

#### MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

#### Model Answer: Summer 2018

Subject: Design of R.C.C. Structure

Sub. Code: 17604

#### **Important Instructions to examiners:**

- 1) The answers should be examined by key words and not as word-to-word as given in the model answer
- 2) The model answer and the answer written by candidate may vary but the examiner may try to assess the understanding level of the candidate.
- 3) The language errors such as grammatical, spelling errors should not be given more importance. (Not applicable for subject English and Communication Skills.)
- 4) While assessing figures, examiner may give credit for principal components indicated in the figure. The figures drawn by the candidate and those in the model answer may vary. The examiner may give credit for any equivalent figure drawn.
- 5) Credits may be given step wise for numerical problems. In some cases, the assumed constant values may vary and there may be some difference in the candidate's answers and the model answer.
- 6) In case of some questions credit may be given by judgment on part of examiner of relevant answer based on candidate's understanding.
- 7) For programming language papers, credit may be given to any other program based on equivalent concept.

| Que.<br>No. | Sub.<br>Que. | Model Answers                                                                                                                                                                                            | Marks | Total<br>Marks |
|-------------|--------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|----------------|
| Q. 1        |              | Attempt any THREE:                                                                                                                                                                                       |       | 12             |
|             | (a)          | State the meaning of partial safety factors for material strength and loads.                                                                                                                             |       |                |
|             | Ans.         | <b>Partial safety factor for material strength:</b> It is a strength reduction factor (greater than unity) when applied to the characteristic strength gives a strength known as design strength.        | 2     | 4              |
|             |              | Partial safety factor for load: It is a load enhancing factor (greater than unity) which when multiplied to characteristic load gives a load known as design load for which structure is to be designed. | 2     |                |
|             | (b)          | Draw a neat sketch showing strain diagram and stress diagram for a singly reinforced balanced section.                                                                                                   |       |                |
|             | Ans.         | δ ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο                                                                                                                                                                  | 4     | 4              |
|             |              | Ast  Section  Strain diagram  Stress diagram                                                                                                                                                             |       |                |



#### **Model Answer: Summer 2018**

Subject: Design of R.C.C. Structure

|             | ~ -          |                                                                                                                                                                                                                                     |                                                                                                                                           |        |                |
|-------------|--------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|--------|----------------|
| Que.<br>No. | Sub.<br>Que. | Model A                                                                                                                                                                                                                             | Answers                                                                                                                                   | Marks  | Total<br>Marks |
| Q. 1        | (c)<br>Ans.  | State the functions of vertical stir Functions of vertical stirrups provided i. To prevent sudden failure.  ii. To prevent premature failure and concrete is lost.  iii. To act as tie for holding the iv. To confine the concrete. | ded in the beam are as follows:  ure if the bond between main steel                                                                       | 1 each | 4              |
|             | ( <b>d</b> ) | State the meaning of magnitude earthquake.                                                                                                                                                                                          | e of earthquake and intensity of                                                                                                          |        |                |
|             | Ans.         | Magnitude of earthquake: It is a released. It is quantitative measure earthquake and it is much more pre-                                                                                                                           | of the actual size or strength of the cise measure than intensity.  a evaluation of the severity of the                                   | 2      | 4              |
|             |              | 5.00                                                                                                                                                                                                                                |                                                                                                                                           |        |                |
|             | (e)<br>Ans.  | Differentiate between pre-tension Pre-tensioning                                                                                                                                                                                    | Post-tensioning  Post-tensioning                                                                                                          |        |                |
|             | 7 11130      | 1.Tendons are stretched before concreting.  2. It requires heavy abutments for anchoring steel wires.                                                                                                                               | <ol> <li>Tendons are stretched after setting of concrete.</li> <li>Cables are anchored with the help of jacks. Cement grout is</li> </ol> | 1 each | 4              |
|             |              |                                                                                                                                                                                                                                     | forced under pressure to fill the space in the ducts around tendons.                                                                      |        |                |
|             |              | 3. Losses are about 18%.  4. This method is suitable for mass production of small precast members. e.g. Railway sleepers.                                                                                                           | <ul><li>3. Losses are about 15%.</li><li>4. This method is suitable for large members.</li><li>e.g. Bridge construction.</li></ul>        |        |                |
|             | <b>(B)</b>   | Attempt any ONE:                                                                                                                                                                                                                    |                                                                                                                                           |        | 6              |
|             | (a)          |                                                                                                                                                                                                                                     | deep effective is reinforced with etermine the position of NA and the beam if $f_{ck} = 25 \text{ N/mm}^2$ .                              |        |                |
|             |              | Given:<br>b = 230  mm<br>d = 400  mm<br>Ast = 1.02 %<br>$f_{ck} = 25 \text{ N/mm}^2$<br>$f_y = 415 \text{ N/mm}^2$                                                                                                                  | To find:<br>$X_u = ?$<br>$M_u = ?$                                                                                                        |        |                |



#### **Model Answer: Summer 2018**

### Subject: Design of R.C.C. Structure

| Que.     | Sub. | Model Answers                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Marks     | Total<br>Marks |
|----------|------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|----------------|
| No. Q. 1 | Que. | $\begin{split} &\text{Solution:} \\ \%p_t = \frac{Ast}{b\times d} \times 100 \\ &1.02 = \frac{Ast}{230\times 400} \times 100 \\ &A_{st} = 938.4 \text{ mm}^2 \\ &X_u = \frac{0.87f_yA_{st}}{0.36f_{ck}b} = \frac{0.87\times 415\times 938.4}{0.36\times 25\times 230} \\ \hline &X_u = 163.676 \text{ mm} \\ &X_{umax} = 0.48d = 0.48\times 400 = 192 \text{ mm} \\ &X_u = 163.676 \text{ mm} < X_{umax} = 192 \text{ mm} \\ &Hence, section is under reinforced,} \\ &M_u = 0.87f_y.A_{st}.(d-0.42X_u) \\ &M_u = 0.87\times 415\times 938.4 \big[400\text{-}(0.42)\times(163.676)\big] \\ \hline &M_u = 112.233\times 10^6\text{N-mm} \\ \hline &M_u = 112.233 \text{ kN-m} \end{split}$ | 1 1 1 1 1 | Marks 6        |
|          | (b)  | A R. C. slab, 120 mm thick effective, has a simply supported effective span of 3.2 m. It is reinforced with 12 mm diameter bars at a spacing of 100 mm. Calculate the safe load (including self weight) the slab can carry if $f_{ck} = 20 \text{ N/mm}^2$ and $f_y = 415 \text{ N/mm}^2$ .                                                                                                                                                                                                                                                                                                                                                                                               |           |                |
|          | Ans. | Given: To find: $1 = 3.2 \text{ m} = 3200 \text{ mm}$ $d = 120 \text{ mm}$ $\phi = 12 \text{ mm}$ Spacing of bars = 100 mm $f_{ck} = 20 \text{ N/mm}^2$ $f_y = 415 \text{ N/mm}^2$ Solution:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |           |                |



#### **Model Answer: Summer 2018**

### Subject: Design of R.C.C. Structure

|             | ~ .          |                                                                                                                                                                                                                                                                                                                                                                                                                                            |       |                |
|-------------|--------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|----------------|
| Que.<br>No. | Sub.<br>Que. | Model Answers                                                                                                                                                                                                                                                                                                                                                                                                                              | Marks | Total<br>Marks |
| Q. 1        | - Quiet      | Assume 1 m width of slab.                                                                                                                                                                                                                                                                                                                                                                                                                  |       | 1120222        |
|             |              | b = 1000  mm                                                                                                                                                                                                                                                                                                                                                                                                                               |       |                |
|             |              | Area of one 12 mm φ bar                                                                                                                                                                                                                                                                                                                                                                                                                    |       |                |
|             |              | $A_{\varphi} = \frac{\pi}{4} \times 12^2 = 113.097 \text{mm}^2$                                                                                                                                                                                                                                                                                                                                                                            |       |                |
|             |              | $Spacing(S) = \frac{A_{\phi}}{Ast} \times b$                                                                                                                                                                                                                                                                                                                                                                                               |       |                |
|             |              | $Ast = \frac{A_{\phi}}{S} \times b = \frac{113.097}{100} \times 1000 = 1130.97 \text{ mm}^2$                                                                                                                                                                                                                                                                                                                                               | 1     |                |
|             |              | $X_{u} = \frac{0.87f_{y}A_{st}}{0.36f_{ck}b} = \frac{0.87 \times 415 \times 1130.97}{0.36 \times 20 \times 1000}$                                                                                                                                                                                                                                                                                                                          | 1     |                |
|             |              | $X_{u} = 56.713 \text{ mm}$                                                                                                                                                                                                                                                                                                                                                                                                                | 1     |                |
|             |              | $X_{umax} = 0.48d = 0.48 \times 120 = 57.6 \text{ mm}$                                                                                                                                                                                                                                                                                                                                                                                     |       |                |
|             |              | $X_u = 56.713 \text{ mm} < X_{umax} = 57.6 \text{ mm}$                                                                                                                                                                                                                                                                                                                                                                                     | 1     |                |
|             |              | Hence, section is under reinforced,                                                                                                                                                                                                                                                                                                                                                                                                        | _     | 6              |
|             |              | $M_u = 0.87 f_y.A_{st}.(d-0.42X_u)$                                                                                                                                                                                                                                                                                                                                                                                                        |       |                |
|             |              | $M_u = 0.87 \times 415 \times 1130.97 [120 - (0.42) \times (56.713)]$                                                                                                                                                                                                                                                                                                                                                                      |       |                |
|             |              | $M_u = 39.274 \times 10^6 \text{ N-mm}$                                                                                                                                                                                                                                                                                                                                                                                                    | 1     |                |
|             |              | $M_u = 39.274 \text{ kN-m}$                                                                                                                                                                                                                                                                                                                                                                                                                |       |                |
|             |              | But, $M_u = \frac{W_d \times l^2}{8}$                                                                                                                                                                                                                                                                                                                                                                                                      |       |                |
|             |              | $39.274 = \frac{W_d \times 3.2^2}{8}$                                                                                                                                                                                                                                                                                                                                                                                                      |       |                |
|             |              | $w_d = 30.683  kN/m$                                                                                                                                                                                                                                                                                                                                                                                                                       |       |                |
|             |              | But, $W_d = W \times \gamma_f$                                                                                                                                                                                                                                                                                                                                                                                                             |       |                |
|             |              | $w = \frac{w_d}{\gamma_f} = \frac{30.683}{1.5}$                                                                                                                                                                                                                                                                                                                                                                                            |       |                |
|             |              |                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1     |                |
|             |              | w = 20.455  kN/m                                                                                                                                                                                                                                                                                                                                                                                                                           |       |                |
| Q. 2        |              | Attempt any TWO:                                                                                                                                                                                                                                                                                                                                                                                                                           |       | 16             |
|             | (a)          | A 3 m wide passage, supported on 230 mm thick side walls, carries a superimposed load of 3.75 kN/m $^2$ including floor finish. Design the suitable slab using M20 concrete and Fe 415 steel. Use 8 # and 6 $\acute{o}$ bars. Take MF = 1.4. Apply the checks for maximum area of reinforcement, minimum area of reinforcement and spacing. Do not apply checks for shear and bond. Sketch the cross-section. Use effective cover – 20 mm. |       |                |



### **Model Answer: Summer 2018**

### Subject: Design of R.C.C. Structure

| Que.<br>No. | Sub.<br>Que. | Model Answers                                                                                   | Marks | Total<br>Marks |
|-------------|--------------|-------------------------------------------------------------------------------------------------|-------|----------------|
| Q. 2        | Ans.         | Given: To find:                                                                                 |       |                |
|             |              | 1 = 3  m = 3000  mm $D = ?$                                                                     |       |                |
|             |              | $t_s = 230 \text{ mm}$ Ast in both direction = ?                                                |       |                |
|             |              | $LL + FF = 3.75 \text{ kN/m}^2$                                                                 |       |                |
|             |              | $\phi_x = 8 \text{ mm}$                                                                         |       |                |
|             |              |                                                                                                 |       |                |
|             |              | MF = 1.4                                                                                        |       |                |
|             |              | C = 20  mm                                                                                      |       |                |
|             |              | $f_{ck} = 20 \text{ N/mm}^2$                                                                    |       |                |
|             |              | $f_{y} = 415 \text{ N/mm}^2$                                                                    |       |                |
|             |              | Solution:                                                                                       |       |                |
|             |              | Step (1)                                                                                        |       |                |
|             |              | $d = \frac{\text{Span}}{20 \times \text{MF}} = \frac{3000}{20 \times 1.4} = 107.143 \text{ mm}$ |       |                |
|             |              |                                                                                                 |       |                |
|             |              | $D = d + c + \frac{\varphi_x}{2} = 107.143 + 20 + \frac{8}{2} = 131.143 \text{ mm}$             | 1     |                |
|             |              | Provide, D =140 mm                                                                              |       |                |
|             |              | $d = 140 - 20 - \frac{4}{2} = 116 \text{ mm}$                                                   |       |                |
|             |              | Step (2)                                                                                        |       |                |
|             |              | Effective span                                                                                  |       |                |
|             |              | Min. of (a) & (b)                                                                               | 1     |                |
|             |              | a) $l_e = l + d = 3000 + 116 = 3116 \text{ mm} = 3.116 \text{ m}$                               |       |                |
|             |              | b) $l_e = l + t_s = 3000 + 230 = 3230 \text{ mm} = 3.230 \text{m}$                              |       |                |
|             |              | $l_e = 3.116 \mathrm{m}$                                                                        |       |                |
|             |              | Step (3)                                                                                        |       |                |
|             |              | Load & B M calculation                                                                          |       |                |
|             |              | i) D.L. of slab = $0.140 \times 1 \times 1 \times 25 = 3.5$ kN/m                                |       |                |
|             |              | ii) L.L. + FF of slab = $3.75 \times 1 \times 1$ = $3.75 \text{ kN/m}$                          |       |                |
|             |              | Total load = $7.25 \text{ kN/m}$                                                                | 1     |                |
|             |              | Factored load $(w_d)=1.5\times w$                                                               |       |                |
|             |              | =1.5×7.25                                                                                       |       |                |
|             |              | = 10.875  kN/m                                                                                  |       |                |
|             |              | $BM = Mu = \frac{W_d (l_e)^2}{8} = \frac{10.875 \times (3.116)^2}{8}$                           |       |                |
|             |              | 8 8                                                                                             | 1     |                |
|             |              | BM = Mu=13.199  kN-m                                                                            |       |                |
|             |              |                                                                                                 |       |                |



### **Model Answer: Summer 2018**

### Subject: Design of R.C.C. Structure

| Que.<br>No. | Sub.<br>Que. | Model Answers                                                                                                                                                 | Marks | Total<br>Marks |
|-------------|--------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|----------------|
| Q. 2        |              | Step (4)                                                                                                                                                      |       |                |
|             |              | Check for depth                                                                                                                                               |       |                |
|             |              | $\mathbf{Mu}_{\mathrm{max}} = \mathbf{M}_{\mathrm{u}}$                                                                                                        |       |                |
|             |              | $0.138 f_{ck} b \left( d_{reqd} \right)^2 = 13.199 \times 10^6$                                                                                               |       |                |
|             |              | $0.138 \times 20 \times 1000 \times (d_{reqd})^2 = 13.199 \times 10^6$                                                                                        |       |                |
|             |              | $(d_{reqd}) = 69.153 \text{ mm} < d = 116 \text{ mm}$ Ok                                                                                                      | 1     |                |
|             |              | Step (5)                                                                                                                                                      |       |                |
|             |              | Maximum area of reinforcement                                                                                                                                 |       |                |
|             |              | $Ast_{max} = 0.04 \times b \times D = 0.04 \times 1000 \times 140 = 5600 \text{mm}^2$                                                                         |       |                |
|             |              | Minimum area of reinforcement                                                                                                                                 | 1     |                |
|             |              | $Ast_{min} = \frac{0.12}{100} bD = \frac{0.12}{100} \times 1000 \times 140 = 168 \text{ mm}^2$                                                                |       |                |
|             |              | Step (6)                                                                                                                                                      |       |                |
|             |              | Main steel and its spacing                                                                                                                                    |       |                |
|             |              | $A_{st} = \frac{0.5f_{ck}}{f_{y}} \left[ 1 - \sqrt{1 - \frac{4.6 \times Mu \times 10^{6}}{f_{ck}bd^{2}}} \right] bd$                                          |       |                |
|             |              | $A_{st} = \frac{0.5 \times 20}{415} \left[ 1 - \sqrt{1 - \frac{4.6 \times 13.199 \times 10^6}{20 \times 1000 \times (116)^2}} \right] \times 1000 \times 116$ |       |                |
|             |              | $A_{st} = 335.433 \text{mm}^2$                                                                                                                                |       |                |
|             |              | Spacing of bar Min. of                                                                                                                                        |       |                |
|             |              | a) $S_x = \frac{1000 \times A\phi_x}{A_{st}} = \frac{1000 \times \frac{\pi}{4}(8)^2}{335.433} = 149.853 \text{ mm}$                                           |       |                |
|             |              | b) $S_x = 3d = 3 \times 116 = 348 \text{mm}$                                                                                                                  |       |                |
|             |              | c) $S_x = 300 \text{mm}$                                                                                                                                      |       |                |
|             |              | $S_x = 140 \mathrm{mm} \mathrm{c/c}$                                                                                                                          |       |                |
|             |              | Provide 8 mm φ bars @ 140 mm c/c along the shorter span                                                                                                       | 1     |                |
|             |              | Step (7)                                                                                                                                                      |       |                |
|             |              | Distribution steel and its spacing                                                                                                                            |       |                |
|             |              | $A_{\text{std}} = \frac{0.15}{100} \text{bD} = \frac{0.15}{100} \times 1000 \times 140 = 210 \text{ mm}^2$                                                    |       |                |
|             |              |                                                                                                                                                               |       |                |
|             |              |                                                                                                                                                               |       |                |
|             |              |                                                                                                                                                               |       |                |
|             |              |                                                                                                                                                               |       |                |



#### **Model Answer: Summer 2018**

Subject: Design of R.C.C. Structure

| Que. | Sub.<br>Que. | Model Answers                                                                                                                                                                                                                                                                                                                                  | Marks | Total<br>Marks |
|------|--------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|----------------|
| Q. 2 |              | Spacing of bars is equal to min. of                                                                                                                                                                                                                                                                                                            |       |                |
|      |              | a) $S_y = \frac{1000 \times A\phi_y}{Ast_d} = \frac{1000 \times \frac{\pi}{4}(6)^2}{210} = 134.640 \text{ mm}$<br>b) $S_y = 5d = 5 \times 116 = 580 \text{ mm}$                                                                                                                                                                                |       | 8              |
|      |              | c) $S_v = 450 \text{mm}$                                                                                                                                                                                                                                                                                                                       |       |                |
|      |              | $S_y = 130 \mathrm{mm} \mathrm{c/c}$                                                                                                                                                                                                                                                                                                           |       |                |
|      |              | Provide 6 mm φ bars @ 130 mm c/c along the longer span                                                                                                                                                                                                                                                                                         | 1     |                |
|      |              | Distribution Steel 6 mm Dia. 130 mm c/c  Main Steel 8 mm Dia. 140 mm c/c  D = 140 mm  k + support thickness                                                                                                                                                                                                                                    |       |                |
|      |              | c/s of Slab (Reinforcement Details)                                                                                                                                                                                                                                                                                                            |       |                |
|      | (b)          | Design a two way slab for panel of effective size 5.6 m x 4 m simply supported on all four sides. It carries a live load of 3.5 kN/m² and a floor finish of 1 kN/m². Use M20 concrete, Fe 500 steel, MF of 1.2, 10 # bars and effective cover of 20 mm. Take $\alpha_x$ = 0.099 and $\alpha_y$ = 0.051. Do not apply check for shear and bond. |       |                |
|      | A            | Draw the cross section along shorter span.                                                                                                                                                                                                                                                                                                     |       |                |
|      | Ans.         | Given: To find:                                                                                                                                                                                                                                                                                                                                |       |                |
|      |              | $\begin{array}{ll} l_x &= 4 \text{ m} = 4000 \text{ mm} \\ l_y &= 5.6 \text{ m} = 5600 \text{ mm} \\ LL &= 3.5 \text{ kN/m}^2 \\ LL &= 1 \text{ kN/m}^2 \end{array}$ Ast in both direction = ?                                                                                                                                                 |       |                |
|      |              | $ \begin{aligned} \phi_x &= 10 \text{ mm} \\ \text{MF} &= 1.2 \\ \text{C} &= 20 \text{ mm} \end{aligned} $                                                                                                                                                                                                                                     |       |                |
|      |              | $\alpha_x = 0.099$ and $\alpha_y = 0.051$ $f_{ck} = 20 \text{ N/mm}^2$                                                                                                                                                                                                                                                                         |       |                |
|      |              | $f_{v} = 500 \text{ N/mm}^2$                                                                                                                                                                                                                                                                                                                   |       |                |



### **Model Answer: Summer 2018**

### Subject: Design of R.C.C. Structure

| Que. Sub<br>No. Que | Viodel Answers                                                                                              | Marks | Total<br>Marks |
|---------------------|-------------------------------------------------------------------------------------------------------------|-------|----------------|
| Q. 2                | Step (1)                                                                                                    |       |                |
|                     | Slab thickness,                                                                                             |       |                |
|                     | as $l_x = 4 \text{ m} > 3.5 \text{ m}$ and $LL = 3.5 \text{ kN/m}^2 > 3 \text{ kN/m}^2$ and Fe 500 is used. |       |                |
|                     | $d = \frac{\text{Span}}{20 \times \text{MF}} = \frac{4000}{20 \times 1.2} = 166.667 \text{ mm}$             |       |                |
|                     | $D = d + c + \frac{\varphi_x}{2} = 166.667 + 20 + \frac{10}{2} = 191.667 \text{ mm}$                        |       |                |
|                     | Provide, D =200 mm                                                                                          | 1     |                |
|                     | $d = 200 - 20 - \frac{10}{2} = 175 \text{ mm}$                                                              |       |                |
|                     | Step (2)                                                                                                    |       |                |
|                     | Effective span                                                                                              |       |                |
|                     | $l_x = l_{xe} = l_x + d = 4000 + 175 = 4175 \text{ mm} = 4.175 \text{ m}$                                   | 1     |                |
|                     | $l_y = l_{ye} = l_y + d = 5600 + 175 = 5775 \text{ mm} = 5.775 \text{ m}$                                   |       |                |
|                     | Step (3) Load & B M calculation                                                                             |       |                |
|                     | i) D.L. of slab = $0.2 \times 1 \times 1 \times 25 = 5.0 \text{ kN/m}$                                      |       |                |
|                     | ii) L.L. of slab = $3.5 \times 1 \times 1$ = $3.5 \text{ kN/m}$                                             |       |                |
|                     | i) F.F. of slab = $1 \times 1 \times 1$ = $1.0 \text{ kN/m}$                                                | 1     |                |
|                     | Total load = $9.5 \text{ kN/m}$                                                                             |       |                |
|                     | Factored load $(w_d)=1.5\times w$                                                                           |       |                |
|                     | =1.5×9.5                                                                                                    |       |                |
|                     | = 14.25  kN/m                                                                                               |       |                |
|                     | BM calculations,                                                                                            |       |                |
|                     | $Mu_x = \alpha_x \cdot w_d \cdot (1_{xe})^2 = (0.099 \times 14.25 \times (4.175)^2)$                        |       |                |
|                     | $Mu_x = 24.590  kN - m$                                                                                     | 1     |                |
|                     | $Mu_v = \alpha_v.w_d.(1_{xe})^2 = (0.051 \times 14.25 \times (4.175)^2)$                                    | 1     |                |
|                     | $Mu_v = 12.667 \text{ kN-m}$                                                                                |       |                |
|                     | Step (4)                                                                                                    |       |                |
|                     | Check for depth                                                                                             |       |                |
|                     | $Mu_{max} = M_{ux}$                                                                                         |       |                |
|                     | $0.133f_{ck}b(d_{reqd})^2 = 24.590 \times 10^6$                                                             |       |                |
|                     | $(d_{reqd}) = 96.148 \text{mm} < d = 175 \text{mm}$ Ok                                                      | 1     |                |
|                     |                                                                                                             |       |                |
|                     |                                                                                                             |       |                |
|                     |                                                                                                             |       |                |



#### **Model Answer: Summer 2018**

### Subject: Design of R.C.C. Structure

| Que.     | Sub. | Model Answers                                                                                                                                                          | Marks | Total |
|----------|------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-------|
| No. Q. 2 | Que. | Step (5)                                                                                                                                                               |       | Marks |
| 2.2      |      | Main steel and its spacing                                                                                                                                             |       |       |
|          |      | In X direction                                                                                                                                                         |       |       |
|          |      | $A_{\text{stx}} = \frac{0.5f_{\text{ck}}}{f_{\text{y}}} \left[ 1 - \sqrt{1 - \frac{4.6 \times \text{Mux} \times 10^6}{f_{\text{ck}} \text{bd}^2}} \right] \text{bd}$   |       |       |
|          |      | $A_{st} = \frac{0.5 \times 20}{500} \left[ 1 - \sqrt{1 - \frac{4.6 \times 24.590 \times 10^6}{20 \times 1000 \times (175)^2}} \right] \times 1000 \times 175$          |       |       |
|          |      | $A_{st} = 339.665 \text{ mm}^2$                                                                                                                                        |       |       |
|          |      | Spacing of bar Min. of                                                                                                                                                 | 11/2  |       |
|          |      | a) $S_x = \frac{1000 \times A\phi_x}{A_{st}} = \frac{1000 \times \frac{\pi}{4} (10)^2}{339.665} = 231.227 \text{ mm}$                                                  |       |       |
|          |      | b) $S_x = 3d = 3 \times 175 = 525 \text{mm}$                                                                                                                           |       |       |
|          |      | c) $S_x = 300 \text{mm}$                                                                                                                                               |       |       |
|          |      | $S_x = 230 \mathrm{mm} \mathrm{c/c}$                                                                                                                                   |       |       |
|          |      | Provide 10 mm φ bars @ 230 mm c/c                                                                                                                                      |       |       |
|          |      | In Y direction                                                                                                                                                         |       |       |
|          |      | $d' = d - \phi_x = 175 - 10 = 165 \text{mm}$                                                                                                                           |       | 8     |
|          |      | $A_{\text{sty}} = \frac{0.5f_{\text{ck}}}{f_{\text{y}}} \left[ 1 - \sqrt{1 - \frac{4.6 \times \text{Muy} \times 10^6}{f_{\text{ck}} \text{bd'}^2}} \right] \text{bd'}$ |       |       |
|          |      | $A_{\text{sty}} = \frac{0.5 \times 20}{500} \left[ 1 - \sqrt{1 - \frac{4.6 \times 12.667 \times 10^6}{20 \times 1000 \times (165)^2}} \right] \times 1000 \times 165$  |       |       |
|          |      | $A_{sty} = 181.565  \text{mm}^2$                                                                                                                                       | 11/2  |       |
|          |      | $A_{\text{stmin}} = \frac{0.12}{100} \times 1000 \times 175 = 210 \text{mm}^2$                                                                                         |       |       |
|          |      | $A_{\text{sty}} = 181.565 \text{mm}^2 > A_{\text{stmin}} = 210 \text{mm}^2$                                                                                            |       |       |
|          |      | $A_{\rm sty} = 210  \rm mm^2$                                                                                                                                          |       |       |
|          |      | Using 8 mm dia. bar                                                                                                                                                    |       |       |
|          |      | Spacing of bar Min. of                                                                                                                                                 |       |       |
|          |      | a) $S_y = \frac{1000 \times A\phi_y}{A_{sty}} = \frac{1000 \times \frac{\pi}{4}(8)^2}{210} = 239.359 \text{mm}$                                                        |       |       |
|          |      | b) $S_y = 3d' = 3 \times 165 = 495 \text{mm}$                                                                                                                          |       |       |
|          |      | c) $S_v = 300 \text{mm}$                                                                                                                                               |       |       |
|          |      | $S_y = 230 \text{mm c/c}$                                                                                                                                              |       |       |
|          |      | Provide 8 mm φ bars @ 230 mm c/c                                                                                                                                       |       |       |
|          |      | 1 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3                                                                                                                                |       |       |
|          |      |                                                                                                                                                                        | 1     |       |



#### **Model Answer: Summer 2018**

Subject: Design of R.C.C. Structure

| Que. | Sub.<br>Que. | Model Answers                                                                                                                                                                                                                                                                              | Marks | Total<br>Marks |
|------|--------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|----------------|
| Q. 2 |              | Main steel along longer span 8 mm dia. 230 mm c/c $d = 175 \text{ mm}$ Main steel along shorter span 10 mm dia. 230 mm c/c $k = 4000 \text{ mm}$ $k + \text{support thickness}$ $k + \text{support thickness}$                                                                             |       |                |
|      | (c)-(i)      | Draw the cross-section of a dog-legged staircase showing reinforcement details.  Distribution steel  Reinft. if required from B.M. consideration  Slab thickness = D  Main reinforcement  Effective length                                                                                 | 4     | 4              |
|      | c)-(ii)      | Fig. Dog legged staircase (Note: 3 marks for sketch and 1 marks for labeling.)  A cantilever slab of effective span 1.0 m carries a superimposed load of 1.5 kN/m² including floor finish. Calculate the depth and area of reinforcement. Use M20 concrete and mild steel. Take MF = 1.55. |       |                |



#### **Model Answer: Summer 2018**

### Subject: Design of R.C.C. Structure

| Que. | Sub. |                                                                                           |          | Total |
|------|------|-------------------------------------------------------------------------------------------|----------|-------|
| No.  | Que. | Model Answers                                                                             | Marks    | Marks |
| Q. 2 | Ans. |                                                                                           |          |       |
|      |      | Given: To find:                                                                           |          |       |
|      |      | $l_e = 1 \text{ m} = 1000 \text{ mm}$ $D = ?$                                             |          |       |
|      |      | $LL + FF = 1.5 \text{ kN/m}^2$ Ast in both direc                                          | tion = ? |       |
|      |      | MF = 1.55                                                                                 |          |       |
|      |      | $f_{ck} = 20 \text{ N/mm}^2$                                                              |          |       |
|      |      | $f_{y} = 250 \text{ N/mm}^2$                                                              |          |       |
|      |      | Solution:                                                                                 |          |       |
|      |      | Step 1)                                                                                   |          |       |
|      |      | Slab thickness                                                                            |          |       |
|      |      | $d = \frac{Span}{7 \times M.F.}$                                                          |          |       |
|      |      |                                                                                           |          |       |
|      |      | Assume, Cover =15 mm and $\phi_x$ =10 mm                                                  |          |       |
|      |      | $d = \frac{1000}{7 \times 1.55} = 92.165 \text{mm}$                                       |          |       |
|      |      | D=d+c+ $\frac{\varphi_x}{2}$ =92.165+15+ $\frac{10}{2}$ =112.165 mm                       |          |       |
|      |      | provide, D=120mm,                                                                         | 1        |       |
|      |      | $d=120-15-\frac{10}{2}=100\text{mm}$                                                      | 1        |       |
|      |      | D=120 mm, d=100 mm                                                                        |          |       |
|      |      | Step (2)                                                                                  |          |       |
|      |      | Effective span                                                                            |          |       |
|      |      | $l_e = 1000 + \frac{100}{2} = 1050 \text{mm} = 1.05 \text{m}$                             |          |       |
|      |      | Step 3)                                                                                   |          |       |
|      |      | Load cal. and BM                                                                          |          |       |
|      |      | i) D.L. of slab = $0.120 \times 1 \times 1 \times 25 = 3.0 \text{ kN/m}$                  |          |       |
|      |      | ii) L.L.+ F.F. of slab = $1.5 \times 1 \times 1$ = $1.5 \text{ kN/m}$                     |          |       |
|      |      | Total laod (w) $= 4.5 \text{kN} / \text{m}$                                               |          |       |
|      |      | Factored load w <sub>d</sub> =1.5×4.5=6.75 kN/m                                           | 1        |       |
|      |      | $BM=M_{u} = \frac{(wd)l_{e}^{2}}{2} = \frac{6.75 \times 1.05^{2}}{2} = 3.72 \text{ kN-m}$ |          |       |
|      |      |                                                                                           |          |       |
|      |      |                                                                                           |          |       |
|      |      |                                                                                           |          |       |
|      |      |                                                                                           |          |       |



#### **Model Answer: Summer 2018**

### Subject: Design of R.C.C. Structure

| Que. | Sub.<br>Que. | Model Answers                                                                                                                                               | Marks    | Total<br>Marks |
|------|--------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|----------------|
| Q. 2 | - Zuci       | Step 4)                                                                                                                                                     |          | 1.201110       |
|      |              | Check for depth,                                                                                                                                            |          |                |
|      |              | $\mathbf{Mu}_{\mathrm{max}} = \mathbf{M}_{\mathrm{ux}}$                                                                                                     |          |                |
|      |              | $0.149f_{ck}b(d_{reqd})^2 = 3.72 \times 10^6$                                                                                                               |          |                |
|      |              | $0.149 \times 20 \times 1000 \times \left(d_{reqd}\right)^2 = 3.72 \times 10^6$                                                                             |          |                |
|      |              | $(d_{reqd}) = 35.33 \text{ mm} < d=100 \text{ mm}$ Ok                                                                                                       |          |                |
|      |              | Step (5)                                                                                                                                                    |          |                |
|      |              | Main steel and its spacing                                                                                                                                  |          |                |
|      |              | $A_{st} = \frac{0.5f_{ck}}{f_{y}} \left[ 1 - \sqrt{1 - \frac{4.6 \times Mu \times 10^{6}}{f_{ck} bd^{2}}} \right] bd$                                       |          |                |
|      |              | $A_{st} = \frac{0.5 \times 20}{250} \left[ 1 - \sqrt{1 - \frac{4.6 \times 3.72 \times 10^6}{20 \times 1000 \times (100)^2}} \right] \times 1000 \times 100$ |          |                |
|      |              | $A_{st} = 174.945 \text{ mm}^2$                                                                                                                             | 1        |                |
|      |              | $A_{\text{st}_{\text{min}}} = \frac{0.15}{100} \times 1000 \times 100 = 225 \text{mm}^2$                                                                    |          |                |
|      |              | $A_{st} = 174.945 \text{ mm}^2 < A_{st \text{min}} = 225 \text{ mm}^2$                                                                                      |          |                |
|      |              | Hence, $A_{st} = 225 \text{ mm}^2$                                                                                                                          |          |                |
|      |              | Spacing of bar Min. of                                                                                                                                      |          |                |
|      |              | a) $S_x = \frac{1000 \times A\phi_x}{A_{st}} = \frac{1000 \times \frac{\pi}{4} (10)^2}{225} = 349.06 \text{mm}$                                             |          |                |
|      |              | b) $S_x = 3d = 3 \times 100 = 300 \text{mm}$                                                                                                                |          | 4              |
|      |              | c) $S_x = 300 \mathrm{mm}$                                                                                                                                  |          |                |
|      |              | $S_x = 300 \text{ mm c/c}$                                                                                                                                  |          |                |
|      |              | Provide 10 mm φ bars @ 300 mm c/c                                                                                                                           |          |                |
|      |              | Step 6)                                                                                                                                                     |          |                |
|      |              | $Ast_{y} = Ast_{min} = \frac{0.15}{100} \times 1000 \times 150 = 225 \text{mm}^{2}$                                                                         |          |                |
|      |              | Assuming, 8 mm φ bars                                                                                                                                       |          |                |
|      |              | Spacing of bar Min. of                                                                                                                                      |          |                |
|      |              | a) $S_y = \frac{1000 \times A\phi_y}{A_{st}} = \frac{1000 \times \frac{\pi}{4}(8)^2}{225} = 223.402 \text{mm}$                                              |          |                |
|      |              | b) $S_y = 5d = 5 \times 100 = 500 \text{mm}$                                                                                                                |          |                |
|      |              | c) $S_y = 450 \mathrm{mm}$                                                                                                                                  | 1        |                |
|      |              | $S_y = 220 \mathrm{mm} \mathrm{c/c}$                                                                                                                        |          |                |
|      |              | Provide 8 mm φ bars @ 220 mm c/c                                                                                                                            |          |                |
|      |              |                                                                                                                                                             | <u> </u> |                |



### **Model Answer: Summer 2018**

Subject: Design of R.C.C. Structure

|      | ~ .          |                                                                                                                                                                                                                                                                                                        |       | · ·            |
|------|--------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|----------------|
| ~    | Sub.<br>Que. | Model Answers                                                                                                                                                                                                                                                                                          | Marks | Total<br>Marks |
| Q. 2 | Que          | Distribution steel 8 mm dia. 220 mm c/c  Main steel 10 mm dia. 300 mm c/c  d = 100 mm  c/s of Cantilever Slab                                                                                                                                                                                          |       | - VIII NO      |
| Q. 3 |              | Attempt any FOUR:                                                                                                                                                                                                                                                                                      |       | 16             |
|      | (a)          | State the necessary conditions for the beam to act as a flanged beam.                                                                                                                                                                                                                                  |       |                |
|      | Ans.         | Following are the situations where a flanged RCC section is preferred:  i. When slab and beam are to be casted together.  ii. When main reinforcement of the slab is to be kept parallel to the beam, transverse reinforcement is not less than 60% of the main reinforcement at mid span of the slab. | 4     | 4              |



#### **Model Answer: Summer 2018**

Subject: Design of R.C.C. Structure

| Que.<br>No. | Sub.<br>Que. | Model Answers                                                                         | Marks    | Total<br>Marks |
|-------------|--------------|---------------------------------------------------------------------------------------|----------|----------------|
| Q. 3        | (b)          | Write the expressions for effective flange width of T and L beams.                    |          |                |
|             |              | State the meaning of each term.                                                       |          |                |
|             | Ans.         | Expressions for effective flange width :                                              |          |                |
|             |              | i. For T beam                                                                         | 41/      |                |
|             |              |                                                                                       | 11/2     |                |
|             |              | $b_{\rm f} = \frac{l_0}{6} + b_{\rm w} + 6D_{\rm f}$                                  |          |                |
|             |              | ii. For L beam                                                                        |          |                |
|             |              | $l_0$ . $l_2$                                                                         | 11/2     | 4              |
|             |              | $b_f = \frac{l_0}{12} + b_w + 3D_f$                                                   |          |                |
|             |              | where,                                                                                |          |                |
|             |              | $b_f$ = Effective width of flange                                                     |          |                |
|             |              | $l_0$ = Distance between points of zero moment in the beam                            | 1        |                |
|             |              | $b_{\rm w} = \text{Breath of web}$                                                    | 1        |                |
|             |              | $D_f$ = Thickness of flange                                                           |          |                |
|             |              | b = Actual width of flange.                                                           |          |                |
|             |              |                                                                                       |          |                |
|             |              |                                                                                       |          |                |
|             |              |                                                                                       |          |                |
|             | (c)          | State when and how minimum shear reinforcement is provided.                           |          |                |
|             | (C)          | Write the expression for minimum shear reinforcement giving the                       |          |                |
|             |              | meaning of terms involved.                                                            |          |                |
|             | Ans.         | If Nominal shear stress $(\zeta v)$ < Design shear strength of concrete $(\zeta c)$ , |          |                |
|             |              | minimum shear reinforcement should be provided.                                       | 1        |                |
|             |              |                                                                                       |          |                |
|             |              | It is provided in form of stirrup.                                                    | 1        |                |
|             |              |                                                                                       | 1        |                |
|             |              | Expression for minimum shear reinforcement:                                           |          |                |
|             |              |                                                                                       |          |                |
|             |              | Asv > 0.4/0.975                                                                       |          | 4              |
|             |              | $\frac{Asv}{(b \times Sv)} \ge 0.4/0.87fy$                                            | 1        |                |
|             |              | Where,                                                                                |          |                |
|             |              | $A_{sv}$ = total cross section area of stirrups legs effective in shear               |          |                |
|             |              | $S_v = \text{stirrups spacing along the length of the member}$                        | 1        |                |
|             |              | b = breadth of beam or web of flanged beam                                            |          |                |
|             |              | $f_y$ = characteristic strength of stirrup reinforcement in N/mm <sup>2</sup> which   |          |                |
|             |              | shall not be taken greater than 415N/ mm <sup>2</sup> .                               |          |                |
|             | (d)          | A 16 mm diameter bar of grade Fe 500 is used for resisting                            |          |                |
|             | (u)          | compression. Calculate the development length if the design bond                      |          |                |
|             |              | stress is 1.2 N/mm <sup>2</sup> for plain bars in tension.                            |          |                |
|             |              | Stress is 1.2 14 min for plain bars in tension.                                       |          |                |
|             | <u> </u>     |                                                                                       | <u> </u> |                |



#### **Model Answer: Summer 2018**

### Subject: Design of R.C.C. Structure

| Que.<br>No. | Sub.<br>Que. | Model Answers                                                                                                                                                                                                                                                                                                                             | Marks | Total<br>Marks |
|-------------|--------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|----------------|
| Q. 3        | Ans.         | Given data: $\phi = 16$ mm, fy = 500 N/mm <sup>2</sup> , $\tau_{bd} = 1.2$ N/mm <sup>2</sup> , bar is in compression $L_d = \frac{0.87 \times fy \times \phi}{4 \times \tau_{bd}'}$                                                                                                                                                       | 1     |                |
|             |              | $= \frac{0.87 \times 500 \times 16}{4 \times 1.6 \times 1.25 \times 1.2} \begin{cases} \tau_{bd}' = 1.6 \times 1.25 \times \tau_{bd} & \text{ for deformed bar} \\ \text{the value of } \tau_{bd} & \text{increased by 60\% and} \\ \text{for bar in compression } \tau_{bd} & \text{shall be increased} \\ \text{by 25 \%}. \end{cases}$ | 2     | 4              |
|             |              | $L_{\rm d} = 725\rm mm$                                                                                                                                                                                                                                                                                                                   | 1     |                |
|             | (e)          | Write IS specifications for longitudinal and transverse reinforcement of an axially loaded short column.                                                                                                                                                                                                                                  |       |                |
|             | Ans.         | IS specifications for longitudinal reinforcement of an axially                                                                                                                                                                                                                                                                            |       |                |
|             |              | loaded short column:                                                                                                                                                                                                                                                                                                                      |       |                |
|             |              | i. Minimum diameter of bar in column = 12 mm                                                                                                                                                                                                                                                                                              |       |                |
|             |              | ii. Minimum number of bars in circular column = 6 Nos                                                                                                                                                                                                                                                                                     |       |                |
|             |              | iii. Cover of the column = 40 mm                                                                                                                                                                                                                                                                                                          | 2     |                |
|             |              | iv. Minimum and maximum steel in column                                                                                                                                                                                                                                                                                                   |       |                |
|             |              | Max % of steel = 6 % of gross cross sectional area of column                                                                                                                                                                                                                                                                              |       |                |
|             |              | Min % of steel = 0.8 % of gross cross sectional area of column                                                                                                                                                                                                                                                                            |       |                |
|             |              | IS specifications for transverse reinforcement of an axially loaded short column:                                                                                                                                                                                                                                                         |       | 4              |
|             |              | i. IS specification for diameter of lateral ties: The diameter of the link                                                                                                                                                                                                                                                                |       | 4              |
|             |              | should be maximum of the following:                                                                                                                                                                                                                                                                                                       |       |                |
|             |              | a) The diameter of the links should be at least one fourth of the largest diameter of the longitudinal steel.                                                                                                                                                                                                                             |       |                |
|             |              | b) In any case the links should not be less than 6mm in diameter.                                                                                                                                                                                                                                                                         | 2     |                |
|             |              | ii. IS specification for pitch: The spacing of the link should not exceed                                                                                                                                                                                                                                                                 | 2     |                |
|             |              | the least of the following-                                                                                                                                                                                                                                                                                                               |       |                |
|             |              | a) The least lateral dimension of column.                                                                                                                                                                                                                                                                                                 |       |                |
|             |              | <ul><li>b) Sixteen times the diameter of the smallest longitudinal bar.</li><li>c) 300 mm</li></ul>                                                                                                                                                                                                                                       |       |                |
|             |              | C) 500 IIIII                                                                                                                                                                                                                                                                                                                              |       |                |
|             |              |                                                                                                                                                                                                                                                                                                                                           |       |                |
|             |              |                                                                                                                                                                                                                                                                                                                                           |       |                |



#### **Model Answer: Summer 2018**

Subject: Design of R.C.C. Structure

| Que. | Sub.        | Model Answers                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Marks                    | Total |
|------|-------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|-------|
| No.  | Que.        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                          | Marks |
| Q. 4 | <b>(A)</b>  | Attempt any THREE:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                          | 12    |
|      | (a)<br>Ans. | Define characteristic strength and characteristic load.  i. characteristic strength:  Characteristic strength of a material is the value of the material                                                                                                                                                                                                                                                                                                                                                                                        | 2                        |       |
|      |             | below which not more than 5% of test results are expected to fail.                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                          | 4     |
|      |             | ii. Characteristic load: Characteristic load is that value of load which has 95% probability of not being exceeded during the service life time of the structure.                                                                                                                                                                                                                                                                                                                                                                               | 2                        |       |
|      | (b) Ans.    | Why doubly reinforced beam is provided? Write the expression for its moment of resistance if $X_u < X_{umax}$ . Conditions where doubly reinforced section is provided are as                                                                                                                                                                                                                                                                                                                                                                   |                          |       |
|      | Alls.       | follows:  i) When the applied moment exceeds the moment resisting capacity of a singly reinforced beam.  ii) When the dimension b and d of the section are restricted due to architectural, structural or constructional purposes.  iii) When the sections are subjected to reversal of bending moment. e.g. piles, underground water tank etc.  iv) In continuous T-beam where the portion of beam over middle support has to be designed as doubly reinforced.  v) When the beams are subjected to eccentric loading, shocks or impact loads. | 1 each<br>(any<br>three) | 4     |
|      |             | Expression for moment of resistance for Doubly reinforced beam if $\mathbf{X}_{\mathbf{u}} < \mathbf{X}_{\mathbf{u} \text{ max}}$ $M\mathbf{u} = M\mathbf{u}_1 + M\mathbf{u}_2$ $M\mathbf{u} = (T\mathbf{u}_1 \times \mathbf{a}_1) + (C\mathbf{u}_2 \times \mathbf{a}_2)$ $M\mathbf{u} = \begin{bmatrix} 0.87 \times f_y \times Ast_1 \left( d\text{-}0.42 \times \mathbf{x}_{\mathbf{u}_1} \right) \end{bmatrix} + \begin{bmatrix} \left( f_{sc} - f_{cc} \right) A_{sc} \left( d\text{-}d' \right) \end{bmatrix}$                             | 1                        |       |
|      | (c)<br>Ans. | Enlist the losses in prestressed concrete. Explain any one in brief.  Losses in prestressed concrete:  i. Due to elastic shortening of concrete  ii. Due to creep of concrete  iii. Due to shrinkage of concrete  iv. Due to creep in steel  v. Due to frictional loss  vi. Due to slip at anchorages                                                                                                                                                                                                                                           | each<br>(any<br>four)    |       |



#### **Model Answer: Summer 2018**

**Sub. Code: 17604** 

Subject: Design of R.C.C. Structure

| Que.<br>No. | Sub.<br>Que. | Model Answers                                                                                                                                                                                                   | Marks                  | Total<br>Marks |
|-------------|--------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|----------------|
| Q. 4        | · V          | i. Due to elastic shortening of concrete: As the prestress is transferred to concrete, the member shortens and prestressing steel also gets shortened along with it, resulting in loss of prestressed in steel. |                        |                |
|             |              | ii. Due to creep of concrete: Creep is a plastic deformation under constant stress. Concrete under the action of constant stress continues to deform with time, causing loss of prestress.                      | 2 each<br>(any<br>one) | 4              |
|             |              | <u>OR</u>                                                                                                                                                                                                       |                        |                |
|             |              | iii. Due to shrinkage of concrete: During the process of drying and hardening, concrete undergoes contraction reducing the prestressing force.                                                                  |                        |                |
|             |              | OR                                                                                                                                                                                                              |                        |                |
|             |              | iv. Due to creep in steel - The loss of prestress due to creep of steel is the product of modulus of elasticity of steel and creep strain of steel.                                                             |                        |                |
|             |              | OR                                                                                                                                                                                                              |                        |                |
|             |              | v. Due to frictional loss: It takes place only in post-tensioning system sue to relative movement between the tendon and the wall of the duct.                                                                  |                        |                |
|             |              | <u>OR</u>                                                                                                                                                                                                       |                        |                |
|             |              | vi. Due to slip at anchorages: The loss of prestress due to slip is due to slipping of wires during anchoring.                                                                                                  |                        |                |
|             | (d)          | A square column of side 425 mm is reinforced with 8 bars of 20 mm diameter of grade Fe 500. If the grade of concrete is M25, calculate the safe load the column can carry.                                      |                        |                |
|             | Ans.         |                                                                                                                                                                                                                 |                        |                |
|             | 1225         | Step 1                                                                                                                                                                                                          |                        |                |
|             |              | Gross area, $A_g = 425 \times 425$                                                                                                                                                                              |                        |                |
|             |              | $= 180625 \mathrm{mm}^2$                                                                                                                                                                                        |                        |                |
|             |              | Step 2                                                                                                                                                                                                          |                        |                |
|             |              | Area of steel $(A_{sc}) = 8 \times \left(\frac{\pi}{4}\right) \times (20)^2$                                                                                                                                    |                        |                |
|             |              | $= 2513.274 \text{ mm}^2$                                                                                                                                                                                       |                        |                |
|             |              | Step 3                                                                                                                                                                                                          | 2                      |                |
|             |              | Area of concrete $(A_C)$ = Ag - $A_{sc}$                                                                                                                                                                        |                        |                |
|             |              | = 180625 - 2513.274                                                                                                                                                                                             |                        |                |
|             |              | $= 178111.726 \text{ mm}^2$                                                                                                                                                                                     |                        |                |
|             |              |                                                                                                                                                                                                                 |                        |                |
|             |              |                                                                                                                                                                                                                 |                        |                |
|             |              |                                                                                                                                                                                                                 |                        |                |



#### **Model Answer: Summer 2018**

Subject: Design of R.C.C. Structure

| Que. | Sub.       |                                                                                                                                                                                                                                                                                                                                                               |       | Total |
|------|------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-------|
| No.  | Que.       | Model Answers                                                                                                                                                                                                                                                                                                                                                 | Marks | Marks |
| Q. 4 |            | Step 4  Ultimate load carrying capacity ( $P_u$ ) $P_u = (0.4 \times fck \times A_c) + (0.67 \times fy \times A_{sc})$ $= (0.4 \times 25 \times 178111.726) + (0.67 \times 500 \times 2513.274)$ $= 2623064.05 \text{ N}$ $= 2623.06 \text{ kN}$ Safe load carrying capacity (P)                                                                              | 1     | 4     |
|      |            | $P = \frac{Pu}{\gamma_f} = \frac{2623.06}{1.5}$ $P = 1748.707 \text{ kN}$                                                                                                                                                                                                                                                                                     | 1     | 6     |
|      | <b>(B)</b> | Attempt any ONE:                                                                                                                                                                                                                                                                                                                                              |       |       |
|      | (a)        | A doubly reinforced beam of size 250 mm x 400 mm is reinforced with 3, 20 $\#$ bars in tension and 2, 16 $\#$ bars in compression each at an effective cover of 40 mm. Calculate the ultimate moment of resistance if $f_{ck} = 20$ MPa, $f_y = 415$ MPa and $f_{sc} = 353$ MPa.                                                                              |       |       |
|      | Ans.       |                                                                                                                                                                                                                                                                                                                                                               |       |       |
|      |            | Given: To find: $b = 250 \text{ mm} \qquad M_u = ?$ $D = 400 \text{ mm}$ $C = 40 \text{ mm}$ $d = D - C = 360 \text{ mm}$ $Ast = 3 \times \frac{\pi}{4} \times 20^2 = 942.477 \text{ mm}^2$ $Asc = 2 \times \frac{\pi}{4} \times 16^2 = 402.123 \text{ mm}^2$ $f_{sc} = 353 \text{ N/mm}^2$ $f_{ck} = 20 \text{ N/mm}^2$ $f_y = 415 \text{ N/mm}^2$ Solution: |       |       |



**Sub. Code: 17604** 

#### **Model Answer: Summer 2018**

### Subject: Design of R.C.C. Structure

| Que.<br>No. | Sub.<br>Que. | Model Answers                                                                                                                                                                                                                                                                                                            | Marks | Total<br>Marks |
|-------------|--------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|----------------|
| Q. 4        |              | Step 1 :Find $X_{umax} = 0.48d$ for Fe 415<br>= $0.48 \times 360$<br>$X_{umax} = 172.8 \text{ mm}$<br>Step 2 : Find Ast <sub>2</sub>                                                                                                                                                                                     | 1     |                |
|             |              | $f_{cc} = 0.45 \times f_{ck} = 0.45 \times 20 = 9 \text{ N/mm}^2$ $Ast_2 = \frac{(f_{sc} - f_{cc}) \times A_{sc}}{0.87 \times f_y} = \frac{(353 - 9) \times 402.123}{0.87 \times 415}$ $Ast_2 = 383.133 \text{ mm}^2$ $Ast_1 = Ast - Ast_2 = 942.477 - 383.133 = 559.344 \text{ mm}^2$                                   | 1     |                |
|             |              | Step 3: Find $Xu_1$ $Xu_1 = \frac{0.87 \times f_y \times Ast_1}{0.36 \times f_{st} \times b} = \frac{0.87 \times 415 \times 559.344}{0.36 \times 20 \times 250} = 112.195 \text{ mm}$                                                                                                                                    | 1     |                |
|             |              | Step 4 : Find type of section As $Xu_1=112.195 \text{ mm} < X_{umax} = 172.8 \text{ mm}$                                                                                                                                                                                                                                 | 1     | 6              |
|             |              | Section is under-reinforced.   Step 5 : Find Moment of Resistance $M_u$ $M_u = 0.87 \times f_y \times Ast_1 \times (d-0.42Xu_1) + \left[ (f_{sc} - f_{cc}) \times A_{sc} (d-d') \right]$ $M_u = 0.87 \times 415 \times 559.344 \times (360-0.42 \times 112.195) + \left[ (353-9) \times 402.123 \times (360-40) \right]$ | 1     |                |
|             |              | $M_{\rm u} = 107.451 \times 10^{6} \text{N-mm}$ $M_{\rm u} = 107.451 \text{kN-m}$                                                                                                                                                                                                                                        | 1     |                |
|             | <b>(b)</b>   | Calculate the area of steel reinforcements required for a doubly reinforced beam 250 mm x 450 mm over all, subjected to ultimate bending moment of 165 kN-m. Take $f_{ck}=20$ MPa, $f_y=415$ MPa, $d'=45$ mm and $f_{sc}=353$ MPa. The effective cover to tension steel is 45 mm.                                        |       |                |
|             | Ans.         | Given: To find: $b = 250 \text{ mm}$ Ast = ? $D = 450 \text{ mm}$ Asc = ? $C = d' = 45 \text{ mm}$ $d = D - C = 405 \text{ mm}$ $Mu = 165 \text{ kNm}$ $f_{sc} = 353 \text{ N/mm}^2$                                                                                                                                     |       |                |
|             |              | $\begin{array}{ll} f_{ck} &= 20 \text{ N/mm}^2 \\ f_y &= 415 \text{ N/mm}^2 \end{array}$                                                                                                                                                                                                                                 |       |                |



#### **Model Answer: Summer 2018**

### Subject: Design of R.C.C. Structure

| No. Q. 4 | Que. |                                                                                      | Marks | Marks |
|----------|------|--------------------------------------------------------------------------------------|-------|-------|
|          |      | Solution:                                                                            |       |       |
|          |      | Step 1) To find x <sub>umax</sub>                                                    |       |       |
|          |      | $x_{umax} = 0.48d$                                                                   |       |       |
|          |      | =0.48×405                                                                            | 1     |       |
|          |      | =194.4 mm                                                                            |       |       |
|          |      | Step 2) To find M <sub>u1</sub>                                                      |       |       |
|          |      | $M_{u_i} = M_{ulim} = 0.138 f_{ck} bd^2$                                             |       |       |
|          |      | $=0.138\times20\times250\times405^{2}$                                               | 1     |       |
|          |      | $=113.177\times10^{6}$ N-mm                                                          |       |       |
|          |      | Step 3) To find A <sub>st</sub>                                                      |       |       |
|          |      | Pt <sub>lim</sub> =0.048fck=0.048×20=0.96% for M20 Concrete                          |       |       |
|          |      |                                                                                      |       |       |
|          |      | $A_{st_1} = \frac{Pt_{lim} \times bd}{100} = \frac{0.96 \times 250 \times 405}{100}$ | 1     |       |
|          |      | $A_{st_1} = 972 \mathrm{mm}^2$                                                       |       | 6     |
|          |      | Step 4) Balanced moment of resistance (Mu <sub>2</sub> )                             |       | U     |
|          |      | $\mathbf{M}\mathbf{u}_{2} = \mathbf{M}\mathbf{u} - \mathbf{M}\mathbf{u}_{1}$         |       |       |
|          |      | $=165\times10^{6}-113.177\times10^{6}$                                               | 1     |       |
|          |      | $=51.823\times10^{6}$ N-mm                                                           |       |       |
|          |      | Step 5) To find Asc                                                                  |       |       |
|          |      | fcc=0.45fck=0.45×20=9 N/mm <sup>2</sup>                                              |       |       |
|          |      | fsc=353 N/mm <sup>2</sup>                                                            |       |       |
|          |      | Mu <sub>2</sub> =Asc(fsc-fcc)(d-d')                                                  |       |       |
|          |      | $51.823 \times 10^6 = \text{Asc}(353-9) \times (405-45)$                             |       |       |
|          |      | $Asc=418.467  \text{mm}^2$                                                           | 1     |       |
|          |      | Step 6)To find Ast <sub>2</sub>                                                      |       |       |
|          |      | $Cu_2=Tu_2$                                                                          |       |       |
|          |      | $Asc(fsc-fcc) = Ast_2 \times 0.87 \times fy$                                         |       |       |
|          |      | $418.467 \times (353-9) = Ast_2 \times 0.87 \times 415$                              |       |       |
|          |      | $Ast_2 = 398.706 \text{mm}^2$                                                        | 1     |       |
|          |      | $\Total Ast=Ast_1+Ast_2$                                                             |       |       |
|          |      | =972+398.706                                                                         |       |       |
|          |      | $Ast=1370.706  mm^2$                                                                 |       |       |
|          |      |                                                                                      |       |       |



#### **Model Answer: Summer 2018**

### Subject: Design of R.C.C. Structure

| Que.        | Sub. | Model Answers                                                                                                                           | Marks | Total       |
|-------------|------|-----------------------------------------------------------------------------------------------------------------------------------------|-------|-------------|
| No.<br>Q. 5 | Que. | Attempt any TWO:                                                                                                                        |       | Marks<br>16 |
| <b>Q.</b> 3 |      | Attempt any 1 wo.                                                                                                                       |       | 10          |
|             | (a)  | A simply supported beam of span 4 m carries a superimposed                                                                              |       |             |
|             |      | load of 50 kN/m. The size of beam is limited to 230 mm x 400 mm                                                                         |       |             |
|             |      | effective. Design the beam using concrete M20 and Fe 415 steel.                                                                         |       |             |
|             |      | Assume the cover of 40 mm to both reinforcements. Take $f_{sc} = 353 \text{ N/mm}^2$ and unit weight of R.C.C. as $25 \text{ kN/m}^3$ . |       |             |
|             |      | I <sub>sc</sub> = 355 William and time weight of R.C.C. as 25 kW/m.                                                                     |       |             |
|             | Ans. | Given: To find:                                                                                                                         |       |             |
|             |      | b = 230  mm Ast = ?                                                                                                                     |       |             |
|             |      | $d = 400 \text{ mm} \qquad Asc = ?$                                                                                                     |       |             |
|             |      | C = d' = 40  mm                                                                                                                         |       |             |
|             |      | w = 50  kN/m                                                                                                                            |       |             |
|             |      | 1 = 4  m = 4000  mm                                                                                                                     |       |             |
|             |      | $P_{\rm conc} = 25 \text{ kN/m}^3$                                                                                                      |       |             |
|             |      | $f_{sc} = 353 \text{ N/mm}^2$                                                                                                           |       |             |
|             |      | $f_{ck} = 20 \text{ N/mm}^2$                                                                                                            |       |             |
|             |      | $f_{y} = 415 \text{ N/mm}^2$                                                                                                            |       |             |
|             |      | Solution:                                                                                                                               |       |             |
|             |      | Step 1) To find Mu                                                                                                                      |       |             |
|             |      | D = d + c = 400 + 40 = 440  mm = 0.44  m                                                                                                |       |             |
|             |      | Total load acting on beam                                                                                                               |       |             |
|             |      | Self weigth of beam = $(b \times D \times \rho_{concrete}) = (0.23 \times 0.44 \times 25) = 2.53 \text{ kN/m}$                          |       |             |
|             |      | Superimposed load $= 50 \text{ kN/m}$                                                                                                   |       |             |
|             |      | Total load (w) = $52.53 \text{ kN/m}$                                                                                                   |       |             |
|             |      | Factored load ( $W_d$ ) =1.5×w =1.5×52.53=78.795 kN/m                                                                                   | 1     |             |
|             |      |                                                                                                                                         | _     |             |
|             |      | $Mu = \frac{W_d \times l^2}{8} = \frac{78.795 \times 4^2}{8} = 157.59 \text{ kNm}$                                                      | 1     |             |
|             |      | Step 2) To find x <sub>umax</sub>                                                                                                       |       |             |
|             |      | $x_{\text{umax}} = 0.48d$                                                                                                               |       |             |
|             |      | $=0.48\times400$                                                                                                                        |       |             |
|             |      | =192 mm                                                                                                                                 | 1     |             |
|             |      |                                                                                                                                         |       |             |
|             |      |                                                                                                                                         |       |             |
|             |      |                                                                                                                                         |       |             |
|             |      |                                                                                                                                         |       |             |
|             |      |                                                                                                                                         |       |             |



#### **Model Answer: Summer 2018**

### Subject: Design of R.C.C. Structure

| Que. | Sub.<br>Que. | Model Answers                                                                        | Marks | Total<br>Marks |
|------|--------------|--------------------------------------------------------------------------------------|-------|----------------|
| Q. 5 |              | Step 3) To find M <sub>u1</sub>                                                      |       |                |
|      |              | $M_{u_1} = M_{ulim} = 0.138 f_{ck} b d^2$                                            |       |                |
|      |              | $=0.138\times20\times230\times400^{2}$                                               |       |                |
|      |              | $=101.568\times10^{6}$ N-mm                                                          | 1     |                |
|      |              | $M_{u_1} = 101.568  kNm < M_u = 157.59  kNm$                                         | 1     |                |
|      |              | Hence, Doubly reinforced beam is required.                                           |       |                |
|      |              | Step 4) To find A <sub>st<sub>1</sub></sub>                                          |       |                |
|      |              | Pt <sub>lim</sub> =0.048fck=0.048×20=0.96% for M20 Concrete                          |       |                |
|      |              | $A_{st_1} = \frac{Pt_{lim} \times bd}{100} = \frac{0.96 \times 230 \times 400}{100}$ |       |                |
|      |              | $A_{st_1} = 100$ 100                                                                 | 1     |                |
|      |              | $A_{st_1} = 883.2 \mathrm{mm}^2$                                                     |       |                |
|      |              | Step 5) Balanced moment of resistance (Mu <sub>2</sub> )                             |       |                |
|      |              | $Mu_2=Mu-Mu_1$                                                                       |       |                |
|      |              | $=157.59\times10^{6}-101.568\times10^{6}$                                            |       |                |
|      |              | $=56.022\times10^{6}$ N-mm                                                           |       | 8              |
|      |              | Step 6) To find Asc                                                                  |       |                |
|      |              | fcc=0.45fck=0.45×20=9 N/mm <sup>2</sup>                                              |       |                |
|      |              | fsc=353 N/mm <sup>2</sup>                                                            |       |                |
|      |              | Mu <sub>2</sub> =Asc(fsc-fcc)(d-d')                                                  |       |                |
|      |              | $56.022 \times 10^6 = Asc(353-9) \times (400-40)$                                    | 1     |                |
|      |              | Asc=452.374 mm <sup>2</sup>                                                          | _     |                |
|      |              | Step 7)To find Ast <sub>2</sub>                                                      |       |                |
|      |              | $Cu_2=Tu_2$                                                                          |       |                |
|      |              | $Asc(fsc-fcc) = Ast_2 \times 0.87 \times fy$                                         |       |                |
|      |              | $452.374\times(353-9)=Ast_2\times0.87\times415$                                      |       |                |
|      |              | $Ast_2 = 431.011 \text{mm}^2$                                                        | 1     |                |
|      |              | Step 8)Total Ast=Ast <sub>1</sub> +Ast <sub>2</sub>                                  |       |                |
|      |              | =883.2+431.011                                                                       |       |                |
|      |              | Ast=1314.211mm <sup>2</sup>                                                          | 1     |                |
|      |              |                                                                                      |       |                |
|      |              |                                                                                      |       |                |
|      |              |                                                                                      |       |                |
|      |              |                                                                                      |       |                |
|      |              |                                                                                      |       |                |



#### **Model Answer: Summer 2018**

### Subject: Design of R.C.C. Structure

| Que. | Sub.<br>Que. | Model Answers                                                                                                                                                                                                                                                                               | Marks | Total<br>Marks |
|------|--------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|----------------|
| Q. 5 | (b)          | A beam 230 mm x 450 mm deep effective is reinforced with 4 – 16 # bars of grade Fe 415. The beam is subjected to a factored shear force of 147 kN. Design the shear reinforcement. Use two legged vertical stirrups of 8 # bars. Take $\zeta_{uc} = 0.57$ N/mm <sup>2</sup> .               |       |                |
|      | Ans.         | Given: To find: $b = 230 \text{ mm}$ Spacing of stirrups = ? $d = 450 \text{ mm}$ $Ast = 4 \times \frac{\pi}{4} \times (16)^2 = 804.248 \text{ mm}^2$ $V_u = 147 \text{ kN}$ $\phi = 8 \text{ mm diameter 2 legged}$ $\zeta_{uc} = 0.57 \text{ N/mm}^2$ $f_y = 415 \text{ N/mm}^2$          |       |                |
|      |              | Solution:  Step 1) Nominal shear stress $ \varsigma_{v} = \frac{V_{u}}{b \times d} = \frac{147 \times 10^{3}}{230 \times 450} = 1.42 \text{N/mm}^{2} $ Step 2) Shear strength of concrete                                                                                                   | 1     |                |
|      |              | $ \zeta_{uc} = 0.57 \text{ N/mm}^2 < \zeta_v = 1.42 \text{N/mm}^2 $ Shear reinforcement is required.  Step 3) Shear force for which shear reinforcement is required                                                                                                                         | 1     |                |
|      |              | $\begin{split} &V_{us}\!=\!V_{u}\!-\!(\varsigma_{uc}\!\times\!b\!\times\!d)\!\!=\!\!(147\!\times\!10^{3})\!\!-\!\!(0.57\!\times\!230\!\times\!450)\\ &V_{us}\!=\!88.005kN\\ &Step 4) Shear force to be resisted by vertical stirrups\\ &Assuming bentup bars are not provided. \end{split}$ | 1     |                |
|      |              | Shear force to be resisted by vertical stirrups $V_{usv} = V_{us} = 88.005  \text{kN}$ Step 5) Spacing of stirrups $Asv = 2 \times \frac{\pi}{4} \times 8^2 = 100.53  \text{mm}^2$                                                                                                          | 1     |                |
|      |              |                                                                                                                                                                                                                                                                                             |       |                |



#### **Model Answer: Summer 2018**

Subject: Design of R.C.C. Structure

| Que.<br>No. | Sub.<br>Que. | Model Answers                                                                                                                                                                                                                                                                                                                                                                                                                   | Marks | Total<br>Marks |
|-------------|--------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|----------------|
| Q. 5        |              | Spacing of stirrups = Min. of following -  a) $Sv = \frac{0.87 \times f_y \times Asv \times d}{V_{usv}} = \frac{0.87 \times 415 \times 100.53 \times 450}{88.005 \times 10^3} = 185.596  \text{mm}$ b) $Sv = \frac{0.87 \times f_y \times Asv}{0.4 \times b} = \frac{0.87 \times 415 \times 100.53}{0.4 \times 230} = 394.525  \text{mm}$ c) $Sv = 0.75 \times d = 0.75 \times 450 = 337.5  \text{mm}$ d) $Sv = 300  \text{mm}$ | 3     | 8              |
|             |              | Hence, Sv=180 mm                                                                                                                                                                                                                                                                                                                                                                                                                | 1     |                |
|             |              | Provide 8 mm dia. 2 legged vertical stirrups at 180 mm c/c                                                                                                                                                                                                                                                                                                                                                                      |       |                |
|             | (c)          | Design a square column to carry an axial load of 1500 kN. The unsupported length of the column is 3.5 m. Use M20 concrete and 1 % Fe 500 steel for longitudinal reinforcement. Use MS bar for lateral ties. Apply the check for minimum eccentricity.                                                                                                                                                                           |       |                |
|             | Ans.         | Given: To find: $1 = lo = 3.5 \text{ m} = 3500 \text{ mm}$ Size of column = ? $P = 1500 \text{ kN}$ Main steel = ? $f_{ck} = 20 \text{ N/mm}^2$ Transverse steel = ? $f_y = 415 \text{ N/mm}^2 \text{ for main steel}$ for transverse steel                                                                                                                                                                                     |       |                |
|             |              | Solution:                                                                                                                                                                                                                                                                                                                                                                                                                       |       |                |
|             |              | Step 1) Factored axial load<br>$Pu = 1.5 \times P = 1.5 \times 1500 = 2250 \text{ kN}$<br>Step 2) Size of column                                                                                                                                                                                                                                                                                                                | 1     |                |
|             |              | $Asc = \frac{1}{100} \times Ag = (0.01)Ag$ $Ac = Ag - Asc = (1)Ag - (0.01)Ag = (0.99)Ag$                                                                                                                                                                                                                                                                                                                                        | 1     |                |
|             |              | Using formula-<br>Pu = $(0.4 \times f_{ck} \times Ac) + (0.67 \times f_{y} \times Asc)$                                                                                                                                                                                                                                                                                                                                         | 1     |                |
|             |              | $2250 \times 10^{3} = (0.4 \times 20 \times 0.99 \times Ag) + (0.67 \times 500 \times 0.01 \times Ag)$ Ag = 199.645 × 10 <sup>3</sup> mm <sup>2</sup> For square column                                                                                                                                                                                                                                                         |       |                |
|             |              | $b = \sqrt{Ag} = \sqrt{199.645 \times 10^3} = 446.816 \text{ mm}$ Provide column of size 450 mm × 450 mm                                                                                                                                                                                                                                                                                                                        | 1     |                |



#### **Model Answer: Summer 2018**

### Subject: Design of R.C.C. Structure

| Que.<br>No. | Sub.<br>Que. | Model Answers                                                                                    | Marks | Total<br>Marks |
|-------------|--------------|--------------------------------------------------------------------------------------------------|-------|----------------|
| Q. 5        |              | Step 3) Check for eccentricity                                                                   |       |                |
|             |              | $e_{max} = 0.05 \times b = 0.05 \times 450 = 22.5 \text{mm}$                                     |       |                |
|             |              | $e_{min} = \left(\frac{1_o}{500} + \frac{b}{30}\right)$ or 20 mm whichever is larger             | 1     |                |
|             |              | $= \left(\frac{3500}{500} + \frac{450}{30}\right) \text{ or } 20 \text{ mm whichever is larger}$ |       |                |
|             |              | $e_{\min} = 22 \text{mm} < e_{\max} = 22.5 \text{mm}$                                            |       |                |
|             |              | Step 4) Main Steel                                                                               |       |                |
|             |              | $Asc=0.01\times Ag=0.01\times 450^2=2025 \mathrm{mm}^2$                                          |       |                |
|             |              | Providing, 25 mm dia. bars                                                                       |       |                |
|             |              | No. of bars = $\frac{Asc}{A\varphi} = \frac{2025}{\frac{\pi}{4} \times 25^2} = 4.12$             | 11/2  |                |
|             |              | Provide 6 bars of 25 mm dia. as main steel                                                       |       |                |
|             |              | Step 5) Transverse steel i.e. links                                                              |       |                |
|             |              | Dia. of link = $\frac{1}{4} \times \varphi$ or 6 mm whichever is greater                         |       |                |
|             |              | Dia. of link = $\frac{1}{4} \times 25$ or 6 mm whichever is greater                              |       |                |
|             |              | Dia. of link = 6.25 mm or 6 mm whichever is greater                                              | 1½    |                |
|             |              | Provide 8 mm dia.links                                                                           |       |                |
|             |              | Spacing of links = Minimum of below                                                              |       |                |
|             |              | a)S = b = 450  mm                                                                                |       |                |
|             |              | b) $S = 16 \times \varphi = 16 \times 25 = 400 \text{ mm}$                                       |       |                |
|             |              | c)S=300 mm<br>S=300 mm                                                                           |       |                |
|             |              |                                                                                                  |       |                |
|             |              | Provide 8 mm dia. links at 300 mm c/c                                                            |       |                |
|             |              |                                                                                                  |       |                |
|             |              |                                                                                                  |       |                |
|             |              |                                                                                                  |       |                |
|             |              |                                                                                                  |       |                |
|             |              |                                                                                                  |       |                |
|             |              |                                                                                                  |       |                |
|             |              |                                                                                                  |       |                |
|             |              |                                                                                                  |       |                |
|             |              |                                                                                                  |       |                |



### **Model Answer: Summer 2018**

| Que. (a) Ans. | Attempt an                                                    | Model Ans                                                               |                                                                         |       | Marks                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Morezo      |
|---------------|---------------------------------------------------------------|-------------------------------------------------------------------------|-------------------------------------------------------------------------|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|
|               |                                                               | , i ocit.                                                               |                                                                         |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Marks<br>16 |
| AIIS.         | Differentiate between balanced and under-reinforced sections. |                                                                         |                                                                         |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |             |
|               |                                                               | Balanced section                                                        | Under reinforced section                                                |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |             |
|               | i) Strain                                                     | Strain in concrete and steel reaches to its maximum value at same time. | Strain in steel steer reaches to its maximum value first.               |       | 1 each                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 4           |
|               | ii) Area<br>of Steel                                          | Equals to required for balanced section. Ast = Ast max.                 | balanced section. Ast < Ast max.                                        | 0     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |             |
|               | Neutral<br>Axis                                               | $Xu = Xu_{max}$                                                         | $Xu < Xu_{max}$                                                         |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |             |
|               | iv) Moment of resistance                                      | $Mu = Mu_{max}$ $= q_{max}. f_{ck}. b . d^{2}$                          | $Mu = Tu.z$ $= 0.87 \text{ fy Ast}(d-0.42x_u)$                          |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |             |
| (b) Ans.      |                                                               | _                                                                       |                                                                         | quare |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |             |
|               |                                                               | 90° bend  effective cover  Main steel Section A-A                       | spacing of links  150  Main steel  80 mm levelling course (P.C.C. 14.8) |       | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 4           |
|               |                                                               | Main stoel Links                                                        | <u></u>                                                                 |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |             |
|               | =                                                             | c/s of an Isolated S                                                    | quare Footing                                                           |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |             |
|               |                                                               | iii) Neutral Axis iv) Moment of resistance  (b) Draw the s slopped foo  | iii)                                                                    |       | Ast = Ast max.    iii)   Xu = Xu <sub>max</sub>   Xu < Xu <sub>max</sub>   Xu < Xu <sub>max</sub>     Axis   Axis   Axis   Axis     Axis   Axis   Axis   Axis     Axis   Axis   Axis   Axis     Axis   Axis   Axis   Axis     Axis   Axis   Axis     Axis   Axis   Axis     Axis   Axis   Axis     Axis   Axis     Axis   Axis     Axis   Axis     Axis   Axis     Axis   Axis     Axis   Axis     Axis   Axis     Axis   Axis     Axis   Axis     Axis   Axis     Axis   Axis     Axis   Axis     Axis   Axis     Axis   Axis     Axis   Axis     Axis   Axis     Axis   Axis     Axis   Axis     Axis   Axis     Axis   Axis     Axis   Axis     Axis   Axis     Axis   Axis     Axis   Axis     Axis   Axis     Axis   Axis     Axis   Axis     Axis   Axis     Axis   Axis     Axis   Axis     Axis   Axis     Axis   Axis     Axis   Axis     Axis   Axis     Axis   Axis     Axis   Axis     Axis   Axis     Axis   Axis     Axis   Axis     Axis   Axis     Axis   Axis     Axis   Axis     Axis   Axis     Axis   Axis     Axis   Axis     Axis   Axis     Axis   Axis     Axis   Axis     Axis   Axis     Axis   Axis     Axis   Axis     Axis   Axis     Axis   Axis     Axis   Axis     Axis   Axis     Axis   Axis     Axis   Axis     Axis   Axis     Axis   Axis     Axis   Axis     Axis   Axis     Axis   Axis     Axis   Axis     Axis   Axis     Axis   Axis     Axis   Axis     Axis   Axis     Axis   Axis     Axis   Axis     Axis   Axis     Axis   Axis     Axis   Axis     Axis   Axis     Axis   Axis     Axis   Axis     Axis   Axis     Axis   Axis     Axis   Axis     Axis   Axis     Axis   Axis     Axis   Axis     Axis   Axis     Axis   Axis     Axis   Axis     Axis   Axis     Axis   Axis     Axis   Axis     Axis   Axis     Axis   Axis     Axis   Axis     Axis   Axis     Axis   Axis     Axis   Axis     Axis   Axis     Ax |             |



#### **Model Answer: Summer 2018**

### Subject: Design of R.C.C. Structure

| Que.<br>No. | Sub.<br>Que. | Model Answers                                                                                                                                                                                                                                                                                                   | Marks | Total<br>Marks |  |  |
|-------------|--------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|----------------|--|--|
| Q. 6        | (c)          | A column of size 400 mm x 400 mm carries an axial load of 1500 kN. Calculate the size and depth for B.M. of a square pad footing using M20 and Fe 500. The safe bearing capacity of soil is 350 kN/m <sup>2</sup> .                                                                                             |       |                |  |  |
|             | Ans.         | Given: To find: $b = 400 \text{ mm}$ Size of footing = ? $P = 1500 \text{ kN}$ Main steel = ? $SBC = 350 \text{ kN/m}^2$ $f_{ck} = 20 \text{ N/mm}^2$ $f_y = 500 \text{ N/mm}^2$ Solution: $Step 1$ Ultimate S.B.C $(q_u)=2\times350$ $= 700 \text{ kN/m}^2$                                                    |       |                |  |  |
|             |              | Step 2 Size of footing Assuming 5% as self wt.of footing Area of footing $(A_f) = \frac{(1.05 \times P_u)}{q_u} = \frac{(1.05 \times (1.5 \times 1500))}{700}$ $= 3.375 \text{ m}^2$ $L = \sqrt{A_f}$ $= \sqrt{3.375}$ $= 1.837 \text{ m} \times 1.9 \text{ m}$ Adopt size $1.9 \text{ m} \times 1.9 \text{ m}$ | 1     |                |  |  |
|             |              | Tooting  X  0.4 m  X  0.4 m  1.9 m  Y  Y  Y  Y  Y  Y  Y  Y  Y  Y  Y  Y  Y                                                                                                                                                                                                                                       | 1     |                |  |  |



### **Model Answer: Summer 2018**

### Subject: Design of R.C.C. Structure

|             | ~ .          |                                                                                                                                                                                                                                                                |       |                |  |
|-------------|--------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|----------------|--|
| Que.<br>No. | Sub.<br>Que. | Model Answers                                                                                                                                                                                                                                                  | Marks | Total<br>Marks |  |
| Q. 6        | Que          | Step 3                                                                                                                                                                                                                                                         |       | Mains          |  |
|             |              | Upword soil pressure(p)                                                                                                                                                                                                                                        |       |                |  |
|             |              | $P_{\parallel} = 1.5 \times 1500$                                                                                                                                                                                                                              |       |                |  |
|             |              | $p = \frac{P_u}{(L \times B)} = \frac{1.5 \times 1500}{(1.9 \times 1.9)} = 623.268 \text{ kN/m}^2$                                                                                                                                                             |       |                |  |
|             |              | $M_x = M_y = 1 \times x_1 \times p \times \frac{x_1}{2} = 1 \times 0.75 \times 623.268 \times \frac{0.75}{2}$<br>= 175.294 kN-m                                                                                                                                |       |                |  |
|             |              |                                                                                                                                                                                                                                                                |       |                |  |
|             |              | $d_{req} = \sqrt{\frac{M_x}{(0.133 \times f_{\P} \times b)}} = \sqrt{\frac{175.294 \times 10^6}{(0.133 \times 20 \times 1000)}}$                                                                                                                               | 1     |                |  |
|             |              | = 256.709 mm»260mm                                                                                                                                                                                                                                             |       |                |  |
|             |              | adopt cover of 50 mm                                                                                                                                                                                                                                           |       |                |  |
|             |              | D = d + 50 = 260 + 50 = 310  mm                                                                                                                                                                                                                                |       |                |  |
|             |              | Provide, $D = 310 \text{ mm}$ and $d = 260 \text{ mm}$                                                                                                                                                                                                         |       |                |  |
|             |              | Step 5                                                                                                                                                                                                                                                         |       |                |  |
|             |              | $Ast_{x} = Ast_{y} = \frac{0.5 \times fck}{fy} \times \left[1 - \sqrt{1 - \left(\frac{4.6 \times M_{ux}}{\left(fck \times bd^{2}\right)}\right)}\right] \times bd$                                                                                             |       | 4              |  |
|             |              | $= \frac{0.5 \times 20}{500} \times \left[ 1 - \sqrt{1 - \left( \frac{4.6 \times 175.294 \times 10^6}{\left( 20 \times 1000 \times 260^2 \right)} \right)} \right] \times 1000 \times 260$                                                                     | 1     |                |  |
|             |              | $= 1896.524 \mathrm{mm}^2$                                                                                                                                                                                                                                     | •     |                |  |
|             |              | using 16mm diameter                                                                                                                                                                                                                                            |       |                |  |
|             |              | $S_x = S_y = \frac{(1000 \times A\phi)}{Ast} = \frac{1000 \times \frac{\pi}{4} \times 16^2}{1896.524}$                                                                                                                                                         |       |                |  |
|             |              | $= 106.016 \mathrm{mm} \times 100 \mathrm{mm} \mathrm{c/c}$                                                                                                                                                                                                    |       |                |  |
|             |              | Provide 16 mm φ @ 100 mm c/c both way                                                                                                                                                                                                                          |       |                |  |
|             |              |                                                                                                                                                                                                                                                                |       |                |  |
|             | ( <b>d</b> ) | Calculate the ultimate moment of resistance of a T-beam having – flange width 1250 mm, thickness of slab – 115 mm, effective depth – 600 mm, width of web – 300 mm and tension reinforcement consisting of 4 bars of 25 mm diameter of grade Fe 500. The grade |       |                |  |
|             |              | of concrete is M20.                                                                                                                                                                                                                                            |       |                |  |
|             |              |                                                                                                                                                                                                                                                                |       |                |  |



#### **Model Answer: Summer 2018**

### Subject: Design of R.C.C. Structure

|             |              | (                                                                                                                                          |       |                |  |  |
|-------------|--------------|--------------------------------------------------------------------------------------------------------------------------------------------|-------|----------------|--|--|
| Que.<br>No. | Sub.<br>Que. | Model Answers                                                                                                                              | Marks | Total<br>Marks |  |  |
| Q. 6        | Ans.         | Given:                                                                                                                                     |       | Maiks          |  |  |
| 2.0         | 11115        | bf = 1250 mm                                                                                                                               |       |                |  |  |
|             |              | Df = 115  mm                                                                                                                               |       |                |  |  |
|             |              | bw = 300 mm                                                                                                                                |       |                |  |  |
|             |              | d = 600  mm                                                                                                                                |       |                |  |  |
|             |              | Ast = $4 \times \frac{\pi}{4} \times 25^2 = 1963.495 \text{mm}^2$                                                                          |       |                |  |  |
|             |              | $f_{ck} = 20 \text{ N/mm}^2$                                                                                                               |       |                |  |  |
|             |              | $f_{y} = 500 \text{ N/mm}^2$                                                                                                               |       |                |  |  |
|             |              | To find: $M_u = ?$                                                                                                                         |       |                |  |  |
|             |              | Solution:                                                                                                                                  |       |                |  |  |
|             |              | Step 1                                                                                                                                     |       |                |  |  |
|             |              | Find x <sub>u</sub>                                                                                                                        |       |                |  |  |
|             |              | $0.36 \times fck \times b_f \times x_u = 0.87 \times fy \times Ast$                                                                        | 1     |                |  |  |
|             |              | $0.36 \times 20 \times 1250 \times x_u = 0.87 \times 500 \times 1963.495$                                                                  |       |                |  |  |
|             |              | $x_u = 94.902  \text{mm} < D_f = 115  \text{mm}$                                                                                           |       |                |  |  |
|             |              | Step 2                                                                                                                                     |       |                |  |  |
|             |              | Find x <sub>umax</sub>                                                                                                                     |       |                |  |  |
|             |              | $x_{umax} = 0.46 \times d$ for Fe 500                                                                                                      |       |                |  |  |
|             |              | $=0.46 \times 600$                                                                                                                         |       |                |  |  |
|             |              | $= 276 \mathrm{mm}$                                                                                                                        | 1     | 4              |  |  |
|             |              | $\therefore$ As $x_u < x_{umax}$ section is under reinforced                                                                               |       | -              |  |  |
|             |              | Step 3                                                                                                                                     |       |                |  |  |
|             |              | Find M <sub>u</sub>                                                                                                                        |       |                |  |  |
|             |              | $\mathbf{M}_{\mathrm{u}} = \mathbf{T}_{\mathrm{u}} \times a$                                                                               |       |                |  |  |
|             |              | $= 0.87 \times \text{ fy} \times \text{Ast} \times (\text{d} - 0.42 \times \text{x}_{\text{u}})$                                           | 1     |                |  |  |
|             |              | $= 0.87 \times 19 \times 1963.495 \times (600 - 0.42 \times 94.902)$ $= 0.87 \times 500 \times 1963.495 \times (600 - 0.42 \times 94.902)$ |       |                |  |  |
|             |              | , , , , , , , , , , , , , , , , , , ,                                                                                                      |       |                |  |  |
|             |              | $=478.428\times10^{6}$ N-mm                                                                                                                |       |                |  |  |
|             |              | Mu = 478.428  kN-m                                                                                                                         | 1     |                |  |  |
|             |              |                                                                                                                                            |       |                |  |  |
|             |              |                                                                                                                                            |       |                |  |  |
|             |              |                                                                                                                                            |       |                |  |  |
|             |              |                                                                                                                                            |       |                |  |  |
|             |              |                                                                                                                                            |       |                |  |  |
|             |              |                                                                                                                                            |       |                |  |  |
|             |              |                                                                                                                                            |       |                |  |  |



#### **Model Answer: Summer 2018**

Subject: Design of R.C.C. Structure

| Que.<br>No. | Sub.<br>Que. | Model Answers                                                     | Marks | Total<br>Marks |
|-------------|--------------|-------------------------------------------------------------------|-------|----------------|
| Q. 6        | (e)          | Draw the cross-section, strain diagram and stress diagram for a   |       |                |
|             |              | singly reinforced T beam with the neutral axis within the flange. |       |                |
|             | Ans.         |                                                                   |       |                |
|             |              | bf (0.45) fck                                                     |       |                |
|             |              |                                                                   |       |                |
|             |              | Df N.A. 0.002 Xu (0.43)Xu 7(0.42)X                                | 4     | 4              |
|             |              | D (0.47) Yu a=                                                    | 4     | 4              |
|             |              | (d-0,42                                                           |       |                |
|             |              | I Ic ZZZZZZ                                                       |       |                |
|             |              | ESU TU                                                            |       |                |
|             |              | C/s of T Beam Steam Diagram Steess Diagram                        |       |                |
|             |              | C/s of T Beam Steam Diagram Steess Diagram                        |       |                |
|             |              |                                                                   |       |                |
|             |              |                                                                   |       |                |
|             |              |                                                                   |       |                |
|             |              |                                                                   |       |                |
|             |              |                                                                   |       |                |
|             |              |                                                                   |       |                |
|             |              |                                                                   |       |                |
|             |              |                                                                   |       |                |