

SUMMER– 2019 Examinations Model Answer

Page 1 of 28

Important suggestions to examiners:

Subject Code: 22419

- 1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme.
- 2) The model answer and the answer written by candidate may vary but the examiner may try to assess the understanding level of the candidate.
- 3) The language errors such as grammatical, spelling errors should not be given more importance. (Not applicable for subject English and communication skills)
- 4) While assessing figures, examiner may give credit for principle components indicated in a figure. The figures drawn by candidate and model answer may vary. The examiner may give credit for any equivalent figure drawn.
- 5) Credits may be given step wise for numerical problems. In some cases, the assumed constant values may vary and there may be some difference in the candidate's answers and model answer.
- 6) In case some questions credit may be given by judgment on part of examiner of relevant answer based on candidate understands.
- 7) For programming language papers, credit may be given to any other program based on equivalent concept.

Q.1	Attempt any FIVE of the following 10 Marl	KS			
	List standard voltage level used in India.				
Ans:	Standard voltage level used in India: (2 Mark	cs)			
	Generation Voltage : 3.3KV, 6.6KV,11KV and 17.5 KV,21KV (Now a days generation voltage is in the range of 11KV- 33KV)				
	Primary Transmission voltage :- 220 KV, 400KV, 765 KV (750 KV)				
	Secondary Transmission voltage :- 220 KV, 132 KV, 110 KV, 66 KV				
	Primary Distribution voltage :- 33 KV, 22KV, 11 KV and for long distance line it may be 66 KV				
	Secondary Distribution voltage: - 3-phase, 400 Volt, for single phase 230 Volt.				
	OR				
	Standard Transmission voltages in India are 765 KV (750KV), 400KV, 220KV, 132KV, 110KV, 66KV, 33KV, 22KV, 11KV.				
b)	Define: voltage regulation of transmission line.				
Ans:	voltage regulation of transmission line: (2 Ma	arks)			
	Voltage regulation is nothing but voltage drop in transmission line express	ed in			

Su	bject Code: 22	2419		SUMMER– 2019 Examinat <u>Model Answer</u>		Page 2 of 28
	% of rece	eiving e	end volta	ge		
	$\%$ Regulation = $\frac{5}{2}$			ending End Voltage – Re Receiving End	ceiving End Voltage Voltage	100
	% re	gulai	tion =	No load receivir	ng end voltage	– Full loa
c)	State the d	isadvar	ntages of	skin effect.		
Ans:	Disadvant	ages of	skin eff	ect:- (Any Two point exp	ected: 1 Mark each, To	otal 2 Marks)
	1. Full cross section of conductor is not utilized, Therefore effective area of conductor reduces so its resistance increases (<i>Since</i> $R = \rho \frac{l}{4}$)				ea of conductor	
	redu	ices so i	its resista	ince increases (Since $R = \rho$	$\frac{y}{A}$	
	2. Due to increase in resistance, copper losses increases (Since copper losses = I^2R)					
	3. So transmission efficiency reduces.					
	 4. Due to increase in resistance, Voltage drop increases (Since Voltage drop = IR) 5. So voltage regulation becomes poor (increases) 					
d)	A) State form IN/DC transmission line ments on India with the involution line of					
Ans:	,					
		S.N.	From		То	
		1	Rihand		Dadri	
		2	Talcher		Kolar	
		3	Chandr	apur	Padghe	
		4	Bersoor	- (M.P.)	Lower Sileru	
		5		ting Northern region m- Pusawali)	Eastern Region	

SUMMER-2019 Examinations Model Answer

Su	bject Code: 2241	Model Answer	Page 3 of 28		
		6 Connecting Northern region (Vindhyachal)	Western Region		
		7 Connecting Southern region (Chandrapur)	Western Region		
	8	Connecting Southern region(Vizag- Gajuwaka)	Eastern Region		
	Define prime	m and secondary distribution analy			
e) Ans:	i) Primary Di	ry and secondary distribution syste stribution:	em (1 Mark)		
			ected in between receiving substation		
	Distribution substation. OR It is link between receiving substation & distribution				
	transformer				
	ii) Secondary	(1 Mark)			
	It is a 3-j	It is a 3-phase, 4-wire Distribution line in between Distribution substation to			
	consumer line. OR It is link between distribution transformer substation & consum				
f)	f) State the classification of distribution substation.				
Ans:	The classifica	tion of distribution substation.			
	(Any Four point expected: 1/2 Mark each, Total 2 Marks)				
		Pole mounted distribution substatio			
	2.	2. Plinth mounted distribution substation			
	3.	Compact/prefabricated distribution substation			
	4.	4. Underground distribution substation			
	5.	ndoor distribution substation			
	6. (Outdoor distribution substation			
	7.	Mobile distribution substation			

Su	bject Code: 2241	SUMMER– 2019 Examination 9 <u>Model Answer</u>	ons Page 4 of 28		
g)		r properties of conductor material used			
Ans:	Following are the properties of conductor material:- (Any Four point expected: 1/2 Mark each, Total 2 Marks)				
	-	conductivity :- Material should have hig	-		
	2. High streng	mechanical strength:- Material should l th	have sufficiently high mechanical		
	3. Flexil	ole :- Material should be flexible			
	4. Weigh	nt: - Material should be light in weight to	o reduce transportation & handling		
		variation to correction. Material about	ld have high registance to comparion		
	_	resistance to corrosion:- Material shoul	ia have high resistance to corrosion		
		eness: - Material should not be brittle.			
	-	erature coefficient of resistance:- Mater icient of resistance.	ial should have low temperature		
	8. Availa	ability & cost: - Material should be easily	y available & less costly.		
		Value: - Material should have high scra	5		
Q. 2		THREE of the following	12 Marks		
a)		our advantages of high voltage power	transmission.		
Ans:		that, $P = \sqrt{3} V_L I_L \cos \phi$			
	For,	Same power to be transferred			
		At same power factor			
		At same transmission line distance			
		$I \alpha \frac{1}{V}$ from This Equation It is clear the	at due to High Transmission Voltage		
	Following are	e the advantages Hence EHVAC Transn	nission is adopted:		
	Advantages:		ected: 1 Mark each, Total 4 Marks)		
	1. As Trar	nsmission voltage increases, current decr	reases. (as I $\alpha \frac{1}{V}$)		
		ent decreases, cross section of conductor s section of conductor decreases, its weig			

SUMMER- 2019 Examinations Model Answer

Page 5 of 28

- 4. As weight of the conductor decreases, design of tower becomes lighter in weight.
 - 5. As current decreases, cross section of bus bar and size of switch gear contact etc. reduces.
- 6. Due to above advantages, Transmission cost per KM decreases
- 7. As transmission voltage increases. A current decreases, so copper losses in transmission line reduces.(as *Cu.losses* αI^2)
- 8. As copper losses reduces, transmission efficiency increases [as Tr. $\eta_T \alpha \frac{1}{C \mu \log \alpha}$]
- 9. As current reduces, voltage drop in transmission line reduces. **[as Voltage drop** α $\mathbf{I}\alpha \frac{1}{V}$ **]**
- 10. As voltage drop in transmission reduces, voltage regulation becomes better (improved).
- 11. As efficiency and regulation of transmission line gets improved, so performance of transmission line increases
- 12. As transmission voltage increases power handling capacity of transmission line increases (as P α V²)
- 13. Due to high voltage transmission line, successful interconnection of transmission line is possible than low voltage.
- 14. Generating Stations are generally located away from load centre.
 - **Hence**, HVAC transmission line becomes necessary for bulk power to be transmitted over a long distance

b) Describe the proximity effect and state its two disadvantages.

Proximity effect:

(Figure: 1 Mark, Explanation: 2 Mark & disadvantages: 1 mark, Total 4 Marks)

Explanation:

Let two alternating current carrying conductors placed near to each other as

SUMMER-2019 Examinations Subject Code: 22419 **Model Answer** Page 6 of 28 shown in figure. Due to electro-magnetic action, flux produced by each conductor links with each other. Due to this super -impose of magnetic field on conductor causes current in each conductor is re-distributed. This is known as proximity effect. Disadvantages of proximity effect:- (Any Two point expected) Current in each conductor is re-distributed 1. 2. That is current is not uniformly distributed through cross section of conductor Due to above two reasons Cross section of conductor is not fully utilized. 3. Therefore effective area of conductor reduces so its resistance increases 4. (Since $R = \rho \frac{l}{\Lambda}$) 5. Due to increase in resistance, copper losses increases (Since copper losses = I^2R) 6. So transmission efficiency reduces. 7. Due to increase in resistance, Voltage drop increases (Since Voltage drop = IR) 8. So voltage regulation becomes poor (increases) Draw and explain Bi-polar HVDC transmission line. **c**) **Bipolar HVDC transmission line (System):** Ans: (Figure : 2 Mark & Explanation: 2 Mark, Total 4 Marks) Layout of Bipolar DC transmission +500/+600/+800 kV w.r.t ground Sending end Receiving end High voltage DC substation substation transmission line Outgoing AC feeder Rectifier and Inverter and Ø Filter unit Filter unit 3ph step-up 3ph step-down transforme transformer f Rectifier and Inverter and T Filter unit Filter unit High voltage DC transmission line -500/-600/-800 kV

w.r.t ground

or equivalent figure

SUMMER- 2019 Examinations Model Answer

Page 7 of 28

	Explanation:-					
	It has two conductors. One at positive potential & other at negative potential at					
	same magnitude w.r.t. ground					
	Both conductors operate at equal potential, so current at ground is zero.					
d)	State the different methods of improving string efficiency. Explain any one method in detail.					
Ans:	The Methods of Improving String Efficiency:-					
	(Methods : 2 Mark & Any one explanation: 2 Marks : Total 4 Marks)					
	1) By reducing value of 'm' or ('k') by using longer cross arm.					
	2) By Making of 'm' or ('k') equal to zero					
	3) By grading of Insulator.					
	4) By Using guard ring.					
	Explanation:-					
	1) By reducing value of 'm' or ('k') by using longer cross arm:-					
	Fig:-					
	The value of 'm' can be decreased by reducing value of shunt capacitance (C_1)					
	since $m = C_1/C$.					
	In order to reduce value shunt capacitance (C1) distance of string of					
	insulator from tower must be increased. i.e. by using longer cross arm. Due to this					
	value of shunt capacitance (C_1) reduces.					
	Therefore value of m reduces Since $(m = \frac{C_1}{C})$ As value of 'm' reduces there					
	will be more uniform voltage distribution along a string of suspension insulator. In					
	this way string efficiency increases.					
	Limitation:					
	In practice there is limitation to increase length of cross arm as cost of					
	tower increases. In practice m= 0.1 is the limit which can be achieved by this					
	method.					

SUMMER– 2019 Examinations <u>Model Answer</u>

Page 8 of 28

2) By Making of 'm' or ('k') equal to zero:-

or equivalent Figure

If an insulating material or any non conducting material of high strength is used for connection between two disc insulators in a string instead of using steel part.

Than value of Shunt Capacitance (C1) becomes Zero,(Capacitance will not form) therefore value of 'm' becomes zero (since $m = C_1/C$) So string efficiency becomes 100%.

3) By grading Insulator :-

In this method, disc insulators of different dimensions are so selected that each disc has different capacitance. The assembly in the string of suspension insulator is made in such a way that the top unit insulator has fewer dimensions. (Less capacitance) (C α A) and dimensions of insulators progressively goes on increasing i.e. bottom unit has maximum capacitance due to large dimensions of insulators.

(Since Q=C/V i.e. \underline{V} is inversely proportional to capacitance So as \underline{A} Increases \underline{C} increases therefore voltage decreases)

In this way it equalizer potential distribution across the string and therefore increase string efficiency.

This method has disadvantages that it requires disc insulator of different dimensions in one string of suspension insulator. Practically it is not possible to obtain such ration. But very high voltage transmission line (1200KV). This method is used.

SUMMER– 2019 Examinations Model Answer

Page 9 of 28

MAHARASHTRA STATE BOARAD OF TECHNICAL EDUCATIOD (Autonomous) (ISO/IEC-27001-2005 Certified)

SUMMER- 2019 Examinations Model Answer

Page 10 of 28

Su	bject Code: 22419	SUMMER– 2019 Examinations <u>Model Answer</u>	Page 11 of 28
	Ferranti effect :		(2 Marks)
	Under an	y one above condition, it is observe that	receiving end voltage (V_R) is
	found to be g	reater than sending end voltage (Vs). Th	is phenomenon is known as
	Ferranti effect		
c) Ans:	Grid distribution	em of distribution and state its advantag system:-	es. (2 Marks)
		, when the feeder or loop or ring is charg	
		ostations from two or more than two diffe	
		s "Grid distribution system. In this system	0 0
	at a time.		, , , , , , , , , , , , , , , , , , ,
	Layout of Grid distri	bution scheme:	(1 Marks)
		Distributor Loads Loads Distributor Loads Distributor Loads Distributor Loads Loads Loads Loads Loads Loads Loads Loads Loads Loads Loads Loads Loads Loads Loads Loads	Distributor
		Grid distribution system	quivalent figure

SUMMER– 2019 Examinations <u>Model Answer</u>

Page 13 of 28

Explanation:-

Subject Code: 22419

i) Core or conductor:

- ➢ It function is carry current.
- > Cable may have single or more than single core conductor.
- > Conductor are made up of copper or aluminium material
- Cross section of conductor is directly proportional to current. (Cross section of conductor depends upon current carrying capacity)
- Conductor used is -
 - Annealed
 - Tinned

ii) Insulation:

- Each core of conductor is provided with suitable thickness of insulation to avoid short circuit between two conductors.
- The thickness of insulation layer depends on magnitude of voltage for which it is designed.
- > Commonly used materials for insulation are e.g.:-
 - PVC (Polyvinyl Chloride)
 - Polyethene
 - XLPE (Cross- linked polyethylene)

iii) Lead (Metallic) Sheath:

- It is provided over insulation.
- To provide the protection of core from entry of moisture, gases or other damaging liquids (acids & alkaline) in the soil & atmospheric.
- The metallic sheath is made up of lead or lead alloys recently aluminum is also being used as a metallic sheath.

iv) Bedding:

- > Over the metallic sheath there is layer of bedding.
- > The function of bedding is protecting the metallic sheath against corrosion &

SUMMER-2019 Examinations Subject Code: 22419 **Model Answer** Page 14 of 28 from the mechanical injury due to armouring. \geq It is made from fibrous material such as jute, hessian tape v) Armouring: This layer is over a bedding only for underground cable and not for over head \geq cable \geq Its function is to protect the cable from mechanical injury. It covers the bedding, which consists of 1 or 2 layers of galvanized steel wire or \geq steel tapes vi) Serving: \geq This layer is last layer which comes over armouring. Its function is to protect armouring against rusting and it also helps for easy \geq handling of cables. It is similar to bedding & consists of fiborous material such as jute. \geq **O.4** Attempt any THREE of the following 12 Marks State the classification of transmission lines based on voltage level and length of lines. a) A) According to Voltage level: (2 Marks) Ans: a) High voltage Transmission Line (HV) up to 33 KV b) Extra High Voltage Transmission Line (EHV) above 33 KV up to 400 KV c) Ultra High voltage Transmission Line (UHV) above 400 KV (2 Marks) **B)** According to Length of Transmission line: a) Short Distance Transmission Line - (up to 50 KM) b) Medium Distance Transmission Line - (up to 50 to 150 KM) c) Long Distance Transmission Line - (above 150 KM) OR 1) Short Transmission Line: - The length of Short transmission Line is up to 50KM and its line voltage is less than 20 KV 2) Medium Transmission Line: - The length of Medium transmission Line is up to

Su	SUMMER- 2019 Examinationsbject Code: 22419Model AnswerPage 15 of 28					
	50KM-150KM and its line voltage is between 20KV to 100 KV					
	3) Long Transmission Line: - The length of Long transmission Line is above 150KM and its line voltage is above 100K					
	OR					
	1) Short Transmission Line: - The length of Short transmission Line is up to 80KM and its					
	line voltage is less than 20 KV					
	2) Medium Transmission Line: - The length of Medium transmission Line is up to					
	80KM- 200KM and its line voltage is between 20KV to 100 KV					
	3) Long Transmission Line: - The length of Long transmission Line is above 200KM and					
	its line voltage is above 100KV					
b)	Draw the circuit diagram and phasor diagram of nominal T method of medium transmission line.					
Ans:	Circuit Diagram:- (Diagram: 2 Mark & Vector diagram: 2 Mark: Total 4 Marks)					
	Rph/2 Xph/2 Rph/2 Xph/2 Ts MMM mmm TR MMM mmm MMM mmm Variation Variation Variation Variation Variation Variation Variation Variation Variation					
	OR					
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					

SUMMER– 2019 Examinations <u>Model Answer</u>

Page 16 of 28

Su	bject Cod	SUMMER– 2019 Examinationsle: 22419Model Answer	Page 17 of 28			
	11.	In case of EHVAC, Intermediate substation is required at e	every 250 km to			
		improve the performance of transmission line				
	12.	If power is to be transmitted of EHVAC through underground	cable then there is			
		limitation on the length of cable due to charging current. e.g	, for 400 KV line			
		limitation on length of cable is 25 Km				
	13. Asynchronous tie not possible.					
	14. Stability of EHVAC is very low because of presence of inductance.					
	15.	Transient performance is poor.				
	16.	There is limitation on power transfer due to presence	of inductance of			
		transmission line & power angle.				
	17.	To improve the performance of transmission line additional ec	uipments such as			
	series & shunt reactor & capacitor are required which increases cost of					
	substation.					
	18.	18. EHVAC is economical only for bulk amount of power is to be transmitted over				
		long distance.				
(L	Duran (he single line diagram (langual) of 22/11 hW substation				
d) Ans:		he single line diagram (layout) of 33/11 kV substation. le line diagram (layout) of 33/11 kV substation :	(4 Marks)			
		Layout of 33kV Substation	, , ,			
		Auxiliary transformer	г. ,			
		•	+•/•— ↓			
		33/11kV main transformer	-			
		3ph 33kV incoming line (feeders) L.A. Isolator with earth switch				
		P.T. 3ph, 11kV 3ph, 11kV 3ph, 11kV	.T. h-y X			
		33kV Busbar outgoing busbar busbar busbar	Ť			
L	I	ON Equivalent				

conductor configuration only

SUMMER- 2019 Examinations

Subject Code: 22419

Model Answer

Page 19 of 28

Q.5	Attempt any TWO of the following 12 Marks					
a)	Discuss the effect of transmission line parameters on the performance of transmission					
Ans:	line (any six points). Following are the effect on performance of transmission line:					
	(Any Six point expected: 1 Marks each, Total 6 Marks)					
	1. Due to resistance (R), voltage drop in transmission line produces					
	1. Due to resistance (K), vonage drop in transmission line produces					
	2. Due to resistance (R), copper losses in transmission line produces.					
	3. Due to inductance (L) voltage drop in transmission line produces.					
	4. Capacitor (C) draws charging current through transmission line. This charging					
	current produces additional copper losses & voltage drop in transmission line.					
	5. Due to above reasons, transmission line efficiency gets affected					
	6. voltage regulation of transmission line gets affected					
	7. Also power factor of transmission line gets affected					
b)	Explain the features of flexible AC transmission line (any four). State types of FACTS controller.					
Ans:	Features of flexible AC transmission line:- (Any Four features expected: 1 Mark each, l					
	4 Mark & Types: 2 Mark, Total 6 Marks)					
	1. FACTS increase the reliability of AC grids.					
	2. It controls the voltage under various load condition					
	3. It balance reactive power (both lagging and leading reactive power)					
	4. It improves power quality					
	5. It increases transmission efficiency					
	6. It also help to solve technical problems in the interconnected power system.					
	7. They reduce power delivery costs.					
	8. There is fast voltage regulation.					

SUMMER- 2019 Examinations <u>Model Answer</u>

Page 20 of 28

- 9. Increased power transfer over long AC lines.
 - 10. Better utilization of the network,
 - 11. Increased availability and reliability
 - 12. As well as improved network stability are achieved along with higher supply quality.

OR

- In conventional AC transmission system the ability to transfer AC power is limited due to various reasons.
- So the actual amount of power transferred to the load (active power) is always less than apparent power.
- > For ideal transmission, the active power should be equal to apparent power.
- The main purpose of facts to obtain active power nearly equal to apparent power by supplying lagging reactive power or leading reactive power as per requirements.
- For this, FACTS uses static power electronics devices for series & shunt compensation automatically as per requirements.

Types of FACTS controller:-

Examples of FACTS for series compensation :- (Any one types expected)

- 1. Thyristor-controlled series reactor (TCSR)
- 2. Thyristor-controlled series capacitor (TCSC)

Examples of FACTS for shunt compensation:- (Any one types expected)

- 1. Static synchronous compensator (STATCOM)
- 2. Static VAR compensator (SVC)

A single phase AC distributor AB 300 M long is fed from end A and is loaded as under.
 (i) 100 A at 0.707 pf lagging 200 m from point A. (ii) 200 A at 0.8 pf lagging 300 m from point A, The load resistance and reactance of the distributor is 0.2 ohm and 0.1 ohm per kilometer. Calculate total voltage drop in the distributor. The load power factors refer to the voltage at the far end.
 Ans: Given data:

SUMMER– 2019 Examinations <u>Model Answer</u>

Page 21 of 28

S	Calculate Voltage = = =	$I = I_{AC} \times Z_{AC}$ = (299.3282 $\angle -$ = 13.37997054 $\angle -$ = 13.0366 - <i>j</i> 3 drop in section I	-39.5778) ($(2 - 13.0078).01161 VBC:-(0.02236 \angle 2$		(1/2 Mark)
	Calculate Voltage = = =	$= (299.3282 \angle -$ = 13.37997054 \angle = 13.0366 - <i>j</i> 3. drop in section I = ICB X ZCB = (200 $\angle -$ 36.87)	-39.5778) (1 $\angle -13.0078$.01161 V BC:- (0.02236 $\angle 2$	0.0447 ∠ 26.57) V	(1/2 Mark)
	=	= 13.0366 - <i>j</i> 3. drop in section I = ICB X ZCB = (200∠-36.87)	.01161 V BC:- (0.02236∠2		
	=	drop in section I = I _{CB} X Z _{CB} = (200∠-36.87)	BC:- (0.02236∠2		
	=	= (200∠-36.87)	(0.02236∠2		(1/2Marks)
	=			26.565)	
		= 4.48∠-10.3	T 7 1.		
	$V_{BC} =$		Volts		
		4.407-j 0.80	Volts		(1/2Marks)
S	Step 4: Calculate total vol	ltage drop in dist	ributor V _{AB}	:-	
	Voltag	e drop in section	BC + Volta	ge drop in section	AC
	=(4.	$407 - j \ 0.80) + (2)$	13.0366 – <i>j</i> 3	3.01161)	
	=17.9	9936- <i>j</i> 3.81161	Volt		(1 Mark)
	$V_{AB} = 17.$	8552 ∠-12.359	Volt		
S	Step 5: Calculate Load po	ower factor :-			
	=Cos	(12.3259)			
	= 0970	69 lagging			(1/2Marks)
Q.6 A	Attempt any TWO of the	following			12 Marks
a) r i	A 3 phase line of 4 km resistance and reactance f the voltage at the su voltage and efficiency of	per km of each pply end is m	conductor aintained a	are 0.2 ohm and tt 11 kV. Calcula	0.5 ohm respectively ate the received end
	$P_R = 4000 \text{ KW} = 4000 \text{ x } 10^3$	W, $V_R = 11KV = 1$	11×10^{3V} , P.F	$F = 0.8 \log, R \operatorname{Per} c$	onductor =0.2 ohm, X
F	Per conductor = 0.5 ohm				
	$\mathbf{V}_{\mathbf{R}\mathbf{p}\mathbf{h}} = V_{\mathbf{R}\mathbf{P}\mathbf{h}} \equiv \frac{11}{2}$	$\frac{\times 10^3}{\sqrt{3}}$	$V_{R_{ph}} \equiv 0$	$5.3508 \times 10^3 V$	
	To Calculate Total /loop	values of R & X			
	Total resistance $R_T = A$	$4 \text{ R} = 0.2 \times 4 = 0.8$	ohm		
	Total Reactance $X_T =$	$4 X = 0.5 \times 4 = 2 \text{ of}$	hm Step	1: To calculate cur	rent:
	Power P =	$VI\cos\phi$			

bject Code: 22419	SUMMER– 2019 Examinations <u>Model Answer</u>	Page 23 of 28
Ι	$\equiv \frac{P}{\sqrt{3} V_L \cos \phi} , I \equiv \frac{4000 \times 10^3}{\sqrt{3} \times 11 \times 10^3 \times 0.8}$	
Ι	$\equiv 262.4319 amp \qquad$	(1 Mark)
Step 2: To calculate To	tal Line Losses:	
Total Lin	ne Losses = $3 I^2 R_{Ph}$	
	$= 3 (262.4319)^2 \times 0.8$	
	= 16289.2051 Watt	(1 Mark)
Step 3: To calculate To	tal Transmission efficiency:	
		(1/2 Mark)
	$\%_0 \eta_T = \frac{4000 \times 10^3}{4000 \times 10^3 + 165289.2051} \times 100$	
	$\% \eta_T = 69.0317\%$	(1 Mark
Step 6:To calculate % r	regulation:	
% Voltage I	Regulation = $\frac{I(R_{ph} \cos \phi R \pm X_{Ph} \sin \phi_R)}{V_R} \times 100$	(1/2 Mark)
	$=\frac{262.4319(0.8\times0.8+2\times0.6)}{6.3508\times10^3}\times1$	00
	= 7.6034 %	(1 Mark)
Step 3: To calculate Ser	nding end voltage:	
$\mathbf{V_{Sph}} = V_R +$	$-I(R_{RPh}\cos\phi_R + X_{Ph}\sin\phi_R) - \dots$	(1/2 Mark)
= 6.3508	$8 \times 10^{3} + 262.74 (0.8 \times 0.8 + 2 \times 0.6)$	
	$8 \times 10^3 + 483.4416$	
	333.6747 volt	
	33.6747 x $\sqrt{3}$	
	• -	

Su		ER– 2019 Examinations <u>Model Answer</u>	Page 24 of 28
b)	Each line of a 3 ph system is susp across the line unit is 17.5 kV, calc capacitance between each insulate Also find the string efficiency.	culate the line to neutral	voltage. Assume that the shunt
Ans:	$V_{\rm L} = 17.5 \text{ KV}$		
	i) Ratio of capacitance 'm' :-		
	$m=\frac{1}{8}$	$\frac{1}{3} = 0.125$	
	k =	m = 0.125	(1 Mark)
	ii) $V_3 = V_1 (1 + 3m + m^2)$		
	$V_3 = V_1 (1 + 3 \times 0.125 + (0.125))$	²)	
	$17.5 = 1.3906 V_1$		
	$V_1 = \frac{17.5}{1.390625}$		
	V ₁ = 12.58426966 KV		
			(1 Mark)
	ii) $V_2 = V1(1+m)$		
	$V_2 = V_1 (1 + 0.125)$		
	V ₂ = 12.58426966 x 1.125		
	$V_2 = 14.15730337$		
			(1 Mark)
	iii) Voltage across string = Vph = V	$_{1} + V_{2} + V_{3}$	
	= 12.58426	5966 +14.15730337 +17.5	
	V _{Ph} = 44.241573	36 KV	
			(1 Mark)

	SUMMER-2019 Examinations						
Su	Subject Code: 22419		Inswer	Page 25 of 28			
	vi) String efficiency						
	, 8 ,						
	S	String $\eta \% \equiv \frac{Vph}{\eta \times V_3} \times 100$		(1 Mark)			
	St	tring $\eta \% = \frac{10.1036}{3 \times 17.5} \times 100$)				
	S	tring $\eta \% = 84.2696 \%$					
				(1 Mark)			
c)	Draw the symbols a	nd state their function	n of componer	ts used in substation (any six).			
Ans:	Symbols in Sub- Stat	ion:		· · ·			
			ent : 1/2 Mark	& their function 1/2 Mark			
	expected: 1 Mark eac	ch, Total 6 Mark)					
	· Simbols- (in sls)	stres docon				
		the provide the the					
				\longrightarrow			
	-	or-					
			- danser	and the second sec			
			Current Tre	in sformer-			
	22.0	the pass service of the	a contraction	$\hat{\mathbf{O}}$			
	2> BUS Bar-	applitte Didenton	-				
	whether and the property of the	2 Bet maline of interes	Potential T	constarmer-			
	21	Le dan Marker er an Stand		101 P B 90000			
	Step-up tro	DSFormer (30)-	1	$-(\bigcirc$			
			L. Marrie L.				
	C-13133	A A >	· Circuit Breat	er-			
			2				
		telly Pochor : a	1 Number	73 70 70			
	Circuit broker	with isolator -	< 211				
		1					
	S. W. With Street	The second secon	10.00				
	dinne di	H alies planat					
		1					
	and a state line	the second state of the					
	TSOLOTO TOTOLOZI	operating	and the second				
	Switch Case						
	Edouble.	break]	(in				

MAHARASHTRA STATE BOARAD OF TECHNICAL EDUCATIOD (Autonomous) (ISO/IEC-27001-2005 Certified)

SUMMER– 2019 Examinations Model Answer

Page 26 of 28

oject Code: 22419		2019 Examinations lel Answer	Page 27 of 28
Isolator or Group Operating Switch (GOS)		Lightening Arrestor (L.A)	
Earth Switch (ES)	∕ ı	Wave or Line trap	¢.
Coupling Capacitor (CC)		A B Switch	
	is common conductor ner (Main transformo	-	outgoing lines are connected
	Ĩ	the incoming voltage (cy. Its rating is in MV	(e.g.33 KV) to outgoing voltage A.
It is it cooling system	-	crete foundation (plint	h). It is oil cooled also air blast
3) Auxiliary Transf	former (Station trans	former): -	
	-	n the input voltage (11 l room, area lighting,	KV) to distribution voltage (3-ph, staff quarters etc,
4) Lightning Arresto	er: -		
-	tween line and ground		ormer against lightning stroke .It is of substation. Under normal

SUMMER– 2019 Examinations Model Answer

Page 28 of 28

5) Earth switch: -

Subject Code: 22419

Its function is to discharge the ground capacitance when line is open circuited for maintenance purpose by isolator.

6) Isolator (No load Switch): -

Its function is to connect or disconnect the circuit only when there is no load.

7) Circuit Breaker: - It is protective device. It open or break the circuit whenever there is fault & protect the equipment. It can be operated manually or remote control whenever required.

8) Relay:

It sense the faults & gives signal to trip circuit of C.B. to open. There are different types of relay e.g. Earth fault relay, Phase to Phase fault relay, Thermal relay etc.

9) Instrumental Transformer (CT & PT):-

C.T & P.T are used for measurement of electrical quantities (Current, voltage, power & energy) also C.T. is used for protection purpose as a part of tripping circuit of C.B.

10) Horn Gap Fuse: -

It is provided to primary side of transformer for protection against over current.(Its frame shape is like a Horn gap due to which arc /spark will extinguish quickly) If C.B. is installed on primary side of transformer than Horn gap fuse is not provided.

-END--