

MODEL ANSWER

SUMMER-18 EXAMINATION

Subject Code:

17440

Subject Title: ANALOG COMMUNICATION

- **Important Instructions to examiners:**
 - 1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme.
 - 2) The model answer and the answer written by candidate may vary but the examiner may try to assess the understanding level of the candidate.
 - 3) The language errors such as grammatical, spelling errors should not be given more Importance (Not applicable for subject English and Communication Skills.
 - 4) While assessing figures, examiner may give credit for principal components indicated in the figure. The figures drawn by candidate and model answer may vary. The examiner may give credit for any equivalent figure drawn.
 - 5) Credits may be given step wise for numerical problems. In some cases, the assumed constant values may vary and there may be some difference in the candidate's answers and model answer.
 - 6) In case of some questions credit may be given by judgement on part of examiner of relevant answer based on candidate's understanding.
 - 7) For programming language papers, credit may be given to any other program based on equivalent concept.

Q. No.	Sub Q.N.	Answer	Marking Scheme
Q.1	a)	Attempt any <u>SIX</u> of the following:	12 Marks
	i)	State and explain concept of bandwidth.	2 Marks
	Ans:	 Bandwidth is defined as a range within a band of frequencies or wavelengths For digital devices, the bandwidth is usually expressed in bits per second (bps) or bytes per second. For analog devices, the bandwidth is expressed in cycles per second, or Hertz (Hz) Suppose the frequency range is f1 to f2, then B.W= f2 - f1 Note:- Any other relevant explanation should be considered. 	01 mark definition, 01 mark Concept.
	ii)	Define pulse modulation. State its types.	2 Marks
	Ans:	 Pulse Modulation:-It is defined as the modulation technique in which the various parameters of carrier signal which is the train of periodic rectangular pulses changes in accordance with the instantaneous value of modulating signal. Types of Pulse Modulation:- Analog Pulse modulation (¹/₂ M)• PAM, PWM, PPM, Digital Pulse Modulation (¹/₂ M)• PCM, DM, ADM. 	01 mark definition, 01 mark types
	iii)	Give the expression for modulation index for AM and FM.	2 Marks

Ans:	1.Modulation index for AM	01 mark
	$m_a = Vm / Vc$	each
	Where Vm is modulating voltage	
	Vc is the carrier voltage	
	2.Modulation index for FM	
	$m_f = \delta / fm$	
	where δ is the deviation	
	fm is the modulating frequency	
iv)	Define selectivity and sensitivity of AM Receiver.	2 Marks
Ans:	Selectivity :-It needs to accept signals of the wanted frequency and reject other unwanted frequencies.	01 mark each
	Sensitivity :-The sensitivity of a radio receiver is its ability to amplify weak signals. It is often defined in terms of the voltage that must be applied to the receiver input terminals to give a standard output power, measured at the output terminals.	
v)	Define the term baluns and explain where is it used?	2 Marks
Ans:	A type of electrical transformer used to connect an unbalanced circuit to a balanced oneORA balun is a type of transformer: it's used to convert an unbalanced signal to a balanced one or vice versa. Application :- In audio applications, baluns convert between high-impedance unbalanced and low impedance balanced lines.	01 mark definition , 01 mark application
vi)	Define electromagnetic wave and polarization.	2 Marks
Ans:	Electromagnetic wave:-An electromagnetic wave such as light consists of a coupled oscillating electric field and magnetic field which are always perpendicular; by convention Polarization:-polarization" of electromagnetic waves refers to the direction of the electric field.	01 mark each
vii)	Define fading? List the causes.	2 Marks
Ans:	 The fluctuation in signal strength at a receiver, which is mainly due to the interference of two waves which left the same source but arrived at the destination by different paths, is known as fading. Fading can be caused due to natural weather disturbances, such as rainfall, snow, fog, hail and extremely cold air over a warm earth. 	01 mark fo defination 01 mark causes

b)	Attempt a	ny <u>TWO</u> of the following	:		8 Marks
i)	-	y four different frequen	cy bands and give their	two applications of	4 Marks
Ans:	each.				A mar form
Alls:	Sr.no	Frequency Band	Application		Any four 01 mark
	1	$V_F - 30 H_Z - 3KH_Z$	Voice or Audio commu Telephone lines.	unication used in	each
	2	V_{LF} 3KH _Z – 30KH _Z	Submarine, Military co	ommunication	
	3	LF 30KHz - 300KHz	Marine, Navigation.		
	4	MF 300KHz - 3MHz	MW band of AM R _x		
	5	HF 3MHz-30MHz	SW band of AM R _x		
	6	VHF 30MHz-300 KHz	T.V & FM Radio broad	dcast	
	7	UHF 300MHz- 3GHz	UHF TV channel, Mob	oile phone	
	8	SHF-3GHz-30GHz	Satellite and Radar		
	9	EHF 30 GH _Z - 300 GH _Z	Satellite and Radar		
ii)	Deceribe r	nicrowave antenna with s	witchle diagram		4 Marks
Ans:		nicrowave antennas: i) Dish a	0		List
	frequer 3. All the additio 4. There a	uide is a hollow metallic pipe ncies. energy travelling forward in n of the horn. are three configuration s of m idal iii) Conical	the waveguide is radiated v	very effectively with the	one diagra of horn antenna – mark, explanatio 2 marks
	\geq				

	iii) Ans:	As shown in fig. i) The Sectorial horn flares out only in one direction. ii) Pyramidal horn flares out in both directions and has the shape of truncated pyramid. iii) The Conical horn is the termination of a circular waveguide. • The ratio of L/λ decides the beam width and the gain of the antenna. • There are two types of Horn antenna a) Cass- horn antenna b) Hog Horn antenna b) Hog Horn antenna Explain skip zone and skip distance with neat diagram. Skip distance: -Skip distance is defined as the shortest distance from a transmitter, measured along the surface of earth at which a sky wav of fixed frequency returns back to the earth. Skip distance: -Skip Distance (c) Excape Wave Skip zone: skip zone where signal is not detectable	4 Marks Definition 01 mark each ,02 marks diagram
Q 2		Attempt any <u>FOUR</u> of the following:	16 Marks
	a)	Describe with respect to antenna (i) radiation pattern (ii) directive gain (iii) power gam (iv) polarization	4 Marks
	Ans:	 (i) Radiation pattern:-A graph or diagram which tells us about the manner in which an antenna radiates more power in different directions is known as the radiation patteren of antenna. (ii) Directive gain:- Directive gain is defined as the ratio of the power desity in a particular direction of one antenna to the power density that would be radiated byisotropic antenna in the same direction. (iii)Power gain:-The power gain of an antenna is defined as the ratio of power fed to an isotropic antenna to the power fed to a directional antenna, to develop the same field strength at the same direction. 	01 mark each

	(iv)Polarization:-Polarization is defined as the direction of the electric vector in the electromagnetic wave radiated by the transmitting antenna.	
b)	Explain reactance modulator for FM generation.	4 Marks
Ans:	Reactance Modulator. Botheredmice From output: Row of the second of th	02 marks diagram, 02 marks explanation
c)	Describe the block diagram of basic communication system.	4 Marks
Ans:		Diagram 02 marks, explanation 02 marks

(ISO/IEC - 27001 - 2005 Certified)

Ans:	Modulation index:- It is the ratio of modulating voltage to the carrier voltage.	01 mark definition ,
f)	Define modulation index. Derive the expression - M ₌ $\frac{Vmax-Vmin}{Vmax+Vmin}$ using AM waveform.	4 Marks
	 5) Dielectric loss:- This loss is proportional to the voltage across the dielectric and hence inversely proportional to the characteristic impedance for any power transmitted. It again increases with frequency because a gradually worsening properties with increasing, frequency for any given dielectric medium. 4) Corona Effect:- Corona is a luminance discharge that occurs between the two conductors of a transmission line, when the difference of proportional between them exceeds the break down voltage of the dielectric insulator. Generally when corona occurs, the transmission line is destroyed. 	
	 1)Radiation Losses:- Its occurs when a transmission line may act as an antenna when the separation of the conductor is an appreciable fraction of a wave length. This loss increase with frequency for any given transmission line eventually ending that lines usefulness at some high frequency. This loss is more in parallel wire lines than to coaxial lines. 2)Conductor Or I² R loss:- This loss is proportional to the current and their fore inversely proportional to characteristics impedance. It also increases with frequency, this time because of the skin effect. 3) Dielectric loss:- 	
Ans:	Losses in Transmission Line:- There are three ways in which energy, applied to a transmission may desperate before reaching the load. They are	01 mark for each loss explanation
e)	Describe different types of losses that affect the transmission line signal.	4 Marks
	PWM Pulsus E V Pulsus E E Pulsus E	

		Amplitude madulated signal: Vign V	diagram , 02 marks derivation.
Q. 3	a)	Attempt any <u>FOUR</u> of the following:What will be effect of total AM transmitter power if modulation index changes	16 Marks 4 Marks
		from 0.5 to 1, for .500 watt carrier power? Conclude the result.	
	Ans:	$P_{t} = P_{c} (1 + m^{2}/2)$ $P_{c} = 500W$ $m=0.5$ $P_{t 1} = 500(1 + (0.5)^{2}/2)$ $= 562.5W$ $P_{t 2} = 500(1 + (1)^{2}/2)$ $= 750W$	Calculation: 3 marks, Result:1 mark
		if modulation index changes from 0.5 to 1, for \cdot 500 watt carrier power,Total AM transmitter power is increase .	
	b) Ans:	State the need of AGC. List the different types of AGC with neat graph. Need of AGC:-	4 Marks Need of

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

e)	Distinguish between res	onant and non-resonant ante	nnas.	4 Mark
Ans:				1 mark
	Parameter	Resonant antenna	Non resonant antenna	each po
	i) Definition	It is transmission Line of	It is transmission line	
		length equal to multiples	whose length is not a	
		of $\lambda/2$ and open at both	multiple of $\lambda/2$	
		and.		
	ii) Reflection Pattern	Standing wave present	Standing wave not	
			present	
	iii) Radiation Pattern	the direction of a graph and age	and on a stage of agency format	
		$\cap \cap$	\bigcap	
		(\times)	0	
			20	
		provident sold for this materiales.		
		in takes they were at the income to be		
	iv) Applications	i) Portable receiver ii)	i) TV broadcasting ii)	
	iv) ripplications	Direction finding	wave propagation	
		equipment	wave propagation	
		equipment		
	$ \begin{array}{c} U_{FM} = 10 \sin (6 \ x \ 10^{6} \pm 5 \\ Calculate \\ (i) Fe \\ (ii) Fm \end{array} $	sin 1250 t)		
	Calculate	sin 1250 t)		
Ans:	Calculate (i) Fe (ii) Fm (iii)δ (iv)mf Given equation:			1mark
Ans:	Calculate (i) Fe (ii) Fm (iii)δ (iv)mf 			
Ans:	Calculate (i) Fe (ii) Fm (iii) δ (iv)m _f Given equation: U _{FM} = 10 sin (6 x 10 ⁶ ± 5			for cor
Ans:	Calculate (i) Fe (ii) Fm (iii)δ (iv)mf Given equation:			for cor
Ans:	Calculate (i) Fe (ii) Fm (iii) δ (iv)mf Given equation: U _{FM} = 10 sin (6 x 10 ⁶ ± 5 Now consider equation,	sin 1250 t)		for cor
Ans:	Calculate(i) Fe(ii) Fm(iii) δ (iv)mfGiven equation:UFM = 10 sin (6 x 10 ⁶ ± 5)Now consider equation,EFM = A sin (ω ct +mf sin	sin 1250 t) n ωm t)		for cor
Ans:	Calculate(i) Fe(ii) Fm(iii) δ (iv)mfGiven equation:UFM = 10 sin (6 x 10 ⁶ ± 5Now consider equation,EFM = A sin (ω ct +mf sinCompare this equation with the second se	sin 1250 t) n ω m t) ith the given equation mf = 5		for cor
Ans:	Calculate(i) Fe(ii) Fm(iii) δ (iv)mfGiven equation:UFM = 10 sin (6 x 10 ⁶ ± 5)Now consider equation,EFM = A sin (ω ct +mf sinCompare this equation with the equation with the equation is equation.	sin 1250 t) n ω m t) ith the given equation mf = 5		for cor
Ans:	Calculate(i) Fe(ii) Fm(iii) δ (iv)mfGiven equation:UFM = 10 sin (6 x 10 ⁶ ± 5)Now consider equation,EFM = A sin (ω ct +mf sinCompare this equation with1. Carrier frequency: ω c = 2π fc = 6 x 10 ⁶	sin 1250 t) n ω m t) ith the given equation mf = 5		for cor
Ans:	Calculate(i) Fe(ii) Fm(iii) δ (iv)mfGiven equation:UFM = 10 sin (6 x 10 ⁶ ± 5)Now consider equation,EFM = A sin (ω ct +mf sinCompare this equation with the equation is t	sin 1250 t) n ω m t) ith the given equation mf = 5		for cor
Ans:	Calculate (i) Fe (ii) Fm (iii) δ (iv)mf Given equation: UFM = 10 sin (6 x 10 ⁶ ± 5 Now consider equation, EFM = A sin (ω ct +mf sin Compare this equation wit 1. Carrier frequency: ω c = 2π fc = 6 x 10 ⁶ fc = 6 x 10 ⁶ / 2π =0.955MHz	sin 1250 t) n ω m t) ith the given equation mf = 5		for cor
Ans:	Calculate(i) Fe(ii) Fm(iii) δ (iv)mfGiven equation:UFM = 10 sin (6 x 10 ⁶ ± 5)Now consider equation,EFM = A sin (ω ct +mf sinCompare this equation with the equation is t	sin 1250 t) n ω m t) ith the given equation mf = 5		for cor
Ans:	Calculate (i) Fe (ii) Fm (iii) δ (iv)mf Given equation: UFM = 10 sin (6 x 10 ⁶ ± 5 Now consider equation, EFM = A sin (ω ct +mf sin Compare this equation wit 1. Carrier frequency: ω c = 2π fc = 6 x 10 ⁶ fc = 6 x 10 ⁶ / 2π =0.955MHz	sin 1250 t) n ω m t) ith the given equation mf = 5 6 x 10 ⁶ rad/sec		for cor
Ans:	Calculate (i) Fe (ii) Fm (iii) δ (iv)mr Given equation: UFM = 10 sin (6 x 10 ⁶ ± 5 Now consider equation, EFM = A sin (ω ct +mf sin Compare this equation wit 1. Carrier frequency: ω c = 2π fc =6 x 10 ⁶ fc = 6 x 10 ⁶ / 2π =0.955 MHz fc = 0.955 MHz	sin 1250 t) n ω m t) ith the given equation mf = 5 6 x 10 ⁶ rad/sec		for cor
Ans:	Calculate (i) Fe (ii) Fm (iii) δ (iv)mfGiven equation: UFM = 10 sin (6 x 10 ⁶ ± 5)Now consider equation,EFM = A sin (ω ct +mf sin Compare this equation with 1. Carrier frequency: ω c = 2π fc =6 x 10 ⁶ fc = 6 x 10 ⁶ / 2π =0.955 MHz fc = 0.955 MHz2. Modulating frequency:	sin 1250 t) n ω m t) ith the given equation mf = 5 6 x 10 ⁶ rad/sec		1mark for corr answer

		3. Maximum deviation: $mf = \delta/fm$ $\delta = mf x fm$ $= 5 x \omega m / 2 \pi$ $= 5 x 1250/2 \pi$ = 995 Hz $\delta = 995 Hz$ 4. Modulating index: $mf = 5$	
Q. 4		Attempt any <u>FOUR</u> of the following:	16 Marks
	a)	Explain effect of 'm' on AM with neat waveforms.	4 Marks
	Ans:	i)m<1 If m < 1 or if the percentage of modulation is less than 100% the this type of modulation is known as under modulation • The amplitude of modulating signal less than carrier amplitude, no distortion will occur. If the format of the percentage of modulation • The amplitude of modulating signal less than carrier amplitude, no distortion will occur. If the format of the percentage of modulation • The amplitude of modulating signal less than carrier amplitude, no distortion will occur. If the format of the percentage of the percent	Effect – 2.5 marks , Waveform- 1.5 marks

ii) Carrier power (Pc): $Pc = \frac{Er^2 carr}{R}$ $=\frac{(E\sqrt{2})^2}{R}$ $Pc = \frac{E^2 c}{2R}$ (1 mark) Where, Ec = Peak carrier amplitude iii) Power in sidebands: The power in USB and LSB is same as, $P_{USB} = P_{LSB} = \frac{Er^2SB}{R}$ Peak amplitude of sideband = $\frac{\text{mEc}}{2}$ $P_{\rm USB} = P_{\rm LSB} = \frac{(m {\rm Er} 2\sqrt{2})^2}{R}$ л. $=\frac{m^2 E^2 c}{8R}$ $P_{\text{USB}} = P_{\text{LSB}} = \frac{m^2}{4} X \frac{E^2 c}{2R}$ $\frac{E^2 c}{2R} = Pc$ $P_{USB} = P_{LSB} = \frac{m^2}{4} Pc$ л. (1 mark) iv) Total power in AM : The total power in AM is, $Pt = Pc + P_{USB} + P_{LSB}$ $= Pc + \frac{m^2}{4}Pc + \frac{m^2}{4}Pc$ $Pt = (1 + \frac{m^2}{2}) Pc$ (1 mark) c) How quarter wave transformer is used for impedance matching. 4 Marks

	 from the sun will ionize the upper layer of the atmosphere. Due to ionization these part of the atmosphere becom3es electrically charged. In this layer free electrons and positive and negative ions are present and hence this layer of ions is known as ionosphere. There are four layers: D, E, F1 and F2. 1. D Layer:- It is lowest layer at an height of 70 kms with thickness 10 km. The ionization density is maximum at noon and disappears at night. 2. E Layer:- It is the next layer at an height of 100 kms with thickness 25 km. The layer disappears at night due to recombination of ions and molecules. 3. F1Layer:- It is the next layer at an height of 180 kms with thickness 20 km. It provides more absorption for HF waves. 4. F2Layer:- It is the next layer at an height of 250-400 kms with thickness 200 km. It is having highest electron density of all layers, due to this F2 layer remains present at night time 	
e)	Dish antenna is parabolic in shape and has meshy structure. Give reasons.	4 Mark
Ans:	 A Practical reflector employing the properties of the parabola will be a three dimensional bowl-shaped surface, obtained by revolving the parabola about the axis AB. The resulting geometric surface is the paraboloid, often called a parabolic 	Correct explana 2 mark each
	reflector or microwave dish.	
	• When it is used for reception exactly the same behaviour is manifested, so that this is also a high gain receiving directional antenna reflector.	
	• The principle of reciprocity which states that the properties of an antenna are independent of whether it is used for transmission or reception.	
	• The reflector is directional for reception because only rays arriving from BA direction i.e. normal to the directrix are brought together at the focus.	
	• On the other hand, rays from any other direction are canceled at that point, again owing to path length differences.	
	• The reflector provides a high gain because like the mirror of a reflecting telescope, it collects radiation from a large area and concentrates it all at the focal point.	
	Why dish antenna having meshy structure:	
	• While installing the dish antenna look angles are taken into consideration.	
	• Once look angle adjusted installation should not be disturbed.	

	• The parabola is a plane curve defined as the locus of a point which moves so that its distance from another point (called the focus) plus its distance from a straight line (directrix) is constant. These geometric properties yield an excellent microwave or light reflector.	
f)	Define stub. Explain single and double stub in brief with neat sketch.	4 Marks
Ans:	 Stub:- Stub is the piece of short circuited transmission line which is used to tune out the reactance of the load when connected across the transmission line as close as possible Single stub:- Stub is the piece of short circuited TL which is used to tune out the reactance of the load when connected across the TL as close as possible. Z_A = Z₀ Z₀ Z₀ Z_R Z₀ Z₀ Z_R Z₀ Z₀ Z₀ Z_R Z₀ Z₁ Z₂ Z₃ Z₄ Z₄	Define:2 marks, Single stub:1 mark, Double stub:2 marks
	 as that of the main line. The main element of this transmission line is a short circuited section of line whose open end is connected to the main line at a particular distance from the load end. Where the input conductance at that point is equal to the characteristic conductance of the line, and the stub length is adjusted to provide a susceptance equal in value but opposite in sign, to the input susceptance of the main line at 	

	 Explanation:- FM signal which is to be demodulated is applied to input of PLL.VCO output must be identical to input signal if PLL is to remain locked. As PLL is locked, VCO starts tracking the instantaneous frequency in the FM input signal The error voltage produced at the output of the amplifier is proportional to the deviation of the input frequency from the centre frequency FM. Thus AC component of the error voltage represents the modulating signal. Thus at the error amplifier output we get demodulated FM output. 	
b)	With the help of neat diagram, explain the working of phase discriminator.	4 Marks
Ans:	 Explanation:- This discriminator is also known as the center tuned discriminator or the Foster Seeley discriminator after its inventors. It is possible to obtain the same S- Shape response curve from a circuit in which the primary & the secondary winding are both tuned to the center frequency of the incoming signal. This is desirable because it greatly simplifies alignment & also because the process yields far better linearity. Thus although the individual component voltage will be the same at the diode input at all frequencies, the vector sums will differ with the phase difference between primary & secondary windings. The result will be that the individual output voltage will be equal only at f. At all other frequencies the output of one diode will be greater than that of the other. Which diode has the larger output will depend entirely on whether fm is above or below fc. As for the output arrangements, it will be positive or negative according to the input frequency. As required the magnitude of the output will depend on the deviation of the input frequency from fc. If explanation is given in 3 cases fin = fc, fin > fc + Δf and fin<fc- be="" given="" li="" marks<="" should="" δf=""> </fc->	Diagram :2 marks, Explanation :2 marks

c)	The parameters of transmission line are R = 50 Ω km, L = 1.6 mH/km, C = 0.2 μ f/km, G = 2.25 μ U/km. Calculate characteristics impedance and propagation constant.	4 Marks
Ans:	$R = 50 \mathcal{N} / km$	characterist
	L = 1.6 mH/km	cs impedance: 2 marks, Propagation
	$C = 0.2 \mu F / Km$	
	G = 2.25 µ ~ / km	constant: 2 marks.
	Assume f= 800Hz	
	W= 2TTf= 2TT (800)= 5024 mad/sec	
	Series impedance	
	7 R+ iWL	
	$= 50 + j(5024)(1.6 \times 10^{3})$	
	= 50 + j 8.03	
	= 50.64 19°	
	Shunt admittance Y=G+jWC	
	$= 2.25 \times 10^{6} + j(5024)(0.2 \times 10^{6})$ $3.25 \times 10^{6} + j! \cdot 0048 \times 10^{3}$	
	0.00000225 + j 0.0010048 -3.00.07	
	characteristic impedance Zo = Jy = J1x10-32 89.8	
	225 2-40-4	
	Propagation Constant	
	$\gamma = \int Z \times Y$	
	$= \int (50.64 L9) (1 \times 10^3 289.8)$ = 0.225 L49.4	
	= 0.225 L49.4	
	Note: Value of characteristics impedance & propagation constant will change	

d)	The operating frequency of pyramidal hom antenna is 10 GHz. The hom antenna is 10 cm high and 12 cm wide. Calculate (i) Beam width of antenna (ii) Power gain of antenna if k = 0.6	4 Marks
Ans:	(ii) Power gain of antenna if k = 0.6) Given $f = 106 \text{ Hz}$ L = 10 cm W = 12 cm N = 10 x 12 = 120 cm A = 10 x 12 = 120 cm $A = \frac{C}{b} = \frac{3 \times 10^8}{10 \times 10^9}$ $Power Gain = \frac{4}{11} \frac{\text{T}}{(0.03)^{-1}} = \frac{16755}{16755}$ $Gain in dB = 10 \log (16755)$ $= \frac{A 2 \cdot 24}{0 \cdot 10^{-1}}$ Beam Width $-\frac{K\lambda}{L} = \frac{0.6 \times 0.03}{0.18}$ The Beam Width can be different in two directions. Beam Width $= \frac{K\lambda}{W} = \frac{0.640.03}{0.12} = 0.150$ Marks can be awarded to any answer (0.18 or 0.15) for beam width.	Beam width:2 marks, Power gain 2 marks.
e)	Explain with neat block diagram AM superheterodyne receiver.	4 Marks
Ans:	Receiving Antenna f_s F_s f	block diagram:2 marks, Explanatio : 2 marks.

	Receiving antenna- AM receiver operates in the frequency range of 540 KHz to 1640 KHz.	
	RF stage- Selects wanted signal and rejects all other signals and thus reduces the	
	effect of noise. Mixer- Receives signal from RF stage Fs and the local oscillator Fo, and are mixed to produce intermediate frequency signal IF which is given as:	
	IF=Fo-Fs	
	Ganged Tuning- To maintain a constant difference between the local oscillator and	
	RF signal frequency, gang capacitors are used.	
	IF stage- The IF signal is amplified by the IF amplifier with enough gain.	
	Detector -Amplified signal is detected by the detector to get original modulating signal. The detector also provides control signals to control the gain of IF and RF stage called as AGC.	
	AGC- Automatic gain control controls the gain of RF and IF amplifiers to maintain a constant output level at the speaker even though the signal strength at the antenna varies.	
f)	Derive relation between reflection coefficient (k) and VSWR (s).	4 Marks
Ans:	$V \max = V_i + V_r $	4 marks
	$V \min = V_i - V_r $	
	Where-	
	$V_i = r.m.s.$ value of incident voltage	
	$V_r = r.m.s.$ value of reflected voltage	
	By definition:	
	$VSWR = \left \frac{V_{max}}{V_{min}} \right = \frac{ V_i + V_r }{ V_i - V_r } = \frac{V_i \left(1 + \frac{V_r}{V_i} \right)}{V_i \left(1 - \frac{V_r}{V_i} \right)} = \frac{1 + k }{1 - k }$	
	Applying Componendo and Dividendo,	
	$\frac{VSWR-1}{VSWR+1} = \frac{1+ k -1- k }{1+ k +1- k } = \frac{2 k }{2} = k $	
	Therefore, $ k = \frac{VSWR - 1}{VSWR + 1} = \left \frac{S - 1}{S + 1}\right $	
	OR	

 $K = \frac{Vr}{V_i} - 1$ $V_{max} = V_i^* + V_r - 2$ $V_{min} = V_i - Vr - 3$ $V_{SWR} = \frac{V_{max}}{V_{min}} - 4$ Put value of $2 \notin 3$ in 4 $V_{SWR} = \frac{V_i + V_r}{V_i - V_r}$ $= \frac{1 + \frac{V_{T}}{V_{in}}}{1 - \frac{V_{T}}{V_{in}}}$ $V_{SWR} = \frac{1 + K}{1 - K}$ Q.6 Attempt any FOUR of the following: 16 Marks Explain with block diagram of Armstrong method of FM generation. 4 Marks a) Ans: block diagram:2 Crystal marks, oscillator High fc and my **Explanation:** FM wave Carrier Medium f. Low fc and mt High fe and m (very fc low and m) low m_f 2 marks only Combining Buffer Mixer network Sidebands only First group Second group Class C of of 90° phase Balanced Crystal power amplifier multipliers multipliers shifter modulator oscillator Carrier Equalized audio at 90° Audio AF in O equalizer **Explanation:-**The crystal oscillator generates the carrier at low frequency typically at 1 • MHz this is applied to the combining network and a 900 phase shifter. The modulating signal is passed through an audio equalizer to boost the low modulating frequencies for the reason discussed earlier. The modulating signal is than applied to a balanced modulator. The balanced modulator produces two sidebands such that their resultant is 900 phase shifted with respect to the un-modulated carrier The un-modulated carrier and 900 shifted sidebands are added in the combining network.

Ans:	Loop antenna: -The single turn coil carrying RF current through it having length less	Definition:1
f)	Explain loop antenna with neat sketch. Draw radiation pattern. State its advantages and applications.	4 Marks
Ans:	 Frequency Mixer:- The function of frequency mixer is to heterodyne signal frequency fs and local oscillator frequency fo. At the output, it produces the difference frequency known as intermediate frequency fi. (practical value of IF is 10.7MHz) for FM and 455KH_z for FM Local oscillator:- Since FM broadcast operates in VHF and UHF band, a separate local oscillator is used in FM receiver .The local oscillator frequency fo is then mixed with incoming frequency to give intermediate frequency. 	Mixer:2 marks, loca oscillator:2 arks
e)	Describe the functions of mixer and local oscillator in radio receiver	4 Marks
e)	There are two important functions of RF amplifier: 1) To increase the strength of weak RF signal. 2) To reject image frequency signal. In FM broadcast the channel bandwidth is large as compared to AM broadcast. Hence the RF amplifier must be design to handle large bandwidth. Frequency Mixer:- The function of frequency mixer is to heterodyne signal frequency fs and local oscillator frequency fo. At the output, it produces the difference frequency known as intermediate frequency f. The intermediate frequency used in FM receiver is higher than that in AM receiver. Its value is 12MHz (practical value of IF is 10.7MHz). Local oscillator:- Since FM broadcast operates in VHF and UHF band, a separate local oscillator is used in FM receiver The local oscillator frequency fo is kept smaller than the signal frequency fs by an amount equal to the intermediate frequency fi (fi = fs-fo). IF amplifier:- Two or more stages of IF amplifier are used to provide large gain to the receiver. This increases the sensitivity of a receiver. If amplifier should be designed to handle large bandwidth. Amplitude limiter:- The function of amplitude limiter is to remove all amplitude variation of FM carrier voltage that may occur due to atmospheric disturbances. Use of amplitude limiter makes the system less noisy. FM Discriminator or detector:- It separates modulating signal from frequency modulated carrier signal. Thus it produces audio signal at its output. Audio frequency voltage and power amplifier:- Audio amplifier increases voltage and power level of audio signal to a suitable level. in FM broadcast, the maximum modulating frequency is 15 kHz. Hence the audio amplifier must have large bandwidth.	4 Marks

