

(Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

SUMMER – 2019 EXAMINATION MODEL ANSWER

Subject: Digital Techniques and Microprocessor

Subject Code: 22323

Important Instructions to examiners:

- 1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme.
- 2) The model answer and the answer written by candidate may vary but the examiner may try to assess the understanding level of the candidate.
- 3) The language errors such as grammatical, spelling errors should not be given more Importance (Not applicable for subject English and Communication Skills).
- 4) While assessing figures, examiner may give credit for principal components indicated in the figure. The figures drawn by candidate and model answer may vary. The examiner may give credit for any equivalent figure drawn.
- 5) Credits may be given step wise for numerical problems. In some cases, the assumed constant values may vary and there may be some difference in the candidate's answers and model answer.
- 6) In case of some questions credit may be given by judgement on part of examiner of relevant answer based on candidate's understanding.
- 7) For programming language papers, credit may be given to any other program based on equivalent concept.

Q. No	Sub Q.N.	Answer	Marking Scheme
1.		Attempt any <u>FIVE</u> of the following:	10
	a)	State the function of linker and debugger.	2M
	Ans.	Function of linker and debugger:	
		Linker: There are certain programs which are large in size and cannot be executed at one go simultaneously. Such programs are	
		divided into sub programs also known as modules. The linker is used	Each
		to link such small programs to form one large program. It also generates an executable file.	function 1M
		Debugger: Debugger is used to test and debug programs. The debugger allows a user to test a program step by step, so that the problem points or steps can be identified and rectified. It allows the user to inspect the registers and memory locations after a program has been executed.	
	b)	List any four addressing modes and give one example of each.	2M
	Ans.	Addressing Modes:	
		1. Immediate Addressing Mode:	
		Example: MOV CL, 03H	
		ADD AX, 1234H	

(Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

SUMMER – 2019 EXAMINATION MODEL ANSWER

Subject: Digital Techniques and Microprocessor	Subject Code:	22323

	2. Register Addressing Mode: Example: MOV AL, BL	
	ADD CL, DL	
	MOV DS, AX	Any
	3. Direct Addressing Mode:	four
	Example: MOV AL, [2000H]	addressi
	MOV [1020], 5050H	ng
	4. Register Indirect Addressing Mode	modes
	Example: MOV [DI], 1234H	with
	MOV AX, [BX]	example
	5. Based Addressing with displacement	$^{1/2}M$
	Example: MOV AX, [BX+300H]	each
	MOV AX, [BX-2H]	
	6. Indexed Addressing Mode	
	Example: MOV [DI + 2345H], 1234H	
	MOVAX, $[SI + 45H]$	
	7. Based Indexed Addressing Mode	
	Example: MOV [BX + DI], 1234H	
	MOV AX, [SI + BX]	
	8. Based Indexed Addressing with Displacement Mode	
	Example: MOV [DI + BX + 37H], AX	
	MOV AL, [BX + SI + 278H]	
	9. Fixed or Direct Port Addressing:	
	Example: OUT 06H, AL	
	IN AX, 85H	
	10. Variable or Indirect Port Addressing	
	Example: IN AL, DX	
	OUT DX, AX	
	11. Implied (Implicit) Addressing Modes	
	Example: CLC	
	DAA	27.5
(c)	State any two Boolean laws with expression.	2M
Ans.	1. $A \cdot 0 = 0$	
	2. $A \cdot 1 = A$ And law 3. $A \cdot A = A$	A 2
	$\begin{bmatrix} 3. & A \cdot A = A \\ 4. & A \cdot \overline{A} = 0 \end{bmatrix}$	Any 2 Boolean
	4. A. A = 0 5. Commutative Law	laws 1M
	A. B. = B. A.	each
	A. B. = B. A. 6. Associative Law	eacn
	U. ASSUCIATIVE LAW	

(Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

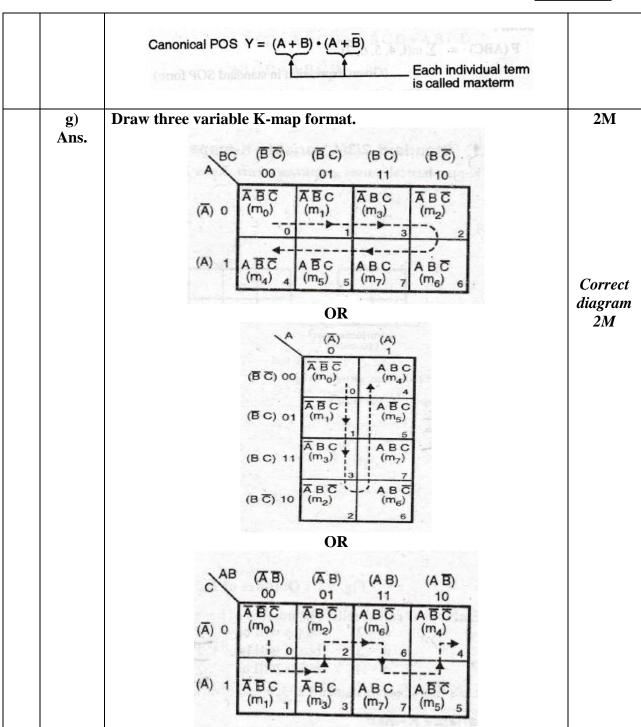
SUMMER – 2019 EXAMINATION MODEL ANSWER

	A. $(B.C) = (A.B)C$ 7. Distributive Law A. $(B+C) = A.B + A.C$. 8. A. $(A+B) = A$ 9. A. $(\overline{A} + B) = AB$ 10. $\overline{A} = A$ 11. De-Morgan's theorem $\overline{A.B} = \overline{A} + \overline{B}$ 12. $A + 0 = A$ 13. $A + 1 = 1$ $\overline{A} + 1 = 1$ 14. $A + A = A$ 15. $A + \overline{A} = 1$ 16. $A + B = B + A$ 17. $A + (B + C) = (A + B) + C$ 18. $A + (B. C) = (A + B) \cdot (A + C)$ 19. $A + AB = A$ 20. $A + \overline{AB} = A + B$ 21. $\overline{A} + AB = \overline{A} + \overline{B}$ 22. $\overline{A} + A\overline{B} = \overline{A} + \overline{B}$ 23. $\overline{A + B} = \overline{A} \cdot \overline{B}$	
d)	Define:	2M
<u> </u>	i) Bit	
A == a	ii) Nibble	
Ans.	i) Bit: Bit is a Binary digit which is the smallest unit of data in	
	digital systems. A bit has a single binary value, either 0 or 1.	Each
	W Nibble A group of 4 bits is referred as Nibble Est 1011, 1001	definitio
	ii) Nibble: A group of 4 bits is referred as Nibble. Eg: 1011, 1001, 1100	n 1M
e)	Convert following number into its equivalent Binary Number	2M
A	$(146.25)_{10}$	
Ans.		

(Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

SUMMER – 2019 EXAMINATION MODEL ANSWER


	(146.000		
	(146.25)10 First take Intege	expart	
	A 1	46	
	2 7		
	2 3		
	2 1	8 0	
	2 9		
	2 4		
	2 2	- 0	
	2	1	
		1>1 -> cmsB)	114
	C146)10 = (10	1010010)2	<i>1M</i>
	Now for fraction	al part.	
	Decimal Fraction 8	base Answer Recorded Bit	
	0.25 X	2 0.50 0 →ms8	
		1.00 1	
	0.00 X 2		
	.'. (0·25)10 =	(0.010)2	
	:. (146.25) 10	- (10010010.010)2	<i>1M</i>
f) Ans.	Define Minterm and Maxt Minterm: Each individual term in the called as Minterm.	term. canonical SOP (Sum of Products) form is	2M
	Example: Canonical SOP Y = ABC	$+ \overline{ABC} + \overline{ABC}$	Each
1 1			definitio
	Salani i di Salanka	Each individual term is called minterm	n 1M

(Autonomous)

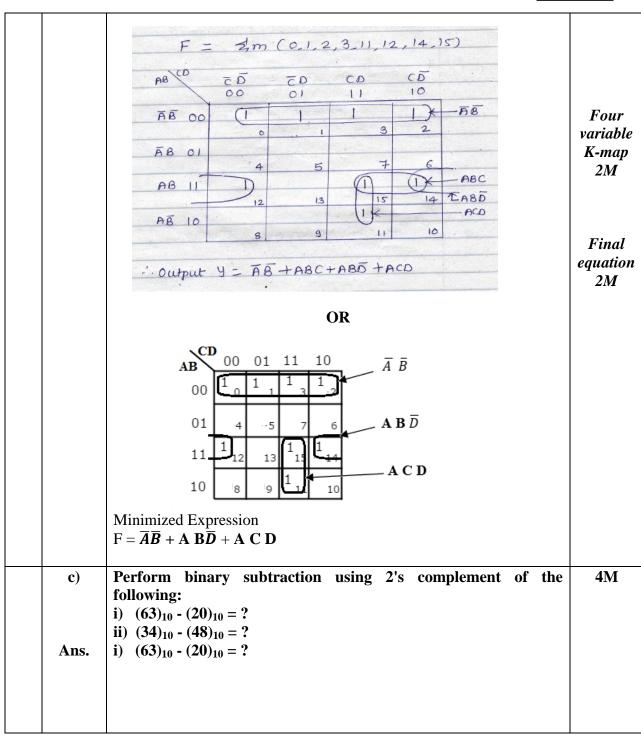
(ISO/IEC - 27001 - 2005 Certified)

SUMMER – 2019 EXAMINATION MODEL ANSWER

(Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

SUMMER – 2019 EXAMINATION MODEL ANSWER


2	a) Ans.	Attempt any <u>THREE</u> of the Draw symbol and truth applications. D flip flop:		_	T flip f	flop. State	theie	12 4M
	7 11150	Business Committee	Inp	ut	Ou	tput		
		in. [2]	CLK	D	Q_{n+1}	$\bar{\bar{Q}}_{n+1}$		
		/P• D Q →	0	·x	NC	NC		D flip
		CLK D FF	1	x	NC.	NC		flop
		JOCK DEL	1	x	NC	NC		Symbol -
		<u>ō</u>	1	0	0	. 1		¹/2 M ;
			1	1	1	0		Truth table-
		 used as a Latch Divide - by - 4 Ripple Co Ring Counter Johnson Counter Used in registers T flip flop:	ounter					One applicati on -½M
		CLK TFF	CLK	T 0	Q _n	Q _n Q _n		T flip flop Symbol - ½M; Truth table-
		Symbol		Trutl	n Table			1M; One
		Applications of T flip flops 1. As the basic building bloc 2. In frequency divider circu 3. Used in D to A converter	ck of count uits.	er.				applicati on -½M
	b)	Minimize the following fur	` /	ıg K-ı	map.			4M
		$F = \Sigma m (0,1,2,3,11,12,14,1$		5	•			
		(Note: Any other equations	shall be c	onsid	ered).			
	Ans.							

(Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

SUMMER – 2019 EXAMINATION MODEL ANSWER

(Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

SUMMER – 2019 EXAMINATION MODEL ANSWER

Subject: Digital Techniques and Microprocessor

Subject Code: 22

i) $(63)_{10} - (20)_{10} = 9$ $\Rightarrow (63)_{10} - (20)_{10} = (63)_{10} + (-20)_{10}$	
$(63)_{10} = (9)_2$	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	2M
: (63)10 = (111111)2 : (20)10 = (010100)2	
For finding 2's complement of (20)10	
1's complement of (20)10 \Rightarrow 101011 2's complement of (20)10 \Rightarrow 101100	
$(63)_{10} \Rightarrow 1111111111111111111111111111111111$	
and in its true form.	

(Autonomous)

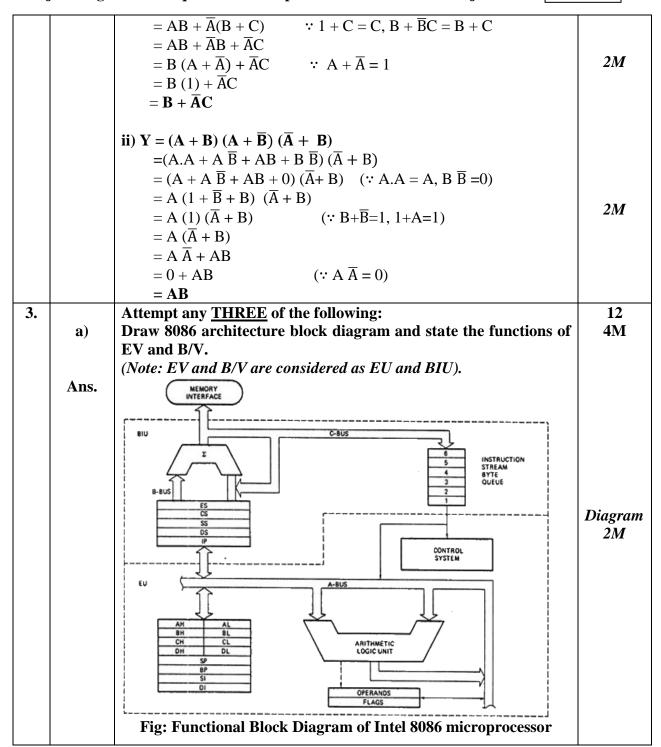
(ISO/IEC - 27001 - 2005 Certified)

SUMMER – 2019 EXAMINATION MODEL ANSWER

Subject: Digital Techniques and Microprocessor

Subject Code:

	<u></u>	
	ii) $(34)_{10} - (48)_{10} = ?$	
	$(34)_{10} = (9)_2$ $(48)_{10} = (9)_2$	
	2 34 2 48	
	$\frac{2 17}{2 8}$ $\frac{2 12}{2 6}$ 0	
	260	
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	<i>2M</i>
	2100	
	L) (MSB) 21 (MSB)	
	· (34)10 = (100010)2 (48)10 = (110000)2	
	Taking 2's complement of (48)10 ⇒	
	1's complement of (48)10 = 001111	
	+ + + + + + + + + + + + + + + + + + + +	
	2's complement of (48) 10 010000	
	Since (34710 - (48)10 = (34)10+(-48)10	
	(34)10 -> 100010	
	$+ \frac{(34)_{10}}{(-20)_{10}} \Rightarrow 100010$	
	110010	
	As corney is not generated answer is in negative	
	Taking 2's complement of answer.	
	i's complement of answer = 001101	
	+ 1 + 1	
	001110	
	·. (34)10-(48)10 =(-14)10	
	at protein	
d)	Simplify the following Boolean expression	4M
	i) $Y = AB + ABC + \overline{AB} + \overline{ABC}$	
	ii) $Y = (A + B) (A + \overline{B}) (\overline{A} + B)$	
	Note: Any other method of simplifying using the Boolean laws shall also be considered.	
Ans.	shall also be considered. i) $Y = AB + ABC + \overline{AB} + \overline{ABC}$	
	$= AB (1 + C) + \overline{A} (B + \overline{B}C)$	
	, , , ,	


(Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

SUMMER – 2019 EXAMINATION MODEL ANSWER

Subject: Digital Techniques and Microprocessor

Subject Code:

(Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

SUMMER – 2019 EXAMINATION MODEL ANSWER

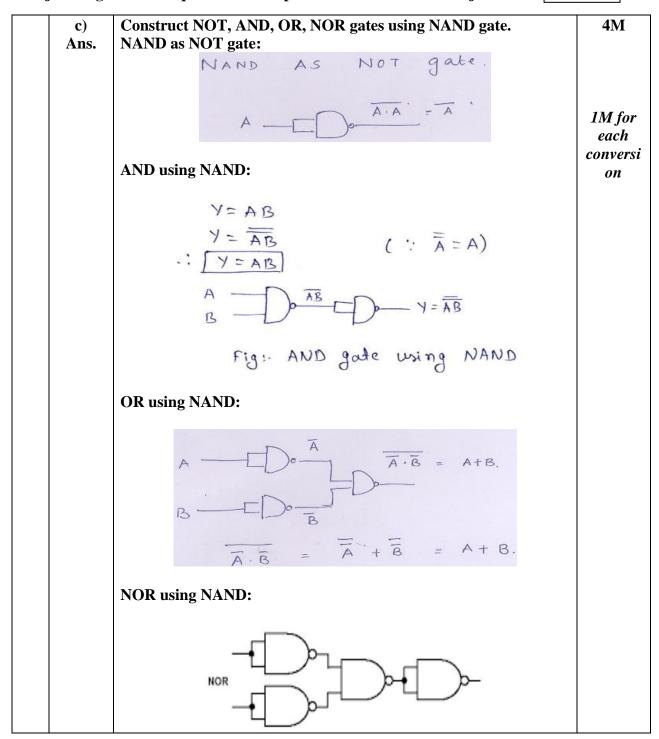
	 BIU: It handles all transfers of data and addresses on the buses for the execution unit. Sends out addresses Fetches instructions from memory. Read / write data from/to ports and memory i.e. handles all transfers of data and addresses on the busses 	IM for BIU
	 EU: Tells BIU where to fetch instructions or data from Decodes instructions Executes instructions 	IM for EU
	OR	
	The functions performed by the Bus interface unit are: - The BIU is responsible for the external bus operations. - It performs fetching, reading, writing for memory as well as I/O of data for peripheral devices. - The BIU also performs address generation and the population of the instruction queue.	
	The Execution unit is responsible for the following work: - The instructions are decoded and executed by it. - The EU accepts instructions from the instruction queue and from the general purpose registers it takes data. - It has no relation with the system buses.	
b)	Design half adder using K-map and realize it using basic gate.	4M
Ans.	Half Adder:	· -
	Half adder is a combinational circuit that performs simple addition of two binary digits.	
	Half Adder Truth Table:	
	If we assume A and B as the two bits whose addition is to be	1M for
	performed, a truth table for half adder with A , B as inputs and Sum , Carry as outputs can be tabulated as follows.	Truth Table

(Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

SUMMER – 2019 EXAMINATION MODEL ANSWER

		T .1	T 11		
3	-		Table		
		put		tput	1M each
	A	В	Sum	Carry	for K
3	0	0	0	0	map of
2	0	1	1	0	sum and
	1	0	1	0	carry
	1	1	0	1	
		K map	for sum		
		A B	0 1		
		0 0	1		
		1	0		
		Sum= A	AB+AB	-	
K map for Ca	arry				
		A B 0	1		
		0	0		
	0				
	1	0	1		
		Carr	y=A.B		
Logic Diagra	am for Ha	lf Adder:			
	А В			→ s → c	1M for Logic Diagram

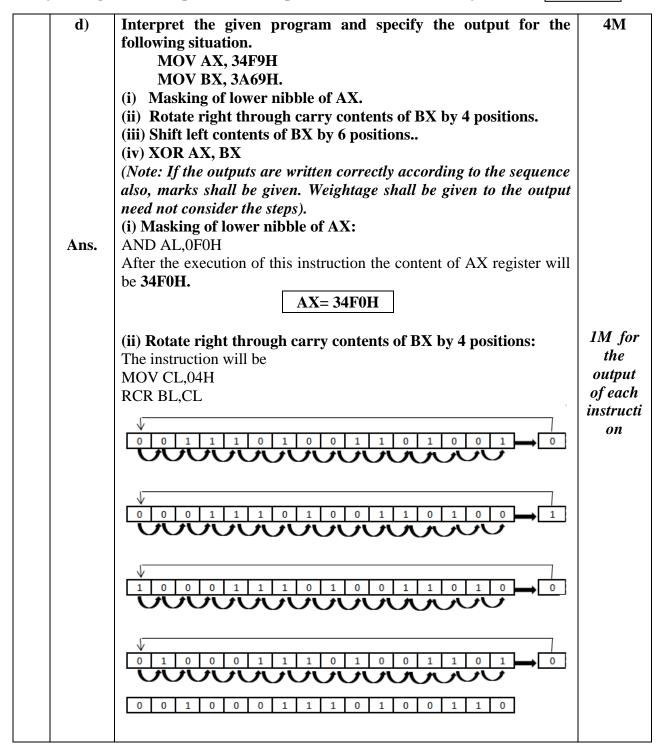

(Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

SUMMER – 2019 EXAMINATION MODEL ANSWER

Subject: Digital Techniques and Microprocessor

Subject Code:



(Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

SUMMER – 2019 EXAMINATION MODEL ANSWER

4.

a)

Ans.

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION

(Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

SUMMER – 2019 EXAMINATION MODEL ANSWER

Subject Code: Subject: Digital Techniques and Microprocessor After the Execution of the instruction the data will be $\overline{23A6H}$. BX = 23A6H(iii) Shift left contents of BX by 6 positions: Register BX is 3A69H, after shifting it by 6 positions, using SHL BX, CL instruction, where CL=06 0 0 1 1 1 0 1 0 0 1 1 0 0 1 0 PASS 1 1 1 1 0 1 0 0 1 1 0 0 1 0 0 PASS 2 0 PASS3 1 1 0 1 0 0 1 1 0 0 1 0 0 1 6 0 PASS 4 1 0 1 0 0 1 1 0 1 0 0 1 0 0 6 0 PASS 0 1 0 0 1 1 0 0 1 0 0 1 0 0 6 0 PASS 6 1 0 0 1 1 0 1 0 0 1 0 0 0 0 0 0 After the execution the content of regBx will be 9A40H BX = 9A40H(iv) XOR AX, BX: ΑX 34F9 0 0 1 0 0 1 1 1 1 1 3A69 0 1 0 0 0 1 BX 1 1 1 1 1 0 1 XORing 0 0 0 1 1 1 0 0 1 0 After the Execution of the instruction Register AX will contain data 0E90H

AX = 0E90H

In pipelined processor, fetch, decode and execute operation are

performed simultaneously or in parallel. When first instruction is

being decoded, same time code of the next instruction is fetched.

Attempt any THREE of the following:

Explain the concept of pipelining.

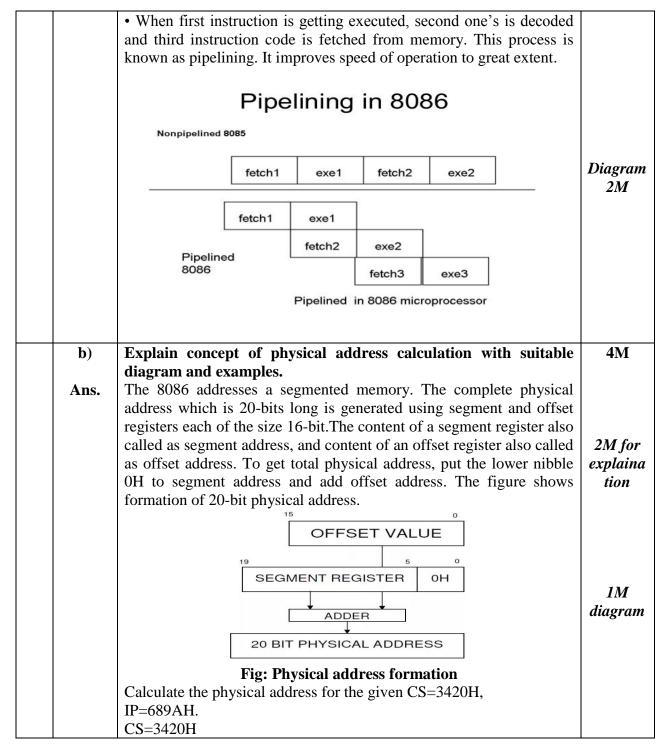
Page	15	/ 27

12

4M

Explain

ation


2M

(Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

SUMMER – 2019 EXAMINATION MODEL ANSWER

(Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

SUMMER – 2019 EXAMINATION MODEL ANSWER

Ans.	Theore: It states complete	m no 1: that the ments	e, comple	ement of a	sum is e	qual to p	roduct of th	4M eir
		A	В	A+B	Ā	B	$\bar{A} \cdot \bar{B}$	For
		0	0	1	1	1	1	each
		0	1	0	1	0	0	theore
	-	1	0	0	0	0	0 '	2M
		m no 2:	Truth	LHS table to ver	A+1	$\mathbf{B} = \mathbf{A} \cdot \mathbf{B}$ organ's se	RHS econd theorem	he
	It states complete	m no 2: s that, the	Truth	LHS table to ver	A+1	$\vec{B} = \vec{A} \cdot \vec{B}$ organ's so	RHS econd theorem	he
	It states complete	m no 2: s that, the ments.	Truth	LHS table to verement of a	A+1	$\vec{B} = \vec{A} \cdot \vec{B}$ organ's so is equal	RHS econd theorem	he
	It states complete	m no 2: s that, the	Truth	LHS table to vere ement of a	A+1	$\vec{B} = \vec{A} \cdot \vec{B}$ organ's so is equal	RHS econd theorem	he
	It states complete	m no 2: s that, the ments.	Truth	LHS table to verement of a	A+) rify De-M a product	$\vec{B} = \vec{A} \cdot \vec{B}$ organ's so is equal	RHS econd theorem	he
	It states complete	m no 2: s that, the ments.	Truth	LHS table to verement of a	A+)	$\vec{B} = \vec{A} \cdot \vec{B}$ organ's so is equal	RHS econd theorem	he

(Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

SUMMER – 2019 EXAMINATION MODEL ANSWER

	4)	Describe race-around condition in JK flip flop and suggest ways 4M				
	d)	Describe race-around condition in JK flip flop and suggest ways				
	A	to overcome it.				
	Ans.		round condition in JK flip	. •		
			K Flip-flop, when J=K=1, th			
				is applied at the clock input, for a		
				er a time interval Δt equal to the	214 6	
		1 1 0	•	AND gates, the output again toggles.	2M for	
				the output changes again. Hence	descripti	
				output will oscillate back and forth the clock pulse, the value of Q is	on	
				d as race -around condition.		
				A practical method of overcoming		
			1	ster-slave (MS) configuration. It can		
			achieved through edge trig	` '		
		aiso oc	acine ved through edge trig	Trailing (negative)		
		Lea	iding (positive)	edge		
			edge		2M for	
					on	
		O T				
	e)	Compare combinational and sequential circuits (four points).			4M	
	Ans.	Sr.	Combinational circuits	Sequential circuits		
		No.	O-tt 11	Outrot describes a successful		
			Output depends on	Output depends on present	4 70 11	
			inputs present at that	inputs and past inputs/ outputs	Any four	
		2	Mamagnianat	Manageria	points	
			Memory is not	Memory is necessary	1M each	
		3	necessary Clock input is not	Cleak input is passessory	TWI each	
			Clock input is not necessary	Clock input is necessary		
		4	Design is simple	Design is complex		
		5	For e.g. Adders,	For e.g. Shift registers, Counters		
			Subtractors	For e.g. Shift registers, Counters		
5.		Attom	pt any <u>TWO</u> of the followi	ing:	12	
J.	a)	_		=	6M	
	a)	Write an assembly language program with algorithm for finding smallest number from the array of 10 numbers (Assume suitable			01/1	
		data).				
		(Note: Any other logic shall be considered).				
	Ans.	,				
$\overline{}$		1				

(Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

SUMMER – 2019 EXAMINATION MODEL ANSWER

	Algorithm:	
	1. Start	
	2. Load the array offset in BX	Algorith
	3. Initialize the CX with count value.	Algorith m 2M
	4. Initialize AL with FFh.	**** #171
	5. Compare the first number in BL with AL	
	6. Compare and transfer the smallest number in AL.	
	7. Decrement counter and if it is not zero then repeat the loop from step 5.	
	8. Store the smallest number in the defined destination location.	
	9. Stop the process.	
	Program:	
	data segment	
	STRING1 DB 08h,14h,05h,0Fh,09h, 01h, 05h, 18h, 2Ah, 0ACh	
	res db?	~
	data ends	Correct
	code segment	Program 4M
	assume cs:code, ds:data	71/1
	start: mov ax, data	
	mov ds, ax	
	mov al, Offh	
	mov cx, 0ah	
	mov bx, offset STRING1	
	again: cmp al, [bx] jc skip	
	mov al, [bx]	
	skip: inc bx	
	loop again	
	mov res, al	
	int 3	
	code ends	
	end start	
b)	Draw minimum mode configuration of 8086 and explain the function of any four control signals.	6M
Ans.	The state of the s	
	•	

(Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

SUMMER – 2019 EXAMINATION MODEL ANSWER

Subject: Digital Techniques and Microprocessor

Subject Code:

22323

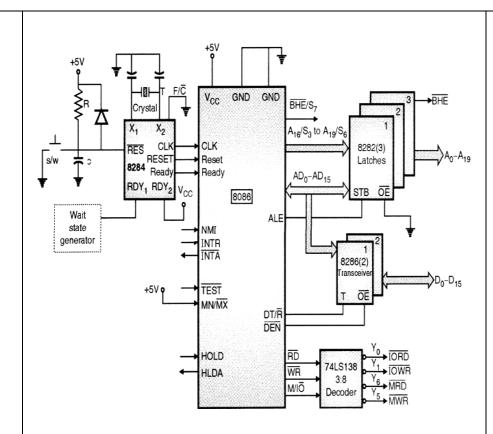


Diagram 4M

- 1. **INTA**: This is related to the non-vectored interrupt. It indicates that the processor has accepted INTR interrupt.
- 2. **ALE:** (Address Latch Enable): This signal is used to demultiplex the multiplexed the address and data at the falling edge of the ALE.
 - i. If $ALE = 1 \Rightarrow AD0-AD15$ will form A0-A15
 - ii. If ALE $=0 \Rightarrow$ AD0-AD15 will form D0-D15.
- 3. **DEN** (**Data Enable**): It provides an output enable for the 8286 in a minimum mode which uses a transceiver. It is active LOW during each memory and I/O access and for INTA cycle.
- 4. DT/\overline{R} (Data Transmit / Receive): It is an output signal which controls the direction of data flow through the transceivers. If it is at logic 1 the buffers are enabled to transmit data from the 8086. If it is at logic 0 the buffers are enabled to receive data.
- 5. **M/IO:** It is used to distinguish a memory transfer or I/O transfer. For memory operation M/IO=1 and for I/O operation M/IO=0.

Function of any 4 control signals 2M

(Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

SUMMER – 2019 EXAMINATION MODEL ANSWER

		1	
	6. WR: It is used by the 8086 for outputting a low to indicate that the processor is performing a write memory or write I/O operation		
	depending on the M/\overline{IO} signal.		
	7. HOLD: This is s request signal which is given by peripheral device		
	to the microprocessor to have control over address and data lines.		
	8. HLDA: If the microprocessor is ready to give the control of		
	address and data lines to external device then it provides Hold		
	Acknowledge.		
c)	List the addressing modes of 8086 and describe them with an	6M	
C)	example.	01/1	
Ans.	Addressing Modes:		
Alis.	Immediate Addressing Mode		
	Register Addressing Mode		
	3. Direct Addressing Mode	T • /	
	4. Indirect Addressing mode	List (any	
	5. Register Indirect Addressing Mode	<i>4</i>) -2 <i>M</i>	
	6. Based Addressing with displacement		
	7. Indexed Addressing Mode		
	8. Based Indexed Addressing Mode		
	Based Indexed Addressing with Displacement Mode		
	10. Fixed or Direct Port Addressing		
	11. Variable or Indirect Port Addressing		
	12. Implied (Implicit) Addressing Modes		
	1. Immediate Addressing Mode: In immediate addressing 8/16 bit		
	data is specified as a part of instruction or specified in the		
	instruction itself. The immediate operand can be only source	Any 4	
	operand.	descriptio	
	<u> </u>	n-1M	
	Ex: MOV CL, 03H	each	
	ADD AX, 1234H.		
	2. Register Addressing Mode: In this addressing mode the source and		
	destination operand are specified in a register. The operand can be		
	8/16 bit wide. The 8 bit operand can be any one of the register:		
	AL, AH, BH, BL, CH, CL, DH, DL and the 16-bit operand can be		
	AX, BX, CX, DX, SI, DI, SP. The 16-bit operand can be also be		
	either of the segment registers.		
	Ex: MOV AL, BL		
	ADD CL, DL		

(Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

SUMMER – 2019 EXAMINATION MODEL ANSWER

Subject: Digital Techniques and Microprocessor

Subject Code: 22323

MOV DS, AX

- 3. Memory Addressing Mode: The memory addressing mode is classified under two categories:
 - Direct Addressing Mode: In this 16-bit offset address is provided in the instruction itself. Here [] refers the contents of the offset address.

Ex: MOV AL, [2000H]; MOV [1020], 5050H

- Indirect Addressing mode: In this mode the Effective address is calculated from the contents of one or two registers along with the displacement value. The indirect addressing mode is classified in five categories:
- i. Register Indirect Addressing Mode: In this mode EA is provided in an index register or base register. The index register can be SI or DI and the base register can be BX.

EA = [BX, SI, DI]

Ex: MOV [DI], 1234H; MOV AX, [BX]

ii. Based Addressing with displacement: In this mode EA is sum of an 8/16 bit displacement and the contents of base register (BX or BP).

Ex: MOV AX, [BX+300H]; MOV AX, [BX-2H]

- iii. Indexed Addressing Mode: In this EA is the sum of the 8/16 bit displacement plus the contents of the index registers SI or DI. Ex: MOV [DI + 2345H], 1234H; MOV AX, [SI + 45H]
- iv. Based Indexed Addressing Mode: In this EA is the sum of base registers (BX or BP) and the indexed register (SI or DI) both which are specified in the instruction.

Ex: MOV [BX + DI], 1234H; MOV AX, [SI + BX]

v. Based Indexed Addressing with Displacement Mode: In this EA is the sum of base registers (BX or BP) and the indexed register (SI or DI) along with the 8/16 bit displacement.

Ex: MOV [DI + BX + 37H], AX; MOV AL, [BX + SI + 278H]

- 4. I/O Port addressing: There are two types of I/O port addressing:
 - i. Fixed or Direct Port Addressing: In this case a one byte port

(Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

SUMMER – 2019 EXAMINATION MODEL ANSWER

		
	address will be provided in the instruction. This allows fixed access to ports numbered 0 to 255 (00-FFH). Ex: OUT 06H, AL; IN AX, 85H ii. Variable or Indirect Port Addressing: In this case port address will not be explicitly in the instruction. The address of port number is taken from DX allowing 64K 8 bit ports or 32K 16 bit ports. This mode is known as variable or indirect port address. The 8 and 16 bit I/O data transfers should take place only through AL or AX. Ex: IN AL, DX; OUT DX, AX.	
	5. Implied (Implicit) Addressing Modes: In this the instructions does not have any operand. Ex: CLC, DAA	
a)	Attempt any <u>TWO</u> of the following: Define the following term with respect the digital IC's: (i) Propagation delay (ii) Fan in (iii) Fan out (iv) Power Dissipation (v) Noise Margin (vi) Threshold Voltage	12 6M
Ans.	(i) Propagation delay: Propagation delay is defined as the time taken to obtain the O/P when the I/P is applied. It is given in nano seconds. (1 ns=10 ⁻⁹ sec). The I/P and O/P wave forms of a logic gate are as follows: Output The delay times are measured between 50% voltage levels of I/P & O/P wave forms. There are 2 delay times t_{PHL} when O/P goes from	Each definitio n 1M
	ŕ	access to ports numbered 0 to 255 (00-FFH). Ex: OUT 06H, AL; IN AX, 85H ii. Variable or Indirect Port Addressing: In this case port address will not be explicitly in the instruction. The address of port number is taken from DX allowing 64K 8 bit ports or 32K 16 bit ports. This mode is known as variable or indirect port address. The 8 and 16 bit I/O data transfers should take place only through AL or AX. Ex: IN AL, DX; OUT DX, AX. 5. Implied (Implicit) Addressing Modes: In this the instructions does not have any operand. Ex: CLC, DAA Attempt any TWO of the following: Define the following term with respect the digital IC's: (i) Propagation delay (ii) Fan in (iii) Fan out (iv) Power Dissipation (v) Noise Margin (vi) Threshold Voltage. Ans. (i) Propagation delay: Propagation delay is defined as the time taken to obtain the O/P when the I/P is applied. It is given in nano seconds. (1 ns=10 9 sec). The I/P and O/P wave forms of a logic gate are as follows:

(Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

SUMMER – 2019 EXAMINATION MODEL ANSWER

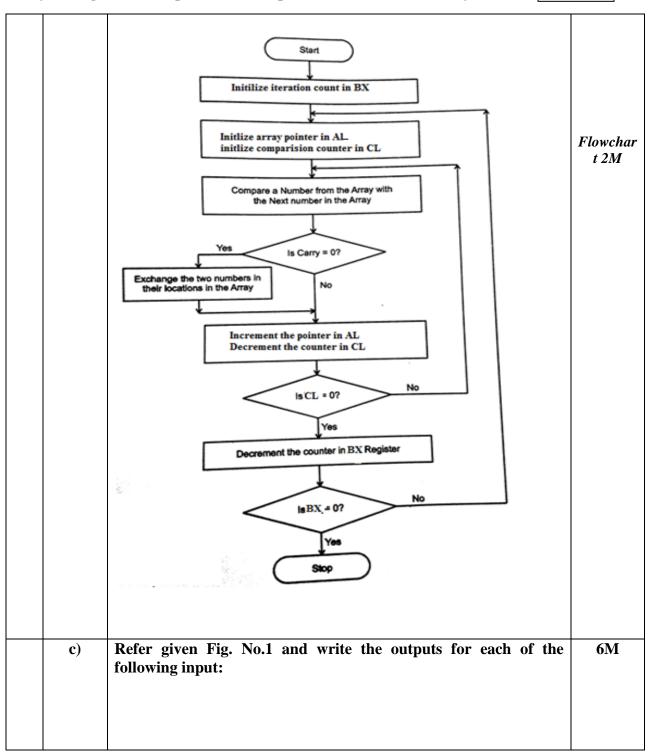
22323 **Subject Code: Subject: Digital Techniques and Microprocessor** times. (ii) Fan in: Fan-In is defined as the number of inputs the gate has. For e.g. a two input gate will have fan-in equal to 2. (iii) Fan out: Fan-out is the no. of similar gates which can be driven by the gate. High fan out is better as it reduces need for additional drivers to drive more gates (iv) Power dissipation: Power dissipation is the power required in mW in an IC. Low power requirement indicates low speed of operation & vice versa. Hence, to select an IC, figure of merit is considered. It is the product of propagation delay & power, i.e. ns x mw = pJ. The gate of the lowest fig. of merit is selected. (v) Noise margin: Some electric & magnetic fields can induce unwanted voltages on the wires between logic circuits. They are called 'Noise Signals'. They may cause a change in VIH or VIL & may produce undesired operation. The ability of circuit to tolerate these noise signals is called as Noise immunity. These are indicated by noise margins. If they are defined above, they are called DC noise margins. If the noise pulse width is less & is approaching the propagation delay of circuit, it is called AC noise margin. (vi) Threshold voltage: For any logic family, there are a number of threshold voltage levels to know: 1. V_{OH} -- Minimum OUTPUT Voltage level a TTL device will provide for a HIGH signal. 2. V_{IH} -- Minimum INPUT Voltage level to be considered a HIGH. 3. V_{OL} -- Maximum OUTPUT Voltage level a device will provide for a LOW signal. 4. V_{II.} -- Maximum INPUT Voltage level to still be considered a LOW. Standard 5 V TTL Write an assembly language program to arrange any array of 10 **6M** b) bytes in ascending order. Draw flowchart for the same.

(Note: Any other logic shall also be considered).

(Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

SUMMER – 2019 EXAMINATION MODEL ANSWER


Ans.	Program: DATA SEGMENT ARRAY DB 15h,05h,08h,78h,56h, 60h, 54h, 35h, 24h, 67h DATA ENDS CODE SEGMENT ASSUME CS: CODE, DS:DATA START:MOV DX, DATA MOV DS, DX MOV BL,0AH step1: MOV SI,0FFSET ARRAY MOV CL,09H step: MOV AL,[SI] CMP AL,[SI+1] JC Down XCHG AL,[SI+1] XCHG AL,[SI] Down: ADD SI,1 LOOP step DEC BL JNZ step1 MOV AH,4CH INT 21H CODE ENDS END START	Correct Program 4M
1		

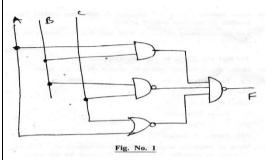
(Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

SUMMER – 2019 EXAMINATION MODEL ANSWER

(Autonomous)

(ISO/IEC - 27001 - 2005 Certified)


SUMMER – 2019 EXAMINATION MODEL ANSWER

Subject: Digital Techniques and Microprocessor

Subject Code:

22323

A	В	C	F
0	0	0	
0	0	1	A TANK MALE
0	100	0	est bores.
0	1	1	
1	0	0 .	e torse las
1	0	1	
1	1	0	
1	1	1	1 354

(Note: Writing Boolean expression shall be considered as option. Any four correct output shall be given 3M).

Ans.

$$F = \overline{(AB).(\overline{BC}).(\overline{A+C})}$$

$$F = \overline{AB} + \overline{\overline{BC}} + (A+C)$$

$$F = \overline{A} + \overline{B} + BC + A + C$$

$$F = A + \overline{A} + \overline{B} + BC + C$$

$$F = 1 + \overline{B} + C$$

$$F = 1 + C$$

$$F = 1$$

Correct outputs 6M

A	В	C	F
0	0	0	1
0	0	1	1
0	1	0	1
0	1	1	1
1	0	0	1
1	0	1	1
1	1	0	1
1	1	1	1