22208

21819 3 Hours / 70 Marks

			_	
Seat No.				

Instructions : (1) All Questions are *compulsory*.

- (2) Answer each Section on separate answer sheet.
- (3) Answer each next main Question on a new page.
- (4) Illustrate your answers with neat sketches wherever necessary.
- (5) Figures to the right indicate full marks.
- (6) Assume suitable data, if necessary.

Marks

12

SECTION – I

1. Attempt any SIX of the following :

- (a) Compare between Electric and Magnetic circuit. (any 4 points)
- (b) Define the following terms :
 - (i) RMS value
 - (ii) Average value
 - (iii) Cycle
 - (iv) Frequency
- (c) State the working principle of single phase transformer.
- (d) Draw power triangle and show the quantities on it.

[2 of 4]

- (e) Differentiate statistically and dynamically induced e.m.f.
- (f) Write the applications of autotransformer.
- (g) Write the applications of $1-\phi$ motor.
- (h) State Len'z law.

2. Attempt any THREE of the following :

- (a) Describe B-H curve of the magnetic material.
- (b) State the voltage and current relationship in star and delta connection.
- (c) Explain the working principle of $1-\phi$ induction motor.
- (d) In a series a.c. circuit consisting of 8Ω inductive reactance and 10Ω resistance, a current of 6 ampere is flowing through the circuit.
 - (i) Find voltage across each parameter of circuit.
 - (ii) Calculate the phaser difference in degrees between the current and the voltage in the combination.
- (e) Select the motor for following applications :
 - (i) Table Fan
 - (ii) Spray pump
 - (iii) Blower
 - (iv) Fruit Juicer

3. Attempt any TWO of the following :

(a) Write the Faraday's laws of electromagnetic induction and derive the equation for self induced emf and mutually induced emf. 12

12

[**3** of **4**]

- (b) A coil of resistance 4Ω and inductive reactance of 42 Ω is connected in parallel with a resistance 15 Ω and capacitive reactance 18 Ω. When the voltage across the circuit is 220 V, find :
 - (i) the current taken by each branch
 - (ii) the total current taken from mains
 - (iii) the power factor of the circuits.
 - (iv) draw the vector diagram.
- (c) Derive an emf equation of single phase transformer.

SECTION - II

4. Attempt any FIVE of the following :

- (a) List any four specifications of resistor.
- (b) Compare between PN junction diode and zener diode.
- (c) List the applications of transistor.
- (d) Draw the circuit diagram of centre-tapped full wave rectifier.
- (e) If a resistor has colour codes Brown Black Red Gold, find the value of resistor.
- (f) State input impedance and output impedance for CB configuration of transistor.

5. Attempt any THREE of the following :

- (a) Explain zener diode as voltage regulator.
- (b) Differentiate between active and passive components.
- (c) Describe the working of full wave bridge rectifier with LC filter. Draw input and output waveforms for it.
- (d) Draw a sinusoidal waveform for 100 sin314t showing magnitude, time period T and Frequency.

12

22208

10

6. Attempt any TWO of the following :

- (a) Write the difference between ideal and practical voltage and ideal & practical current sources. State example of practical voltage and current source.
- (b) Draw the experimental setup to plot V-I characteristics of PN junction diode and explain the V-I characteristics of PN junction diode.
- (c) Define cut-off, active and saturation region and draw the output characteristics of CE configuration with different operating regions of transistor.