capacity conductors
	6	Feeder forms the primary distribution system	Distributors forms secondary distributor system.
	7	While designing feeder its current carrying capacity is important	While designing distributor its voltage drop calculation is important.
	8	Feeder is not tapped along its length	Distributors are tapped throughout its length.
	9	Its loading point is at substation only	Distributors loading point is throughout its length.

Subject Code: 17417

Model Answer

Page 27 of 29

Subject Code: 17417	SUMMER– 2016 Examinations <u>Model Answer</u>	Page 28 of 29
Section Impedance:-		
$Z_{CB} =$	$\frac{200}{1000}(0.2+j0.1)$ -	
=	= 0.04 + j0.02	
=	$0.0447 \angle 26.57^{\circ} \ ohm$	(1/2Marks)
$Z_{AC} = \frac{1}{10}$	$\frac{00}{000}(0.2+j0.1)$	
	= 0.02 + j0.01	
	$= 0.022 \angle 26.57^{\circ} ohm$	(1/2Marks)
Section Current	:	
Given,	$I_{\rm C} = 100 {\rm A}, \ 0.707 \ {\rm lag}$	
	$100 \angle -45^{\circ}$	
	70.71- j 70.71 Amp	(1/2Marks)
Given,	$I_B = 200A, 0.8 lag$	
	$200 \angle -36.87^{\circ}$	
	160- <i>j</i> 120 <i>Amp</i>	(1/2Marks)
Section Current:	$I_{CB} = I_B$	
	$=200 \angle -36.87^{\circ}$	
	160- <i>j</i> 120 Amp	
Section Current:	$I_{AC} = I_C \!\!+ I_B$	
	= (70.71 - j70.71) + (160 - j120)	
	= 230.71-j190.71	
	$= 299.3282 \ \angle -39.5778 \ Amp$	(1/2Marks)
Voltage drop in secti	on CB:-	
	$= I_{CB} X Z_{CB}$	
	$=(200 \angle -36.87^{\circ})((0.0447 \angle 26.57))$	

Subject Code: 17417	SUMMER– 2016 Examinations <u>Model Answer</u>	Page 29 of 2
	$= 8.94 \angle -10.305$ Volts	
	= 8.7959 - j 1.5984 Volts	(1/2Marks)
Step III:		
Voltage drop	in section AC:-	
	$V_{AC} = I_{AC} \times Z_{AC}$	
	$=(299.3282 \angle -39.5778) \ (0.022 \angle 26.57)$	
	$= 6.5852 \angle -13.0078 V$	
	= 6.4162 - j 1.4822 V	(1/2 Mark)
Total Voltage dro	op:-	
	Voltage drop in section CB + Voltage drop in section	n AC
	=(8.7959 - j1.5984) + (6.4162 - j1.4822)	
	=15.2121- <i>j</i> 3.0806 <i>Volt</i>	(1/2 Mark)
	$=15.5208 \angle -11.4481 Volt$	

-----END-----