(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

SUMMER-15 EXAMINATION <u>Model Answer</u>

Subject code :(17313) Page **1** of **21**

Important Instructions to examiners:

- 1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme.
- 2) The model answer and the answer written by candidate may vary but the examiner may try to assess the understanding level of the candidate.
- 3) The language errors such as grammatical, spelling errors should not be given more Importance (Not applicable for subject English and Communication Skills.
- 4) While assessing figures, examiner may give credit for principal components indicated in the figure. The figures drawn by candidate and model answer may vary. The examiner may give credit for any equivalent figure drawn.
 - 5) Credits may be given step wise for numerical problems. In some cases, the assumed constant values may vary and there may be some difference in the candidate's answers and model answer.
 - 6) In case of some questions credit may be given by judgement on part of examiner of relevant answer based on candidate's understanding.
 - 7) For programming language papers, credit may be given to any other program based on equivalent concept.

SUMMER-15 EXAMINATION Model Answer

Subject code :(17313) Page **2** of **21**

Q No.	Answer	Marks	Total
			marks
1A-a	Crushing efficiency:	2	2
	It is the ratio of surface energy created by crushing to the energy absorbed by		
	the solid.		
1A-b	Rittinger's law	2	2
	It states that the work required in crushing is proportional to the new surface		
	created.		
	$\frac{P}{\dot{m}} = K_r \left(\frac{1}{\bar{D}_{Sb}} - \frac{1}{\bar{D}_{Sa}} \right)$		
	where P is the power required		
	\dot{m} is mass flow rate		
	K _r is Rittinger's constant		
	\overline{D}_{sa} = Volume surface mean diameter of feed		
	\overline{D}_{sb} = Volume surface mean diameter of product.		
1A-c	Mesh: It is the number of openings per linear inch counting from the centre of	1	2
	any wire to a point exactly one inch distant.		
	Screen aperture: Minimum clear space between edges of openings in the	1	
	screening surface is termed as screen aperture		
1A-d	Overall material balance for a screen:	2	2
	Feed = Overflow + Underflow		
	F = D + B		
1A-e	Types of impellers:	2	2
	Propellers, paddles and turbines		
1A-f	Separation of solids based on		2
	i) Specific gravity - Jigging	1	

SUMMER-15 EXAMINATION Model Answer

Subject code :(17313) Page **3** of **21**

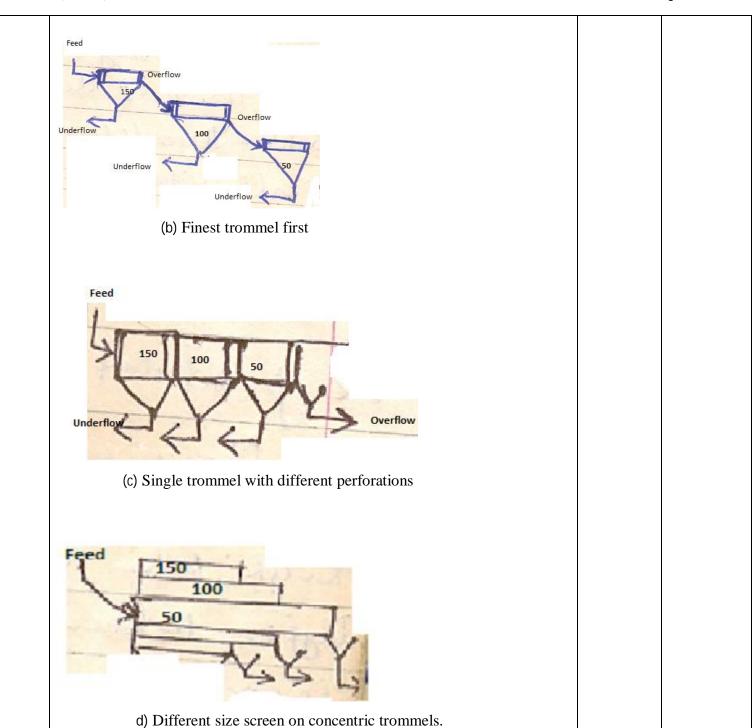
	ii) Surface properties of materials – Froth floatation	1	
1A-g	Principle of Electrostatic Separation: It is the method of separation of solid	2	2
	particles based on differential attraction or repulsion of charged particles under		
	the influence of an electric field.		
1A-h	Agitation:	1	2
	It is the induced motion of material in a tank or a vessel.		
	Mixing:	1	
	It is the process of taking at least two different materials and causing them to		
	distribute randomly through one another.		
1B-a	Closed Circuit grinding:		4
	If the partially ground material from the size reduction equipment is sent to the	2	
	size separation unit, from where undersize material is withdrawn as product and		
	oversize material is returned to the machine for regrinding, the process is		
	known as closed circuit grinding.		
	Feed Jaw/ Gymter Chushes > Red mill	2	
	Anex But mill & Derr Charsidas Product Oliverize Recycle		
1B-b	Angle of nip : Angle of nip is the angle formed by tangents to the roll faces at a	2	4
	point of contact with particle to be crushed.		

SUMMER-15 EXAMINATION Model Answer

Subject code :(17313) Page **4** of **21**

	$\cos \alpha = \frac{r+d}{r+R}$		
	Where α is half the angle of nip	2	
	d is the half the distance between the rolls.		
	r is the radius of the rolls		
	R is the radius of the feed		
1B-c	Derivation for Effectiveness of a screen:		4
	Let feed consists of material A & B, where A is the oversize & B is the		
	undersize material.	1	
	Let F , D , and B be the mass flow rates of feed, overflow, and underflow,		
	respectively, and x_F , x_D , and x_B be the mass fractions of material A in the		
	streams.		
	Screen effectiveness based on the oversize material A (E _A) is the ratio of		
	oversize material A that is actually in the overflow to the amount of A in the	1	
	feed. Thus		
	$E_A = \frac{Dx_D}{Fx_F}$		
	Screen effectiveness E_B based on the undersize material is the ratio of		
	undersize material B that is actually in the under flow to the amount of B in the		
	feed	1	
	$E_B = \frac{B(1 - x_B)}{F(1 - x_F)}$		
	Overall effectiveness is		
	$E = E_A E_B =$		
	But $\frac{B}{F} = \frac{xD - xF}{xD - xB}$ and $\frac{D}{F} = \frac{xF - xB}{xD - xB}$		
	$E = E_A E_B = \frac{(x_F - x_B)(x_D - x_F)x_D(1 - x_B)}{(x_D - x_B)^2 (1 - x_F)x_F}$	1	

SUMMER-15 EXAMINATION Model Answer


Subject code :(17313) Page **5** of **21**

2-a	Work Index:		4
	It is defined as the gross energy requirement in KWH / ton of feed needed to	2	
	reduce a very large feed to such a size that 80% of the product passes a		
	100micrometer screen.		
	Formula:		
	$\frac{P}{\dot{m}} = 0.3162 \text{ W}_{i} \left(\frac{1}{\sqrt{D_{Pb}}} - \frac{1}{\sqrt{D_{Pa}}} \right)$	2	
	Where P is the power required in Kw		
	\dot{m} is the mass flow rate in tons / hr.		
	D_{Pa} and D_{Pb} size of the feed and product respectively in mm		
2-b	Various trommel arrangements	1 mark	4
		each	
	Underflow Underflow Underflow (a) Coarsest trommel first		

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

SUMMER-15 EXAMINATION Model Answer

Subject code:(17313) Page 6 of 21

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

SUMMER-15 EXAMINATION <u>Model Answer</u>

Subject code :(17313) Page **7** of **21**

	t code :(1/313)		
2-c	Grizzly screen:		4
	Construction:	4	
	Oversize Feed Undersize		
	A grizzly is a grid of parallel metal bars set in an inclined stationary frame ,with		
	a slope of 30 to 45°. The slope & path of the material is parallel to the length of		
	the bars. The length of bar is up to 3 m & spacing between the bars is 50 to		
	200mm. The material of construction of the bars is Manganese steel to reduce		
	wear. Usually the bar is shaped in such a way that its top is wider than the		
	bottom, & hence the bars can be made fairly deep for strength without being		
	choked by material passing through them.		
2-d	Classification:	1	4
	It is the separation of solid particles (from a slurry) into several fractions based		
	on terminal settling velocities.		
	Laws of classification are		
	1. Coarse particles have faster settling velocity than small particles of same	3	
	density.		
	2.Heavier(high density) particles have faster settling velocity than light		
	particles of same size		
	3. Settling velocity of particles decreases as density and viscosity of fluid		

SUMMER-15 EXAMINATION Model Answer

Subject code :(17313) Page **8** of **21**

	medium increases.		
2-e	Cyclone separator:	4	4
	Dust laden gas Cylindrical section Tangential inlet Conical section Solid dust		
	First part of the question is not clear. so full mark should be given for the		
	diagram		
2-f	Constant rate Filtration: The method in which the pressure drop is varied	2	4
	usually from minimum at the start of filtration to a maximum at the end of		
	filtration so that the rate of filtration is constant throughout the run is called		
	Constant rate filtration.		
	Constant Pressure Filtration: The method in which the pressure drop over		
	the filter is held constant throughout the run so that the rate of filtration is	2	
	maximum at the start of filtration and decreases continuously towards the end		
	of the run is called Constant pressure filtration.		
3-a	Hammer Mill:		4
	Principle :Size reduction by achieved by impact & attrition	1	
	Diagram:		

(Autonomous)
(ISO/IEC - 27001 - 2005 Certified)

SUMMER-15 EXAMINATION <u>Model Answer</u>

Subject code :(17313) Page **9** of **21**

gect code	e:(17313)	ŀ	Page 9 of 21
	Casing rotor Hammer Discharge	3	
3-b	Factors affecting the performance of screen.	1 mark	4
	1) Method of feeding:	each for	
	Particles should approach the screening surface in a direction parallel to the	any 4	
	longitudinal axis (perpendicular) of the screen. Particles should be fed at as	points	
	low velocity as possible.		
	2) Screen slope:		
	As the slope increases, the rate at which the materials travels over the		
	screening surface increases thereby reducing bed thickness and allowing the		
	fines to come in contact with the screening surface. But if the slope is		
	increased too much, the material will travel down the screen very fast without		
	getting properly screened.		
	3. Number of Screening Surfaces:		
	Use of single-deck screens in series results into most efficient operation. In the		
	case of multiple –deck screens, lower decks are not fed ,so their entire area is		
	not used & each separation requires a different combination of angle ,speed &		
	amplitude of vibration for the best performance.		
	4. Amplitude &frequency of Vibration:		

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

SUMMER-15 EXAMINATION <u>Model Answer</u>

Subject code :(17313) Page **10** of **21**

ject coc	le:(1/313)		Page 10 of 21
	Proper amplitude of vibration is selected to prevent binding of screen &for long bearing life. 5) Moisture in feed : the moisture in feed adversely affects screening operation &should be removed.		
3-с	Classification of solids based on magnetic properties		4
	1) Diamagnetic solids :which when placed in a magnetic field are repelled by it.	1	
	2) Paramagnetic solids : which when placed in a magnetic field are	1	
	attracted by the magnetic field. 3) Ferromagnetic solids : having a high susceptibility to magnetization, the	1	
	strength of which depends on that of the applied magnetizing field, and which may persist after removal of the applied field Tramp iron: Iron courser than 1/8 inch (3.125mm) is called as tramp iron.	1	
3-d	In case of constant pressure filtration, application of high pressure results in a low rate of filtration as the first particles filtered will be compacted into a tight mass that largely fills the pores of filter cloth.	2	4
	In case of constant rate filtration, as the maximum pressure is reached towards the end of the run, the whole cycle is operated at less than the maximum capacity. Therefore filters are neither operated under constant pressure nor under constant rate .Practically filtration is carried out at constant rate until the inlet pressure reaches a specified maximum & then it is continued at constant pressure until the end of run.	2	
3-е	Pressure filters are preferred.	1	4

SUMMER-15 EXAMINATION Model Answer

Subject code :(17313) Page **11** of **21**

	In case	of vacuum filters,it car	n not used for filtrati	ion of hot liquids due to their	3	
	tendan	cy to boil. We can not u	se vacuum filtration	to filter a solid from a liquid		
	having					
	lower v	will boil off under the re	educed pressure in the	he vacuum filter.		
3-f	Diagra	am of top suspended b	atch centrifuge:		2 marks	4
					for	
		Adjustable unloader knife	Motor shaft	The designation of the latest	diagram	
			T	Feed slurry	and 2	
		5	marks for			
		Solid c	ake	Casing	labeling	
		Filter cloth		lasemig		
				Filtrate		
		[RS]		Financ		
		Removable- valve plate	discharge			
4A-a	Sr.N	Basis	Solid discharge Grizzlies	Vibrating screen	1 mark	4
4A-a		Dasis	Grizznes	Violating screen		4
	0.				each	
		Motion imparted to	No motion is	Set of screens vibrated		
		screening surface	imparted to	electrically or		
			screening	mechanically.		
			surface			
	2	No. of screening	Only one	Assembly with maximum		
		surface in one		3decks		
		assembly				
	3	Material of	Manganese steel	Mild steel or stainless steel		
		construction				
		l .		1]	

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

SUMMER-15 EXAMINATION <u>Model Answer</u>

Subject code :(17313) Page **12** of **21**

	4	Application	Can handle large	Used when large capacity		
		rippiication	size of feed.	and high efficiency are		
			Used in	required.widely used for		
			separation of the	grading and screening		
			undersize or	materials like minerals,		
			fines from the	quarry, building materials,		
			feed to a primary	chemical industry		
			crusher			
4A-b	Work	sing of Ball –Norton	Machine:			4
	It is u	sed for separating ma	gnetic ores from the ass	sociated mineral matter.		
	The n	naterial to be separate	d is fed to the lower be	lt in the form of a thin sheet		
	& is c	onveyed under the se	cond belt where it is su	bjected to a magnetic field.		
	The n	on-magnetic material	is discharged in the no	rmal manner, whereas the		
	magne	etic material adheres	to the lower side of the	upper belt & thus carried		
	some	distance away from	the discharge point of n	onmagnetic materials. It	2	
	ultima	ately drops-off the be	It in to the separate com	npartment when the belt loses		
	the co	ontact of magnet asser	nbly.			
		Feed				
			No	Magnetics n-magnetics		
	1				2	I

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

SUMMER-15 EXAMINATION <u>Model Answer</u>

Subject code :(17313) Page **13** of **21**

4A-c **Pressure Sand Filters**: Pressure sand filter consists of a pressure vessel-this may be either vertical or horizontal-fitted with a set of frontal pipe work and valves, graded silica quartz sand supported by layers of graded under bed consisting of pebbles and gravels, a top distributor to distribute the incoming water uniformly throughout the cross section of the filter, and an under drain system to collect filtered water. In the operation, water to be filtered is pumped through the bed under pressure. Raw water (water containing suspended impurities) flows down wards through the filter bed and as the suspended matter- which has usually been treated by addition of a coagulant like alum- is retained on the sand surface and between the sand grains immediately below the surface. The Pressure sand filter is now taken out of service and cleaning of the filter is effected by flow rate. Graded Gravel Filter Floor Cast-Iron Manifold OR

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

SUMMER-15 EXAMINATION <u>Model Answer</u>

Subject code :(17313) Page **14** of **21**

bject code :(1/313)		Page 14 of 21
Shell Sand Gravel Gravel Strainer Outlet	2	
 4A-d Classification of filters i)based on function: 1. Clarifying filters /Deep bed filters :used to remove small amounts of solids to produce sparkling clear liquids. 2. Cake filters : used to separate large amounts of solids in the form of cake of crystals. ii)based on Driving force: 1)Gravity filters 2) Vacuum filters 3)Pressure filters 4) Centrifugal filters 	2	4

SUMMER-15 EXAMINATION Model Answer

Subject code :(17313) Page **15** of **21**

						_
4A-e	Free S	ettling:				4
	It is the	e settling wherein the	a gravitational field through a	1		
	station	ary field is not affe	cted by walls of the con	ntainer & other particles.(the	1	
	particle	es are at sufficient of	distance from wall & ot	ther particles).		
	Hindered Settling :					
	The fa	ll of individual part	icle through stationary	fluid is impeded other		
	particle	es & wall of contain	ner ,the process is calle	d as hindered settling.	1	
	Effect	of Free Settling or	n particle separation:	The terminal falling velocity o	f	
	a partic					
	1		•	g on the particle. In this case, as	S	
		-		ifficient distance, the falling of		
	the individual particle will not be affected by other particle and the wall of the					
	container. Hence settling takes place more fastly than in the case of hindered					
		g conditions. Separa				
	conditi	•				
4A-f	Differentiation in between Sedimentation & Centrifugation:					4
1711	Differ	citiation in Serve	en seamentation a v	ochi nugution.	1 mark each	·
					Cacii	
	Sr.N	Basis	Sedimentation	Centrifugation		
		Dasis	Sedimentation	Centringation		
	0.	Duinainla	The companies	The concretion of		
		Principle	The separation	The separation of		
			of solids from a	immiscible liquids or		
			suspension in a	solids from liquids by		
			liquid by gravity	application of centrifugal		
			settling	force		

SUMMER-15 EXAMINATION Model Answer

Subject code :(17313) Page **16** of **21**

	2	Application	Used in water	Used in sugar refining		
		Application	treatment	Osed in sugar remning		
	3	Space required	more	less		
	4	Equipment used	Sedimentation	centrifuge		
			basins			
			&thickeners			
5-a	Deri	vation for Critical spe	ed of ball mill:			8
			an and a Regulation of			
		$\frac{mv^2}{(R-r)}$				
	" The Intercord					
	mg				1	
	10000					
	Cons	Consider the ball at point B on the periphery of the ball mill. Let 'R' be the				
	radiu	radius of the mill and 'r' be the radius of the ball. R-r represents the				
	distance between the center of the ball and the axis of the mill. Let α be the					
	angle	angle between OB and vertical through the point O.				
	The force acting on the ball are :				3	
	1. Th	ne force of gravity = mg	g where 'm' is the n	nass of the ball		
	2. Th	ne centrifugal force = 1	$mv^2 / (R-r)$. where '	v' is the		
	peripheral speed					
	The o	component of gravity o	pposing the centrifu	gal force is 'mgcosα'		

properties of the materials involved.

hydrophobic with the help of promoters.

particle and thus preventing the adsorption of promoters..

Subject code :(17313)

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION

(Autonomous)

Page **17** of **21**

2

2

(ISO/IEC - 27001 - 2005 Certified)

SUMMER-15 EXAMINATION <u>Model Answer</u>

As long as the centrifugal force exceeds the gravity force component, the particles will not lose contact with the wall. If the above opposing forces are equal, the ball is ready to fall away from the wall. Thus, $mgcos\alpha = mv^2 / (R-r) ---- (1)$ $\cos \alpha = v^2 / (R-r) g$ -----(2) The relationship between the peripheral speed and the speed of rotation is 2 given by $v = 2 \pi N (R - r)$ ----(3) substituting the value of 'v' in equation (2) $\cos \alpha = 4 \pi^2 N^2 (R - r) / g$ -----(4) At the critical speed : $\alpha = 0$ and thus $\cos \alpha = 1$ and N becomes the critical speed Nc $\cos \alpha = 1 = 4 \pi^2 N^2 (R - r) / g$ 2 $Nc^2 = g / 4 \pi^2 (R - r)$ $N_{\rm c} = \frac{1}{2\pi} \sqrt{\frac{g}{(R-r)}}$ 5-b **Principle of froth flotation:** 8 Floatation refers to an operation in which one solid is separated from another by floating one of them at or on the liquid surfaces. Separation of a mixture of solids using froth flotation methods depends on the difference in surface

Role of Promoters or collectors: Promoters are materials which are adsorbed

on the surface of the particles forming a unimolecular layer . Solids can be made

Role of Modifiers: Modifiers are materials which form surface films on the

SUMMER-15 EXAMINATION Model Answer

Subject code :(17313) Page 18 of 21

	Role of Frothing agent: Frothing agents are materials which induce the		
		2	
	formation of a froth of sufficient stability in order to retain the particles of the	2	
	constituent which is to be floated to be discharged as an overflow.		
5-c	Functions of thickener:		8
	1. To produce clear liquid.	2	
	2. To produce given degree of thickening of suspension.		
	Role of coagulants in filtration:		
	I is not possible to remove finely divided and colloidal particles from water by		
	filtration. In order to remove this, coagulants are added to water before		
	filtration. The coagulants when added to water get hydrolyzed and form	4	
	precipitates. The finely divided suspended matter get stick to this precipitate		
	and are removed. Alum is the most commonly used coagulant. But if alum is to		
	be used, water should have some alkalinity. For this, soda ash or lime is added		
	to water. Alum coagulates best in the pH range of 6 to 8.		
	Eg: Aluminium sulphate(alum), ferrous sulphate	2	
6-a	Formula to calculate filter medium resistance:		4
	$R_{\rm m} = \frac{\Delta P_m}{\mu U}$	1	
	Where R_m is the filter medium resistance.		
	$\Delta P_{\rm m}$ is the pressure drop across the filter medium.	1	
	μ is the viscosity of the filtrate		
	U is the velocity of the filtrate.		
	Formula to calculate cake resistance:		
	$\alpha = \frac{\Delta P_{CA}}{\mu U m_C}$	1	
	Where ΔP_c is the pressure drop over cake.		
	A is the area of filter medium measured perpendicular to the direction of		
	flow.	1	

SUMMER-15 EXAMINATION Model Answer

Subject code :(17313) Page 19 of 21

μ is the viscosity of the filtrate		
U is the velocity of the filtrate.		
m _c is the total mass of solids in the cake.		
Methods to prevent Vortex Formation:	2 marks	4
There are four methods of prevention of swirling and vortex formation	each for	
a) Off-center mounting of the impeller.	any 2	
b) Use of Baffles	points	
c) Use of diffuser ring with turbines		
d) Angular entry of agitators.		
Mixing index:	2	4
It is a measure of the homogeneity of the mixture. ie the degree of uniformity of		
the mixture.		
Formula to calculate mixing index:		
For granular solids		
$I_{S} = \sqrt{\frac{(N-1)\mu(1-\mu)}{n\sum_{1}^{N}(x_{i-\overline{x}})^{2}}}$	2.	
Where I_S is the mixing index.	_	
N is the number of sample.		
μ is the weight fraction of desired solid in the feed.		
x _i is the weight fraction of desired solid in the sample/		
\bar{x} is the $\frac{\varepsilon X_i}{N}$		
N is the number of particles in the sample.		
Formula to calculate mixing index for other types of mixtures should also be		
given consideration.		
Mixer used for coating granular solids with a small amount of liquid.		4
Muller mixer.	1	
	Methods to prevent Vortex Formation: There are four methods of prevention of swirling and vortex formation a) Off-center mounting of the impeller. b) Use of Baffles c) Use of diffuser ring with turbines d) Angular entry of agitators. Mixing index: It is a measure of the homogeneity of the mixture. ie the degree of uniformity of the mixture. Formula to calculate mixing index: For granular solids $I_S = \sqrt{\frac{(N-1)\mu(1-\mu)}{n\sum_1^N(x_1-x_1)^2}}$ Where I_S is the mixing index. N is the number of sample. μ is the weight fraction of desired solid in the feed. x_i is the weight fraction of desired solid in the sample/ \bar{x} is the $\frac{\varepsilon X_i}{N}$ N is the number of particles in the sample. Formula to calculate mixing index for other types of mixtures should also be given consideration. Mixer used for coating granular solids with a small amount of liquid.	Methods to prevent Vortex Formation:2 marksThere are four methods of prevention of swirling and vortex formationeach fora) Off-center mounting of the impeller.any 2b) Use of Bafflespointsc) Use of diffuser ring with turbines2d) Angular entry of agitators.2Mixing index:2It is a measure of the homogeneity of the mixture, ie the degree of uniformity of the mixture.5Formula to calculate mixing index:5For granular solids5Is $S = \sqrt{\frac{(N-1)\mu(1-\mu)}{n\sum_{i=1}^{N}(x_{i-x})^2}}$ 2Where Is is the mixing index.2N is the number of sample.2 μ is the weight fraction of desired solid in the feed.3 x_i is the $\frac{\varepsilon X_i}{N}$ 3N is the number of particles in the sample.4Formula to calculate mixing index for other types of mixtures should also be given consideration.5Mixer used for coating granular solids with a small amount of liquid.

SUMMER-15 EXAMINATION Model Answer

Subject code :(17313) Page 20 of 21

bject cod	e:(17313)	Р	age 20 of 21
	It consists of a pan incorporating heavy wheels known as muller wheels. In some designs, the pan is stationary and the wheels rotate wheras in the other the pan is rotated the axis of the wheel is held stationary. Plows guide the solids under the muller wheels during mixing. A discharge opening is provided on the pan floor.	3	
6-е	Sigma Mixer: Construction: To gear box and electric motor Gear wheels Trough Sigma blade	2	4

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

SUMMER-15 EXAMINATION <u>Model Answer</u>

Subject code :(17313) Page **21** of **21**

bject (code .(17515)	r	age ZI OI ZI
	It consists of a short rectangular trough with saddle shaped bottom. Two		
	counter rotating blades are incorporated in the trough. Blades are so placed and		
	so shaped that the material turned up by one blade is immediately turned under		
	adjacent one. The blades are driven by through a gear mechanism provided at		
	either ends. The trough may be open or closed and may be jacketed for		
	heating or cooling. The machine can be emptied through a bottom valve.		
	Working: The material to be kneaded is dropped into the trough. The blades		
	turn towards each other at the top, drawing the mass downward. then shearing it		
	between the walls and blades of the trough. It is mixed for about 5 to 20		
	minutes or longer. The trough is then unloaded by tilting it.		
		2	
6-f			4
	D = 40 cm = 0.4 m		
	N = 100 rpm = 1.667 rps	1	
	$\rho = 15 \text{ kg} / \text{m}^3$		
	Np = 9		
	$N_p = P / (N^3 D^5 \rho)$	2	
	$P = Np / (N^3D^5\rho) = 9 / (1.667^3 *0.4^5 * 15) = 6.4 Watt$	1	
		I	