

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

## SUMMER-16 EXAMINATION Model Answer

Subject code :(17312) Page **1** of **26** 

#### **Important Instructions to examiners:**

- 1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme.
- 2) The model answer and the answer written by candidate may vary but the examiner may try to assess the understanding level of the candidate.
- 3) The language errors such as grammatical, spelling errors should not be given more Importance (Not applicable for subject English and Communication Skills.
- 4) While assessing figures, examiner may give credit for principal components indicated in the figure. The figures drawn by candidate and model answer may vary. The examiner may give credit for any equivalent figure drawn.
  - 5) Credits may be given step wise for numerical problems. In some cases, the assumed constant values may vary and there may be some difference in the candidate's answers and model answer.
  - 6) In case of some questions credit may be given by judgement on part of examiner of relevant answer based on candidate's understanding.
  - 7) For programming language papers, credit may be given to any other program based on equivalent concept.



## **SUMMER-16 EXAMINATION Model Answer**

Subject code :(17312) Page **2** of **26** 

| Q No. | Answer                                                                                                                    | marks  | Total<br>marks |
|-------|---------------------------------------------------------------------------------------------------------------------------|--------|----------------|
| 1     | Any 10                                                                                                                    |        | 20             |
| 1-a   | Functional group – It is a group of atoms bonded together in a unique fashion                                             | 1      | 2              |
|       | which is present in the molecule & it is responsible for its characteristics chemical properties.                         |        |                |
|       | e.g. –OH,-COOH are the functional groups of alcohol & acid respectively                                                   | 1      |                |
| 1-b   | <b>Secondary carbon</b> : A carbon atom attached to two other carbon atom is called a a secondary carbon(2 <sup>0</sup> ) | 1      | 2              |
|       | <b>tertiary carbon</b> : A carbon atom attached to three other carbon atom is called a a tertiary carbon(3 <sup>0</sup> ) | 1      |                |
| 1-c   | Uses of Alkane: (any 2)                                                                                                   | 1 mark | 2              |
|       | 1. Alkanes are used in domastic fuel (natural gas)                                                                        | each   |                |
|       | 2. Methane is used in manufacturing of carbon black.                                                                      |        |                |
|       | 3. Used as refrigerent and solvent.                                                                                       |        |                |
|       | 4. Used in rubber compounding, packing tc.                                                                                |        |                |
|       | 5. Used in lubricant, paper, plasticizers                                                                                 |        |                |
| 1-d   | a) OR CH2 Cyclopropane                                                                                                    | 1      | 2              |



(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

### **SUMMER-16 EXAMINATION Model Answer**

Subject code :(17312) Page 3 of 26

| geer coc | ic .(17312)                                                                   | ' | age 3 01 20 |
|----------|-------------------------------------------------------------------------------|---|-------------|
|          | b) CH <sub>2</sub>                                                            | 1 |             |
|          | CH <sub>2</sub> CH <sub>2</sub> CH <sub>2</sub> cyclopentane                  |   |             |
| 1-e      | $C_2H_{4 \text{ o}}$ or $CH_2 = CH_2$ ETHENE                                  | 1 | 2           |
|          | $\mathrm{CH} \equiv \mathrm{CH}$ ACETYLENE                                    | 1 |             |
| 1-f      | Aromatic compounds: These are cyclic compounds usually having six             | 2 | 2           |
|          | membered rings of carbon atoms with alternate single and double bonds and     |   |             |
|          | show typical characteristic properties.                                       |   |             |
| 1-g      | Reduction reaction of benzene:                                                | 2 | 2           |
|          | On reduction with hydric acid at 250°c or hydrogen under pressure in presence |   |             |
|          | of finely divided nickel at 200°c they form products like cyclohexane.        |   |             |
|          | $C_6H_6 + 6(H) \longrightarrow C_6H_{12}$                                     |   |             |
|          | BENEZENE CYCLOHEXANE                                                          |   |             |
| 1-h      | IUPAC NAMES OF:                                                               |   | 2           |
|          | a) ethyl bromide: bromo ethane                                                | 1 |             |
|          | b) n-butyl chloride: 1,chlorobutane                                           | 1 |             |
| 1-i      | Method of preparation of alcohol: (any 1)                                     | 2 | 2           |
|          | By the hydrolysis of an alkyl halide with aqueous alkali or silver oxide      |   |             |
|          | suspended in water ,Monohydric alcohols are formed.                           |   |             |
|          | $C_2H_5I + KOH \longrightarrow C_2H_5OH + KI$                                 |   |             |



(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

### **SUMMER-16 EXAMINATION Model Answer**

Subject code :(17312) Page **4** of **26** 

| sjeet eot | ue .(17312)                                                                       | ı u | gc 4 01 <b>20</b> |
|-----------|-----------------------------------------------------------------------------------|-----|-------------------|
|           | CH <sub>3</sub> Br + Ag OH → CH <sub>3</sub> OH + AgBr                            |     |                   |
|           | by olefins:                                                                       |     |                   |
|           | olifins may be hydrated to alcohols by absorption in concentrated sulphuric acid  |     |                   |
|           | followed by hydrolysis of alkyl hydrogen sulphate.                                |     |                   |
|           | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                             |     |                   |
|           | CH <sub>2</sub> CH <sub>2</sub> H <sub>2</sub> SO <sub>4</sub> CH <sub>2</sub> OH |     |                   |
|           | This is one of the recent methods used for the industrial preparation of lower    |     |                   |
|           | alcohols from olefins obtained from cracked petroleum.                            |     |                   |
| 1-j       | Vapor pressure or equilibrium vapor pressure is defined as                        | 2   | 2                 |
|           | the pressure exerted by a vapor in thermodynamic equilibrium with its             |     |                   |
|           | condensed phases (solid or liquid) at a given temperature in a closed system.     |     |                   |
| 1-k       | ideal solution: Obey Raoult's law at every range of concentration.                | 1   | 2                 |
|           | non ideal solution Do not obey Raoult's law.                                      | 1   | _                 |
| 2         | Any 4                                                                             | -   | 16                |
| 2-a       | homologous series is a series of compounds with the same general formula,         | 4   | 4                 |
| 2-a       | usually varying by a single parameter—such as the length of a carbon chain.       | 7   | 7                 |
|           |                                                                                   |     |                   |
|           | Functional Group Name Example                                                     |     |                   |
|           | Alkane CH <sub>3</sub> CH <sub>2</sub> CH <sub>3</sub> (propane)                  |     |                   |
|           | C=C Alkene CH <sub>3</sub> CH=CH <sub>2</sub> (propene)                           |     |                   |
|           | C=CH Alkyne CH <sub>3</sub> C©CH (propyne)                                        |     |                   |



 $\mathbf{C}$ 

#### MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION

(Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

## SUMMER-16 EXAMINATION Model Answer

Subject code:(17312) Page 5 of 26 Alkyl halide CH<sub>3</sub>Br (methyl bromide) F, Cl, Br, or I Alcohol CH<sub>3</sub>CH<sub>2</sub>OH (ethanol) -OH Ether CH<sub>3</sub>OCH<sub>3</sub> (dimethyl ether) -0-Amine CH<sub>3</sub>NH<sub>2</sub> (methyl amine) -NH<sub>2</sub> Aldehyde CH<sub>3</sub>CHO (acetaldehyde) -H Ketone CH<sub>3</sub>COCH<sub>3</sub> (acetone) Acyl chloride CH<sub>3</sub>COCl (acetyl chloride) ·C1 O Carboxylic acid CH<sub>3</sub>CO2H (acetic acid) ·OH Ester CH<sub>3</sub>CO<sub>2</sub>CH<sub>3</sub> (methyl acetate) 0 Amide CH<sub>3</sub>NH<sub>2</sub> (acetamide)  $-NH_2$ 2-b 1. Select the longest continuous chain of carbon atoms, it is known as main or 4 4 parent chain & other chains attached to it are known as side chains. The no. of carbon atoms present in main chain determines the parent name of hydrocarbon.



(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

### **SUMMER-16 EXAMINATION Model Answer**

| Subject | t code :(17312)                                                                        | Page <b>6</b> of <b>26</b> |
|---------|----------------------------------------------------------------------------------------|----------------------------|
|         | 1                                                                                      |                            |
|         | C-C-C-C-C                                                                              |                            |
|         | 2. Number the c atoms of parent chain from the end which gives smallest                |                            |
|         | possible no the carbon carrying the branches.                                          |                            |
|         | C                                                                                      |                            |
|         | 1                                                                                      |                            |
|         | C-C-C-C-C                                                                              |                            |
|         | 1 2 3 4 5 6 7                                                                          |                            |
|         | 3. Prifix the name of substituent to the name of parent hydrocarbon & indicate         |                            |
|         | its position on parent chain.                                                          |                            |
|         |                                                                                        |                            |
|         | CH <sub>3</sub>                                                                        |                            |
|         | 1                                                                                      |                            |
|         | CH <sub>3</sub> -CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>3</sub>    |                            |
|         | 3-methyl heptane                                                                       |                            |
|         | 4. When more than one substituent's are present on the main chain their names          |                            |
|         | are given as per alphabetical order, inserting hyphen (-) in between the names         |                            |
|         | of substituents.                                                                       |                            |
|         | $CH_3$ $C_2H_5$                                                                        |                            |
|         | 1 1                                                                                    |                            |
|         | H <sub>3</sub> C-CH-CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>3</sub> |                            |
|         | 3-ethyl-2-methyl heptane                                                               |                            |
|         | 5. When the same substituent is present two or more times in the molecule then         |                            |
|         | it is indicated by di, tri, tetra etc to the substituent name.                         |                            |
|         | CH <sub>3</sub> CH <sub>3</sub>                                                        |                            |
|         | 1 1                                                                                    |                            |
|         | H <sub>3</sub> C-CH-CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>3</sub> |                            |



(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

## SUMMER-16 EXAMINATION Model Answer

Subject code :(17312) Page **7** of **26** 

| ojeci co | de:(1/312)                                                                              | raye | <i>I</i> 01 <b>20</b> |
|----------|-----------------------------------------------------------------------------------------|------|-----------------------|
|          | 2,3-dimethyl heptane                                                                    |      |                       |
|          | 6. The position of double bond or triple bond is indicated by prefixing the no. of      |      |                       |
|          | carbon preceding such bonds.                                                            |      |                       |
|          |                                                                                         |      |                       |
|          | $H_3C-CH_2-CH=CH-CH_2-CH_3$ 3-heptene                                                   |      |                       |
| 2-c      | Sache-Mohr theory:                                                                      | 4    | 4                     |
|          | In 1890 Sche suggested that the ring compounds with 6 or more 'C' atoms                 |      |                       |
|          | could exist without (-) strain.                                                         |      |                       |
|          | According to Bayer's strain theory                                                      |      |                       |
|          | If the 'c' atoms forming the ring diden't lie in the same plane but took up             |      |                       |
|          | multiplanesfokled conformations retaining the normal valency angle and there            |      |                       |
|          | by producing strainless ring containing 6 or more 'c' atoms may become                  |      |                       |
|          | strainless by assuming a folded form. By folded form or conformation the angle          |      |                       |
|          | between two valency bond is $109^0$ 28'.                                                |      |                       |
|          | According to Bayer strain theory put forward the valency angle can be altered           |      |                       |
|          | from the normal value(109 <sup>0</sup> 28') by bending of the valency bonds. But due to |      |                       |
|          | bending of valency bond a strain is set in molecule. Greater the deviation from         |      |                       |
|          | the normal angle, greater the strain and greater the instability of organic             |      |                       |
|          | compounds. According to Bayers Cyclohexane being more stable due to                     |      |                       |
|          | multiplaner structure and retaining normal valency angle. This can be conform           |      |                       |
|          | by heating Cyclohexane and Cyclopentane separately at 300°C, it is observed             |      |                       |
|          | that cyclopentane ring gets opened but Cyclohexane ring do not get opened.              |      |                       |
|          |                                                                                         |      |                       |

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

## **SUMMER-16 EXAMINATION Model Answer**

Subject code :(17312) Page 8 of 24

| bject code | e:(17312)                                                                  | F | Page <b>8</b> of <b>26</b> |
|------------|----------------------------------------------------------------------------|---|----------------------------|
|            |                                                                            |   |                            |
| 2-d        | 1) Reaction of calcium carbide with H <sub>2</sub> O                       | 2 | 4                          |
|            | $CaC_2 + H_2O \longrightarrow H - C \equiv C - H + Ca(OH)_2$               |   |                            |
|            | Calcium carbide Acetylene                                                  |   |                            |
|            | 2) Dehalogenation of Tetrahalides :                                        |   |                            |
|            | When1, 1, 2, 2 - tetrahalides are heated with Zn dust in alcohol, they     | 2 |                            |
|            | produces alkynes.                                                          |   |                            |
|            | $R-C-C-R + 2Zn \xrightarrow{alwhol} R-C=C-R + 2Znx_2$ Tetrahalide  Alkynes |   |                            |
| 2-е        | Oxidation reaction of phenol:                                              | 2 | 4                          |
|            |                                                                            |   |                            |



(Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

## SUMMER-16 EXAMINATION Model Answer

Subject code :(17312) Page **9** of **26** 

Phenols are potentially reactive towards electrophilic very aromatic substitution. This is because the hydroxy group, -OH, is a strongly activating, ortho-/ paradirecting substituent.Substitution typically occurs para to the hydroxyl group unless the para position is blocked, then ortho substitution occurs. The strong activation often means that milder reaction conditions than those used for benzene itself can be used (see table below for a comparison) Phenols are so activated that polysubstitution can be a problem.

2

(any one example)

Acylation:

Esterification:



## **SUMMER-16 EXAMINATION Model Answer**

Subject code :(17312) Page **10** of **26** 

| 3   | 2.(17312)                                                                                                                                                                                                                                                                                                      |        | age 10 01 20 |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|--------------|
|     | aryl ester  ONa  ONa  1. CO <sub>2</sub> /125 °C, 100 atm  CO <sub>2</sub> H                                                                                                                                                                                                                                   |        |              |
| 2-f | i)CH <sub>3</sub> COCl +C <sub>2</sub> H <sub>5</sub> OH                                                                                                                                                                                                                                                       | 2      | 4            |
|     | ii) $C_2H_5OH+PCl_5$ $C_2H_5Cl+POCl_3+HCl$                                                                                                                                                                                                                                                                     | 2      |              |
| 3   | Any 4                                                                                                                                                                                                                                                                                                          |        | 16           |
| 3-a | i) Amide                                                                                                                                                                                                                                                                                                       | 1 mark | 4            |
|     | ii)Hydroxyl(Alcohol)                                                                                                                                                                                                                                                                                           | each   |              |
|     | iii)Carboxylic Acid                                                                                                                                                                                                                                                                                            |        |              |
|     | iv)Amine                                                                                                                                                                                                                                                                                                       |        |              |
| 3-b | Formation of ethane                                                                                                                                                                                                                                                                                            |        | 4            |
|     | In ethane both the carbon atoms assume sp3 hybrid state. One of the hybrid orbitals of carbon atom overlaps axially with similar orbital of the other carbon atoms to form sp3-sp3 sigma bond. The other three hybrid orbitals of each carbon atom are used informing sp3-s sigma bonds with hydrogen atoms as | 2      |              |



(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

## SUMMER-16 EXAMINATION Model Answer

Subject code :(17312) Page **11** of **26** 

| bject code .(1/312)                                                          |   | rage II of 20 |
|------------------------------------------------------------------------------|---|---------------|
| describedin                                                                  |   |               |
| 1s                                                                           | 2 |               |
| Orbital picture of ethane.                                                   |   |               |
| Each C-H bond in ethane is sp3-s sigma bond with bond length 109 pm. The     |   |               |
| C-C bond is sp3-sr sigma bond with bond length 154 pm.                       |   |               |
| 3-c i) By heating phenol with zinc                                           |   | 4             |
| When phenol vapours are passed over heated zinc dust, benzene is formed.  OH | 2 |               |
| + Zn heat + ZnO                                                              |   |               |
| phenol benzene                                                               |   |               |
|                                                                              |   |               |
| ii) By the hydrolysis of benzene sulphonic acid                              | 2 |               |



### **SUMMER-16 EXAMINATION Model Answer**

Subject code :(17312) Page **12** of **26** 

|     |                                                                                                                                                                                                                                                                                                                           |   | · · |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|-----|
|     | Benzene sulphonic acid on hydrolysis with superheated steam gives benzene.                                                                                                                                                                                                                                                |   |     |
|     | $C_6H_5.SO_3H + H_2O \longrightarrow C_6H_6 + H_2SO_4$                                                                                                                                                                                                                                                                    |   |     |
|     | benzene sulphonic acid benzene                                                                                                                                                                                                                                                                                            |   |     |
| 3-d |                                                                                                                                                                                                                                                                                                                           |   | 4   |
|     | Wurtz-Fittig Reaction                                                                                                                                                                                                                                                                                                     | 2 |     |
|     | The Wurtz-Fittig reaction is the chemical reaction of aryl halides with alkyl                                                                                                                                                                                                                                             |   |     |
|     | halides and sodium metal to give substituted aromatic compounds.                                                                                                                                                                                                                                                          |   |     |
|     | $\longrightarrow$ Br + CH <sub>3</sub> I + 2 Na $\longrightarrow$ CH <sub>3</sub> + 2 NaX                                                                                                                                                                                                                                 | 2 |     |
|     | This reaction allows the alkylation of aryl halides. The more reactive alkyl halide forms an organosodium first, and this reacts as a nucleophile with an aryl halide as the electrophile. Excess alkyl halide and sodium may be used if the symmetric coupled alkanes formed as a side product may be separated readily. |   |     |
|     | The reaction works best for forming asymmetrical products if the halide reactants are somehow separate in their relative <u>chemical reactivities</u> . One way to accomplish this is to form the reactants with halogens of different <u>periods</u>                                                                     |   |     |
| 3-е | Isomerism of alcohols                                                                                                                                                                                                                                                                                                     |   | 4   |
|     | Alcohols exhibit following types of isomerism:                                                                                                                                                                                                                                                                            |   |     |
|     | 1. Chain isomerism                                                                                                                                                                                                                                                                                                        |   |     |
|     | Alcohols with four or more carbon atoms exhibit this type of isomerism in which the carbon skeleton is different.                                                                                                                                                                                                         | 1 |     |
|     |                                                                                                                                                                                                                                                                                                                           |   |     |



(Autonomous)

1

1

1

(ISO/IEC - 27001 - 2005 Certified)

### SUMMER-16 EXAMINATION <u>Model Answer</u>

Subject code :(17312) Page **13** of **26** 

CH<sub>3</sub>— CH<sub>2</sub> — CH<sub>2</sub>— CH<sub>2</sub>OH

Butan -1- ol

CH<sub>3</sub>

CH<sub>3</sub>— CH — CH<sub>2</sub>OH

2 - Methylbutan -1-ol

#### 2. Position isomerism

Alcohols with three or more carbon atoms can exhibit position isomerism. In this type of isomerism the position of the functional group i.e., the -OH group varies. In other words the carbon atoms to which the -OH group is attached is different.

CH<sub>3</sub>— CH<sub>2</sub> — CH<sub>2</sub>OH

Propan -1- ol

CH<sub>3</sub>— CH — CH<sub>3</sub>

OH

Propan -2- ol

#### 3. Functional isomerism

Alcohols with two or more carbon atoms can exhibit functional isomerism with ethers. Thus ethers and alcohols have the same molecular formula but have different functional groups, hence they are called functional isomers.

CH<sub>3</sub> CH<sub>2</sub> CH<sub>2</sub> CH<sub>2</sub>OH

Butan -1- ol

CH<sub>3</sub>— CH<sub>2</sub>— O— CH<sub>2</sub> CH<sub>3</sub>

Ethoxyethane

### 4. Optical isomerism

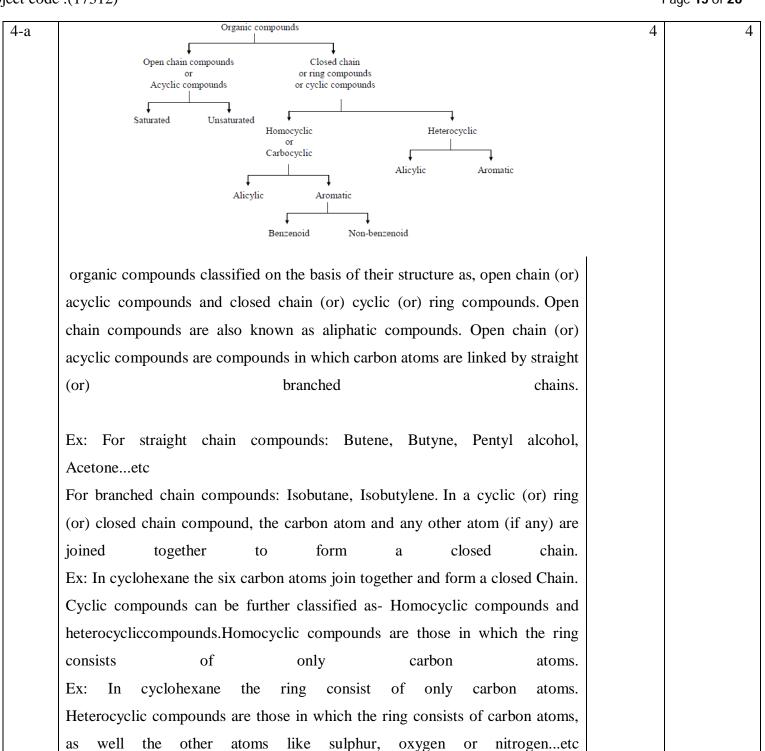
Alcohols containing chiral centrescen exhibit enantiomerismor optical isomerism. The optical isomers can rotate the plane of plane polarized angles in

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

## SUMMER-16 EXAMINATION Model Answer

Subject code :(17312) Page **14** of **26** 

|     | different directions.  CH <sub>3</sub> — CH— CH <sub>2</sub> — CH <sub>3</sub> CH <sub>3</sub> — CH <sub>2</sub> — CH <sub>2</sub> — CH— CH <sub>3</sub> OH OH Pent-2-ol  CH <sub>3</sub> — CH— CH— CH <sub>3</sub> CH <sub>3</sub> — OH 3-Methylbutan-2-ol |        |    |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|----|
| 3-f | Examples of azeotropic mixture(any 4)                                                                                                                                                                                                                       | 1 mark | 4  |
|     | r r r r r r r r r r r r r r r r r r r                                                                                                                                                                                                                       | each   |    |
|     | • <u>nitric acid</u> (68%) / <u>water</u> , boils at 120.2 °C at 1 atm (negative azeotrope)                                                                                                                                                                 | cacii  |    |
|     | • perchloric acid (71.6%) / water, boils at 203 °C (negative azeotrope)                                                                                                                                                                                     |        |    |
|     | • <u>hydrofluoric acid</u> (35.6%) / water, boils at 111.35 °C (negative                                                                                                                                                                                    |        |    |
|     | azeotrope)                                                                                                                                                                                                                                                  |        |    |
|     | • ethanol (96%) / water, boils at 78.1 °C                                                                                                                                                                                                                   |        |    |
|     | • <u>sulfuric acid</u> (98.3%) / water, boils at 338 °C                                                                                                                                                                                                     |        |    |
|     | • <u>acetone</u> / <u>methanol</u> / <u>chloroform</u> form an intermediate boiling (saddle)                                                                                                                                                                |        |    |
|     | azeotrope                                                                                                                                                                                                                                                   |        |    |
|     | • <u>diethyl ether</u> (33%) / <u>halothane</u> (66%) a mixture once commonly used in                                                                                                                                                                       |        |    |
|     | anaesthesia.                                                                                                                                                                                                                                                |        |    |
|     | • <u>benzene</u> / <u>hexafluorobenzene</u> forms a double binary azeotrope.                                                                                                                                                                                |        |    |
|     |                                                                                                                                                                                                                                                             |        |    |
| 4   | Any 4                                                                                                                                                                                                                                                       |        | 16 |




(Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

### SUMMER-16 EXAMINATION <u>Model Answer</u>

Subject code :(17312) Page **15** of **26** 





(Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

## SUMMER-16 EXAMINATION Model Answer

Subject code :(17312) Page **16** of **26** Ex: cyclopropane, cyclobutane cyclohexane...etc and Aromatic compounds are benzene and compounds those resemble benzene in theirbehaviour. The compounds which contain hetero atoms such as Nitrogen or Sulphur or Oxygen in addition to carbon atoms in the ring and resemble benzene in their properties are called Heterocyclic aromatic compounds. Thiophene and Furan are heterocyclic compounds containing hetero atoms Sulphur and Oxygen. Another classification of organic compounds is based on Functional groups. A functional group is an atom or a group of atoms present in a molecule, which determine its characteristic properties. Ex: Hydroxyl group and Carboxylic acid group is the functional group of alcohols and carboxylic acids respectively. Organic compounds can also be classified on the basis of Homologous series. The successive members or series of organic compounds with a characteristic functional group having the same general molecular formulae and differ by -CH<sub>2</sub> unit are called homologous series. The successive members of a homologous series called homologues are Ex: Homologous series of Alkanes are Methane, Ethane, Propane, Butane...etc 4-b i) Н HBr Br Ethene Bromoethane ii)



(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

## **SUMMER-16 EXAMINATION Model Answer**

Subject code :(17312) Page 17 of 26

|     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |        | Ü |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|---|
|     | $CH_2 = CH_2 + HO - S - OH \longrightarrow CH_3CH_2O - S - OH$ $CH_3 = CH_2 + HO - S - OH \longrightarrow CH_3CH_2O - S - OH$ $CH_3 = CH_2 + HO - S - OH \longrightarrow CH_3CH_2O - S - OH$ $CH_3 = CH_2 + HO - S - OH \longrightarrow CH_3CH_2O - S - OH$ $CH_3 = CH_2 + HO - S - OH \longrightarrow CH_3CH_2O - S - OH$ $CH_3 = CH_2 + HO - S - OH \longrightarrow CH_3CH_2O - S - OH$ $CH_3 = CH_3 + HO - S - OH \longrightarrow CH_3CH_2O - S - OH$ $CH_3 = CH_3 + HO - S - OH \longrightarrow CH_3CH_2O - S - OH$ $CH_3 = CH_3 + HO - S - OH \longrightarrow CH_3CH_2O - S - OH$ $CH_3 = CH_3 + HO - S - OH \longrightarrow CH_3CH_2O - S - OH$ $CH_3 = CH_3 + HO - S - OH \longrightarrow CH_3CH_2O - S - OH$ $CH_3 = CH_3 + HO - S - OH$ $CH_3 = CH_3 + HO - S - OH$ $CH_3 = CH_3 + HO - S - OH$ $CH_3 = CH_3 + HO - S - OH$ $CH_3 = CH_3 + HO - S - OH$ $CH_3 = CH_3 + HO - S - OH$ $CH_3 = CH_3 + HO - S - OH$ $CH_3 = CH_3 + HO - S - OH$ $CH_3 = CH_3 + HO - S - OH$ $CH_3 = CH_3 + HO - S - OH$ $CH_3 = CH_3 + HO - S - OH$ $CH_3 = CH_3 + HO - S - OH$ $CH_3 = CH_3 + HO - S - OH$ $CH_3 = CH_3 + HO - S - OH$ $CH_3 = CH_3 + HO - S - OH$ $CH_3 = CH_3 + HO - S - OH$ $CH_3 = CH_3 + HO - S - OH$ $CH_3 = CH_3 + HO - S - OH$ $CH_3 = CH_3 + HO - S - OH$ $CH_3 = CH_3 + HO - S - OH$ $CH_3 = CH_3 + HO$ $CH_3 = CH_3 + $ | 2      |   |
| 4-c | H H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 4      | 4 |
|     | Step 1 H—0—NO <sub>2</sub> + H <sub>2</sub> SO <sub>4</sub> — 0 <sup>±</sup> NO <sub>2</sub> + HSO <sub>4</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ·      | · |
|     | Step 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |        |   |
|     | Step 3 + NO <sub>2</sub> + NO <sub>2</sub> + NO <sub>2</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |        |   |
|     | H NO <sub>2</sub> + H <sub>2</sub> SO <sub>4</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |        |   |
| 4-d | Industrial Uses of Alcohol:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1 mark | 4 |
|     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | each   |   |
|     | i)Ethanol is usually sold as industrial methylated spirits which is ethanol with a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |        |   |
|     | small quantity of methanol added and possibly some colour. Methanol is                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |        |   |
|     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |        |   |
|     | poisonous, and so the industrial methylated spirits is unfit to drink. This avoids                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |        |   |
|     | the high taxes which are levied on alcoholic drinks (certainly in the UK!).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |        |   |
|     | ii)As a fuel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |        |   |
|     | Ethanol burns to give carbon dioxide and water and can be used as a fuel in its                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |        |   |
|     | own right, or in mixtures with petrol (gasoline). "Gasohol" is a petrol / ethanol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |        |   |
|     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |        |   |
|     | mixture containing about 10 - 20% ethanol.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |        |   |
|     | Because ethanol can be produced by fermentation, this is a useful way for                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |   |



(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

## SUMMER-16 EXAMINATION Model Answer

Subject code :(17312) Page **18** of **26** countries without an oil industry to reduce imports of petrol. iii)As a solvent Ethanol is widely used as a solvent. It is relatively safe, and can be used to dissolve many organic compounds which are insoluble in water. It is used, for example, in many perfumes and cosmetics. Iv) As an industrial feedstock Most methanol is used to make other things - for example, methanal (formaldehyde), ethanoic acid, and methyl esters of various acids. In most cases, these are in turn converted into further products. 4-e Azeotropic Mixture Azeotropes are defined as the mixtures of liquids which boil at constant 1 temperature like a pure liquid and possess same composition of components in liquid as well as in vapour phase. Azeotropes are also called constant boiling mixtures because whole of the azeotropes changes into vapour state at constant temperature and their components can not be separated by fractional distillation. Azeotropes are of two types as described below, (1) **Minimum boiling azeotrope**: For the solutions with positive deviation 1 there is an intermediate composition for which the vapour pressure of the solution is maximum and hence, boiling point is minimum. At this composition the solution distills at constant temperature without change in composition. This

(Autonomous)
(ISO/IEC - 27001 - 2005 Certified)

## **SUMMER-16 EXAMINATION Model Answer**

Subject code :(17312) Page **19** of **26** 

|     | type of solutions are called                                                                                                                      | minimum boiling azeotrope                                         | 2 Α α                                                                                                                                                        |        |    |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|----|
|     | type of solutions are canec                                                                                                                       | minimum boning azeotropi                                          | e. e.g.,                                                                                                                                                     |        |    |
|     | $H_2O + C_2H_1OH, H_2$                                                                                                                            | O+C <sub>1</sub> H <sub>2</sub> CH <sub>2</sub> OH                |                                                                                                                                                              |        |    |
|     | $CHCI_1 + C_1H_2OH$                                                                                                                               | $(CH_1)_2CO+CS_1$                                                 |                                                                                                                                                              | 1/2    |    |
|     | (2) Maximum boiling az                                                                                                                            | eotrope: For the solutions                                        | with negative deviations                                                                                                                                     |        |    |
|     | there is an intermediate                                                                                                                          |                                                                   |                                                                                                                                                              |        |    |
|     | solution is minimum and h                                                                                                                         | ence, boiling point is maxir                                      | num. At this composition                                                                                                                                     | 1      |    |
|     | the solution distill's at con                                                                                                                     | stant temperature without th                                      | ne change in composition.                                                                                                                                    |        |    |
|     | This type of solutions are of                                                                                                                     | called maximum boiling aze                                        | otrope. e.g.,                                                                                                                                                |        |    |
|     |                                                                                                                                                   |                                                                   |                                                                                                                                                              |        |    |
|     | $H_1O + HCl, H_2O + l$                                                                                                                            | 4NO <sub>1</sub> , H <sub>1</sub> O+HαO <sub>4</sub>              |                                                                                                                                                              |        |    |
|     | W 50 - 898                                                                                                                                        | Wheel Colorador with                                              | 220000000000000000000000000000000000000                                                                                                                      | 1/2    |    |
| 4-f | I deal solution                                                                                                                                   | Positive deviation<br>Total vapor pressure                        | Negative deviation                                                                                                                                           | 4      | 4  |
|     | $P = p_{\Lambda} + p_{S}$ $P_{S} = p_{S}^{0} X_{A}$ $P_{S} = p_{S}^{0} X_{S}$ $X_{A} = 1  \text{Mole fraction}  X_{A} = 0$ $X_{S} = 0  X_{S} = 1$ | $p^{\circ}_{s}$ $X_{A} = 1$ Mole fraction $X_{S} = 0$ $X_{A} = 0$ | Total vapor pressure $p^{\circ}_{\lambda}$ Total vapor pressure $p^{\circ}_{\delta}$ Ideal $X_{\lambda} = 1$ Mole fraction $X_{\delta} = 0$ $X_{\delta} = 1$ |        |    |
| 5   | Any 4                                                                                                                                             |                                                                   |                                                                                                                                                              |        | 16 |
| 5-a | i)Ketone: (CnH <sub>2n+1</sub> ) <sub>2</sub> CO                                                                                                  |                                                                   |                                                                                                                                                              | 1 mark | 4  |
|     | $R_2CO$                                                                                                                                           |                                                                   |                                                                                                                                                              | each   |    |
|     | ii) Ethers: (CnH <sub>2n+1</sub> ) <sub>2</sub> O                                                                                                 |                                                                   |                                                                                                                                                              |        |    |
|     | R-O-R'                                                                                                                                            |                                                                   |                                                                                                                                                              |        |    |



(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

## **SUMMER-16 EXAMINATION Model Answer**

Subject code :(17312) Page **20** of **26** 

|     | iii) Anhydride: (CnH <sub>2n+1</sub> CO) <sub>2</sub> O                                              |         |   |
|-----|------------------------------------------------------------------------------------------------------|---------|---|
|     | iv) Organo metallic compounds: RMgX                                                                  |         |   |
|     |                                                                                                      |         |   |
| 5-b | i)By fusing sodium benzene sulphonate with caustic soda                                              | 2 marks | 4 |
|     |                                                                                                      | each    |   |
|     | NaOH NaOH                                                                                            |         |   |
|     |                                                                                                      |         |   |
|     | $C_6H_5SO_3Na \rightarrow C_6H_5ONa \rightarrow C_6H_5OH$                                            |         |   |
|     | ii)By heating chlorobenzene under pressure with 10% solution of sodium                               |         |   |
|     | carbonate or sodium hydroxide at about 300°C in the presence of copper salts as                      |         |   |
|     | a catalyst                                                                                           |         |   |
|     | $C_6H_5Cl + NaOH \rightarrow C_6H_5OH + NaCl$                                                        |         |   |
| 5-c | With the help of Grignard reagent, primary, secondary & tertiary alcohols may                        | 4       | 4 |
|     | be prepared by means of a Grignard's reagent & an appropriate carbonyl                               |         |   |
|     | compound(an aldehyde or ketone) The addition products first formed is                                |         |   |
|     | decomposed with water to give alcohol.                                                               |         |   |
|     | (i) Primary alcohols are obtained with dry oxygen or formaldehyde.                                   |         |   |
|     | $RMgBr + \frac{1}{2}O_2 \longrightarrow RO MgBr \xrightarrow{H_2O} ROH + Mg \xrightarrow{OH} (v.g.)$ |         |   |
|     | ·                                                                                                    |         |   |
|     | $H_2C = O + RMgI \longrightarrow RCH_2 - O MgI \longrightarrow RCH_2OH (g.)$                         |         |   |
|     | Formalde- Grignard's Addition Alcohol hyde reagent product (Primary)                                 |         |   |
|     | (ii) Secondary alcohols are prepared with aldehydes other than formaldehyde.                         |         |   |
|     | $RCH = O + R'MaI \longrightarrow R \longrightarrow H OH H_2O R \longrightarrow CHOH (f.g.g.)$        |         |   |
|     | Aldehyde Grignard's R' Addition R' Alcohol                                                           |         |   |
|     | reagent product (Secondary)                                                                          |         |   |



### **SUMMER-16 EXAMINATION Model Answer**

Subject code :(17312) Page **21** of **26** 

|     | (iii) Tertiary alcohols may be prepared with ketones.  R  R  R  Grignard's reagent  R  Addition product  Alcohol (Tertiary) |   |   |
|-----|-----------------------------------------------------------------------------------------------------------------------------|---|---|
| 5-d | Quinonoid theory of indication: This theory explains the color changes in                                                   | 4 | 4 |
|     | titrations on the basis of intramolecular changes.                                                                          |   |   |
|     | This theory believes that-                                                                                                  |   |   |
|     | 1. An acid base indicator is either a weak acid or a weak base.                                                             |   |   |
|     | 2. An indicator consists of an equilibrium mixture of at least two tautomeric                                               |   |   |
|     | forms one is benzenoid while the other is Quinonoid form.                                                                   |   |   |
|     | 3. The two forms posses different colors.                                                                                   |   |   |
|     | 4. Out of these forms, one exists in an acid solution & the other form exists in                                            |   |   |
|     | an alkaline solution.                                                                                                       |   |   |
|     | 5. The Quinonoid form is generally deeper in colour than beenzenoid form.                                                   |   |   |
|     | 6.As the PH of the solution containing an indicator changes one form of the                                                 |   |   |
|     | indicator changes to the other & as a result of this the solution shows a change                                            |   |   |
|     | of colour                                                                                                                   |   |   |
|     | There are two tautomeric forms of methyl orange .The Quinonoid form (red                                                    |   |   |
|     | form)exists in an acidic solution & it passes to the Benzenoid form (yellow) as                                             |   |   |
|     | the PH changes to the alkaline side.                                                                                        |   |   |
|     | Phenolphthalein is colorless in an acidic solution where it exists in the                                                   |   |   |
|     | Benzenoid form .If an alkali is added, it changes to the Quinonoid form &                                                   |   |   |
|     | imparts pink color to the solution.                                                                                         |   |   |
|     |                                                                                                                             |   | _ |



(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

## SUMMER-16 EXAMINATION Model Answer

Subject code :(17312) Page 22 of 26

| bject co | de:(1/312)                                                                                                                    |   | Page 22 of 26 |
|----------|-------------------------------------------------------------------------------------------------------------------------------|---|---------------|
|          | Benzenoid form Quinonoid form                                                                                                 |   |               |
| 5-e      | Raoult's law: The vapor pressure of any solution containing a non volatile                                                    | 1 | 4             |
|          | solute in a volatile solvent is proportional to the mole fraction of the solvent in                                           |   |               |
|          | the solution.                                                                                                                 |   |               |
|          | If the vapor pressure of a mixture is lower than expected from Raoult's law,                                                  | 3 |               |
|          | there is said to be a <i>negative deviation</i> . This is evidence that the <i>adhesive</i> forces                            |   |               |
|          | between different components are stronger than the average cohesive                                                           |   |               |
|          | forces between like components. In consequence each component is retained in                                                  |   |               |
|          | the liquid phase by attractive forces that are stronger than in the pure liquid so                                            |   |               |
|          | that its partial vapor pressure is lower.                                                                                     |   |               |
|          | For example, the system of <u>chloroform</u> (CHCl <sub>3</sub> ) and <u>acetone</u> (CH <sub>3</sub> COCH <sub>3</sub> ) has |   |               |
|          | a negative deviation from Raoult's law, indicating an attractive interaction                                                  |   |               |
|          | between the two components that has been described as a <u>hydrogen bond</u> . The                                            |   |               |
|          | system hydrochloric acid - water has a large enough negative deviation to form                                                |   |               |
|          | a minimum in the vapor pressure curve known as a (negative) azeotrope,                                                        |   |               |
|          | corresponding to a mixture that evaporates without change of composition.                                                     |   |               |
|          | When the cohesive forces between like molecules are greater than the adhesive                                                 |   |               |
|          | forces between dissimilar molecules, the dissimilarities of polarity leads both                                               |   |               |
|          | components to escape solution more easily. Therefore, the vapor pressure is                                                   |   |               |
|          | greater than expected from the Raoult's law, showing positive deviation. If the                                               |   |               |
|          | deviation is large, then the vapor pressure curve shows a maximum at a                                                        |   |               |
|          | particular composition and form a positive azeotrope. Some mixtures in which                                                  |   |               |
|          | this happens are (1) <u>benzene</u> and <u>methanol</u> , (2) <u>carbon disulfide</u> and <u>acetone</u> ,                    |   |               |



(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

## **SUMMER-16 EXAMINATION Model Answer**

Subject code :(17312) Page 23 of 26

|     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |   | Т  |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|----|
|     | and (3) <u>chloroform</u> and <u>ethanol</u> .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |   |    |
| 5-f | CH <sub>2</sub> $CH_2$ $CH_2$ Cyclopropane reacts with hydrogen in the presence of Ni catalyst to give propane. $H_2$ $CH_2$ $H_2$ $CH_2$ $H_2$ $CH_2$ | 2 | 4  |
| 6   | Any 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |   | 16 |
| 6-a | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 4 | 4  |
|     | When ozone is passed through an alkene in an inert solvent like CCl4,it adds across the double bonds to form an ozonide.On warming with zinc & water ,the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |   |    |



### **SUMMER-16 EXAMINATION Model Answer**

Subject code :(17312) Page **24** of **26** 

|            | ozonides cleave at the double bond. The products are aldehydes ,ketones or an                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |   |   |
|------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|---|
|            | aldehyde & a ketone depending on the structure of the alkene.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |   |   |
|            | The oxygenated carbons in carbonyl compound obtained by ozonolysis are that                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |   |   |
|            | were joined by double bond in the original alkene. Suppose an alkenes on                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |   |   |
|            | ozonolysis gives the carbonyl compounds.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |   |   |
|            | CH3 H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |   |   |
|            | I I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |   |   |
|            | H3C-C=O & O=C-CH3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |   |   |
| <i>c</i> 1 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |   |   |
| 6-b        | Reimer-Tiemann reaction: When refluxed with chloroform and alkali, phenoly yields o- and p-hydroxybenzaldehyde, the former predominating.  OH  CHCl <sub>3</sub> aqNaOH,-70°C  CHCl <sub>2</sub> Reimer-Tiemann reaction involves electrophilic substitution on the highly reactive phenoxide ring. The electrophile is dichloromethylene, CCl <sub>2</sub> , generated from chloroform by the action of base. Although electrically neutral, dichloromethylene contains a carbon atom with only a sextet of electrons and hence is strongly electrophilic.  OH + CHCl <sub>3</sub> $\Longrightarrow$ H <sub>2</sub> O + : $\overline{C}$ Cl <sub>3</sub> $\Longrightarrow$ $\overline{C}$ I + : CCl <sub>2</sub> Similarly, with carbon tetrachloride and alkali, o- and p-hydroxybenzoic acid is obtained.  OH  CeHcl <sub>4</sub> H + Cl CCl <sub>3</sub> Carbon  tetrachloride  OH  Carbon  tetrachloride | 4 | 4 |
| 6-c        | Gaseous chlorine or bromine adds to acetylene even in dark to form dihalides &                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4 | 4 |



(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

### **SUMMER-16 EXAMINATION Model Answer**

Subject code :(17312) Page **25** of **26** 

| Jeer coe | ie .(17312)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |          | raye <b>23</b> 01 <b>20</b> |
|----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|-----------------------------|
|          | tetrahalides.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |          |                             |
|          | Bromine adds to acetylene in two steps ,first to give trans-1,2-dibromo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |          |                             |
|          | ethane(acetylene dibromide) & finally to give 1,1,2,2-tetra bromo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |          |                             |
|          | ethane(acetylene tetrabromide)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |          |                             |
|          | $H - C \equiv C - H + Br_2 \longrightarrow H$ $trans - 1, 2 - dibromo ethene$ $H \longrightarrow C = C$ $H \longrightarrow Br$ $H $ |          |                             |
| 6-d      | Indicator-color in acidic solution                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1 mark   | 4                           |
|          | 1. phenolphthalein- colorless                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | each     |                             |
|          | 2. Methyl orange- red                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |          |                             |
|          | 3.Bromophenol blue- yellow                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |                             |
|          | 4.Methyl red- red                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |          |                             |
|          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |          |                             |
| 6-е      | vapor pressure of a solution containing non volatile solute                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 4        | 4                           |
|          | if a non volatile solute is added to volatile solvent the vapour pressure of the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |          |                             |
|          | solution is lower than the vapour pressure of pure component, glucose is non                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |          |                             |
|          | volatile and water is volatile.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |          |                             |
|          | The surface of a pure solvent is populated only by solvent molecules therefore                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |          |                             |
|          | its easier for them to escape.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |          |                             |
|          | but when glucose is present only solvent molecules volatile They alone can                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |                             |
|          | escape to build up the vapor pressure of the solution                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |          |                             |
| 6-f      | 1.aliphatic compounds are open chain compounds, whereas aromatic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1 mark   | 4                           |
|          | compounds are closed chain compounds                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | for any1 |                             |



## **SUMMER-16 EXAMINATION Model Answer**

Subject code :(17312) Page **26** of **26** 

| 2. aromatic hydroxy compounds (phenol) are acidic, whereas aliphatic hydroxyl |  |
|-------------------------------------------------------------------------------|--|
| compounds( alcohols) are neutral                                              |  |
| 3. Aromatic compounds give nitro derivatives, when heated with                |  |
| Concentrated nitric acid.                                                     |  |
| In case of aliphatic compounds, the nitro derivatives                         |  |
| are not formed easily                                                         |  |
| 4. Aromatic halogen compounds are much less reactive than aliphatic halogen   |  |
| compounds                                                                     |  |
| 5. Aromatic compounds- Benzene                                                |  |
| Aliphatic compounds- Alkanes, alkenes, alkynes                                |  |