

<u>Model Answer</u>

Subject Name: Chemical Process Technology

Subject Code:

17427

Important Instructions to examiners:

- 1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme.
- 2) The model answer and the answer written by candidate may vary but the examiner may try to assess the understanding level of the candidate.
- 3) The language errors such as grammatical, spelling errors should not be given more Importance (Not applicable for subject English and Communication Skills.
- 4) While assessing figures, examiner may give credit for principal components indicated in the figure. The figures drawn by candidate and model answer may vary. The examiner may give credit for any equivalent figure drawn.
- 5) Credits may be given step wise for numerical problems. In some cases, the assumed constant values may vary and there may be some difference in the candidate's answers and model answer.
- 6) In case of some questions credit may be given by judgement on part of examiner of relevant answer based on candidate's understanding.
- 7) For programming language papers, credit may be given to any other program based on equivalent concept.

Q. No	Su b	An	swer	Marking Scheme
•	Q. N.			
1	Α	Attempt any six		12
	а	Comparison between addition and Condens	sation polymerization	1 mark
		Addition polymerization	Condensation polymerization	each for
		In this the monomer molecules simply add	In this a new bond is formed between the	any two
		together to form chains under suitable	monomers by elimination of small	difference
		conditions of temperature and pressure and	molecules like water under suitable	S
		initiator	conditions of temperature and pressure	
		This type of polymerization can only occur	The reaction by which this polymerization	
		when monomer molecule is unsaturated	takes place is condensation reaction	
		Polymers formed by addition	Condensation polymerization is used to	
		polymerization are thermoplastics.	form simple hydrocarbons	
		Ex. Polyethylene is produces by the	ex. Production of phenol formaldehyde	
		addition polymerization of ethylene	from phenol and formaldehyde monomers	
		monomers.	with condensation of water	

Model Answer

Subject Name: Chemical Process Technology

b	Uses of paper	1⁄2 mark
	1. Newspaper	each for
	2. Books and magazine	any four
	3. Currency printing	
	4. Packaging	
	5. Cleaning	
	6. Decorative	
c	Raw material for Paper	2
	• Babmoo	
	Agricultural residue	
	• Bagasse,	
	• Cereal straw	
	• Reeds	
	Esparto grass	
	• Jute	
	• Flax	
	• Sisal	
	• Softwood (spruce, pine, fir, larch, aspen, eucalyptus)	
d	Uses of phenol	¹ ∕₂ mark
	for production of	each for
	• formaldehyde	any four
	• epoxy resins	
	• herbicides,	
	• insecticide	
	In pharmaceutical industry	
e	Saponification value	1
	It is the no. of milligrams of KOH required to saponify one gram of an oil or fat.	

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous) (ISO/IEC - 27001 - 2013 Certified)

SUMMER-2018 EXAMINATION

Model Answer

Subject Name: Chemical Process Technology

		Iodine value		
		Iodine value is the no. Of grams of iodine absort	bed by 100 grams of oil or fat for its complete	1
		saturation.		1
	f	Reaction for manufacturing of Viscos Rayon		2
		$\begin{bmatrix} C_6H_7O_2(OH)_3NaOH]_n + nCS_2 \rightarrow \begin{bmatrix} O\\ OC_6H_9O_4\\ C=S+ nH_2O \end{bmatrix} + nH_2SO_4 \rightarrow \begin{bmatrix} O\\ +nH_2SO_4 \end{bmatrix}$	$^{7}O_{2}(OH)_{3}NaOH]_{n}$ Hi cellulose $^{OC_{6}H_{9}O_{4}}$ +nH ₂ O SNa n 1 (C ₆ H ₁₀ O ₅] _n + nCS ₂ +nNaHSO ₄ Viscose fibre	
	g	Difference between paint and varnish		1 mark
	g	Difference between paint and varnish Paint	Varnish	
	g	-	Varnish Varnish is a homogenous colloidal	each for
	g	Paint		each for
	g	Paint Paint is the mechanical dispersion mixture	Varnish is a homogenous colloidal	each for
	g	Paint Paint is the mechanical dispersion mixture	Varnish is a homogenous colloidal dispersion solution of resin in oils or	each for
	g	Paint Paint is the mechanical dispersion mixture of one or more pigments in a vehicle.	Varnish is a homogenous colloidal dispersion solution of resin in oils or thinner or both.	each for
	g	Paint Paint is the mechanical dispersion mixture of one or more pigments in a vehicle. A paint contains pigment.	Varnish is a homogenous colloidal dispersion solution of resin in oils or thinner or both. Varnishes do not Contain Pigments.	1 mark each for any two
	g	Paint Paint is the mechanical dispersion mixture of one or more pigments in a vehicle. A paint contains pigment. Paint Produce an opaque film.	Varnish is a homogenous colloidal dispersion solution of resin in oils or thinner or both. Varnishes do not Contain Pigments. Varnish produces transparent film.	each for
1	g	Paint Paint is the mechanical dispersion mixture of one or more pigments in a vehicle. A paint contains pigment. Paint Produce an opaque film. In paints pigments are dispersed in drying	Varnish is a homogenous colloidal dispersion solution of resin in oils or thinner or both. Varnishes do not Contain Pigments. Varnish produces transparent film. In varnishes resins are dispersed in oils	each for
1		Paint Paint is the mechanical dispersion mixture of one or more pigments in a vehicle. A paint contains pigment. Paint Produce an opaque film. In paints pigments are dispersed in drying oils.	Varnish is a homogenous colloidal dispersion solution of resin in oils or thinner or both. Varnishes do not Contain Pigments. Varnish produces transparent film. In varnishes resins are dispersed in oils	each for any two 8
1	B	Paint Paint is the mechanical dispersion mixture of one or more pigments in a vehicle. A paint contains pigment. Paint Produce an opaque film. In paints pigments are dispersed in drying oils. Attempt any two	Varnish is a homogenous colloidal dispersion solution of resin in oils or thinner or both. Varnishes do not Contain Pigments. Varnish produces transparent film. In varnishes resins are dispersed in oils or spirits.	each for any two 8 1 mark
1	B	Paint Paint is the mechanical dispersion mixture of one or more pigments in a vehicle. A paint contains pigment. Paint Produce an opaque film. In paints pigments are dispersed in drying oils. Attempt any two Constituents of paint	Varnish is a homogenous colloidal dispersion solution of resin in oils or thinner or both. Varnishes do not Contain Pigments. Varnish produces transparent film. In varnishes resins are dispersed in oils or spirits.	each for any two 8 1 mark

Model Answer

Subject Name: Chemical Process Technology

	Thinners or solvent: - It is alcohols or turpentine. is used to dissolve polymers in paint and to disperse pigments (emulsion formation). It adjust viscosity, form thin film.	
	Plasticizer: - These are polymers. Used to impart elasticity to paint.	
b	Manufacturing process of acetic acid from acetaldehyde	4
	The continuous oxidation of CH_3CHO in liq. phase is carried out by using air or O_2 in	
	presence of manganous acetate. The reaction mix containing CH3CHO diluted with crude	
	acid & manganous acetate solution is circulated upward through oxidation tower. Reaction	
	condition when air is used 55° C- 65° C & 5 atm. Press and when O ₂ used then temp 700c-800c	
	and press sufficient to keep the acetaldehyde in liquid state. The reaction mix is drawn off	
	from top of oxidation tower and distilled continuously in three distillation columns. The crude	
	acetic acid is fed to the top of distillation column and other volatile components are	
	withdrawn as overhead and residue containing manganous acetate is removed at the bottom.	
	Reaction	
	$CH_3CHO + \frac{1}{2}O2 = CH_3COOH$	
c	PFD of DMT manufacturing	4
	p-xylene	
	Methanol Light ends	
	Catalyst Recycle	
	system ion unit	
	5 Crystallizer	

Model Answer

Subject Name: Chemical Process Technology

17427

Model Answer

Subject Name: Chemical Process Technology

	4. Density @25oC = 1.07		properties
	5. Appreciably soluble in water		
	6. Toxic in nature		
d	Lacquers : They are dispersion of plasticizers in solvents	cellulose or other cellulose derivatives, resins and	1
	Constituents of lacquers and their fu	nctions.	
	Constituent	Function	1 mark
	1. Film forming material	Durability, Hardness, adhering capacity,	each for
		water resistance	any three
	2. Extenders	To reduce cost and viscosity	
	3. Solvents	To suspend pigment and to dissolve film	
		forming material.	
	4. Plasticizer	To reduce brittleness and to improve	
		adherence	
	5. Pigments	To give aesthetic- appearance to reflect light	
		etc	
e	Classification of detergents		4
	Anionic Detergents		
	Anionic means a negatively charged me	plecule. In the early days I always remembered this	
	by <u>an</u> ionic (<u>a</u> <u>n</u> egative). The detergence	y of the anionic detergent is vested in the anion. The	
	anion is neutralised with an alkaline or	basic material, to produce full detergency.	
	e.g. linear alkylbenzene sulfonates		
	Cationic Detergents		
	Cation means positively charged. The d	letergency is in the cation, which can be a substantially	
	sized molecule. Strong acids are used, s	such as Hydrochloric Acid to produce the Cl anion as	
	the "neutralising" agent, although in ess	sence, no neutralisation takes place in the	
	manufacturing process.		
	e.g cetyltrimethylammonium bromide		
	Nonionic Detergents		

Model Answer

Subject Name: Chemical Process Technology

		As the name implies, no ionic constituents are present. They are "ionically" inert.	
		e.g Alcohol Ethoxylate	
		Amphoteric Detergents	
		These contain both acidic and basic groups in their molecule, and can act as cationic or	
		anionic detergents, depending on the pH of the solution, or as both cation and anion.	
		e.g Amine oxide	
	f	Oxo Process	4
		Propylene is compressed to 250 atms and cobalt napthenate added to give 0.5-1 % Co in	
		solution. This stream is passed co currently through packed tower containing porous carrier	
		with 2% metallic cobalt deposited. The reaction is highly exothermic & temp. of 170 deg.C is	
		controlled by recycle of a portion of the product streams after cooling.	
		The liquid fraction is mixed with steam at 180 deg.C & low pressure of 20atm.to	
		decompose the Co carbonyl & naphthenate, depositing the Co on porous carrier as the oxide.	
		These CO is dissolved periodically in an acid wash & converted to the naphthenate for reuse.	
		The unconverted synthesis gas from the oxo converter is recompressed & recycled.	
		The crude butyraldehyde can be fractionated for product sale or continuously hydrogenated	
		using fixed bed Ni catalyst,100 atm,H ₂ press., & 150 ⁰ C. The resulting butanols are fed to	
		distillation section comprising several fractionating columns in series. Light & heavy ends as	
		by-product obtained in addition to the purified alcohol.	
3		Attempt any four	16
	a	Production of paper from pulp	4
		Conversion of fibre suspension into paper sheet incorporates three principal steps.	
		i) Forming wet-web :	
		A wet sheet is formed by running 99.5% water-fibre slurry evenly into a moving	
		endless belt of wire cloth at speed of 50 m/min for a fine paper to 500 m/min for	
		newsprint. Water drain by gravity, apart is next removed by a pressure roll and	
		then by suction roll. The screen also has a side wise shaking motion to give better	
		interlocking of fibre on the mat. The water collected in this section of machine is	
		called white water and is reused to obtain maximum recovery of fibre.	
3	a	Attempt any four Production of paper from pulp Conversion of fibre suspension into paper sheet incorporates three principal steps. i) Forming wet-web : A wet sheet is formed by running 99.5% water-fibre slurry evenly into a moving endless belt of wire cloth at speed of 50 m/min for a fine paper to 500 m/min for newsprint. Water drain by gravity , apart is next removed by a pressure roll and then by suction roll. The screen also has a side wise shaking motion to give better interlocking of fibre on the mat. The water collected in this section of machine is	

Model Answer

Subject Name: Chemical Process Technology

Subject Code: 17427

ii) **Pressing the wet sheet** : The wet paper wheet containing about 80% water is fed via felt roll to the press section where water is removed by mild pressure to reduce content to 60-65% water. Bond or water mark, if needed is formed on sheet during pressing. iii) Drying of sheet : The sheet from the press section has sufficient strength to carry its own weight as it passed through smoothing rolls, then a series of steam heated metal cylinders where heat and moisture are transferred to a felting or canvas belt running on top of the paper. As the sheet leaves the east drying roll with 5-6% water, it passes through final series of pressure or calendaring rolls to produce a smooth wellfinished paper. It is wound on large roll and transferred to finishing department where it may be cut, coated and packaged. Phenol by toluene oxidation process 4 b A two-stage air oxidation process is used. In the first stage, fresh plus recycle toluene are mixed with a small quantity of cobalt naphthenate catalyst and charged to the reactor which is a liquid-filled tower through which air is sparged. Cooling tubes are provided to remove the exothermic heat of reaction. The reactor is run at 150°C and 3 atms. Excess air is used, but toluene conversion is limited to 40% to avoid excessive side reactions, These give by-products such as benzaldehyde, benzyl alcohol, benzyl benzoate, CO and CO₂.With conversion of toluene at 40% the ultimate yield of benzoic acid is about 90%. Off-gases from the reactor are vented through a water-cooled condenser to remove water and to allow return of toluene. Liquid from the reactor continuously passes to a distillation column which strips the toluene and other volatile by-products from the acid fraction in the bottoms. Purified benzoic acid is separated by extracting the bottoms with hot water, then crystallizing and filtering the crude benzoic acid. The latter can be recrystallized to meet USP specifications as a market outlet for benzoic acid. To make phenol, the crude acid is melted, mixed with cupric benzoate catalyst, then charged to an air-sparged tower containing cooling tubes and mechanical agitation,. Reactor

Model Answer

Subject Name: Chemical Process Technology

Subject Code: 17427

conditions are 220°C and 13-17 atms. Excess air is again necessary to get a 70-80% conversion of benzoic acid with a yield of 90% phenol. The overall process yield for the two steps is about 80%. Phenol product is obtained by continuously distilling the reactor liquor into a fractionating column where unreacted benzoic acid is returned to the reactor. Non-condensable such as N_2 , O_2 and CO_2 are vented through a condenser along with the condensable fraction phenol-water. Phenol is withdrawn as the bottom layer in a separator. This crude phenol is again fractionated with purified phenol coming off as bottoms and the overhead phenol-water azeotrope sent to another column for splitting. The heavy ends in the benzoic acid oxidation tower are water-extracted to recover phenol and benzoic acid which are then recycled, after concentration, to the second stage oxidation tower. 2 Paint с Tints & thinners Resina Oilt Pigments Platform The weighing assembling, and mixing of the pigments and vehicles takes place on the top

floor. The mixer may be similar to large dough kneader with sigma blades. The batch masses are conveyed to the floor below, where grinding & further mixing takes place. A variety of grinding mills are used.

After mixing, the paint is transferred to the next to the next lower floor, where it is thinned & tinted in agitated tanks, which may hold batches of several thousand litres. The liquid paint is strained into a transfer tank or directly into the hopper of the filling machine on the floor below, centrifuges, screens or press. Filters are used remove non dispersed pigments. The paint is poured into cans or drums, labeled, packed & moved to storage each step being

2

Model Answer

Subject Name: Chemical Process Technology

	completely automatic.	
d	Uses of	1 mark
	Polyethylene: Household utensils, packaging films, bottles, bucket, tubes, cable sheeting	each for
	storage tanks etc.	any one
	Polystyrene: disposable plastic cutlery and dinnerware, CD "jewel" cases, smoke detector	use of
	housings, license plate frames, plastic model assembly kits	each
	Polyester: Textile, fishing nets, filter cloth. Conveyor belt	
	Poly vinyl chloride: Pipes, raincoats, cables, vinyl flooring	
e	Pulp production by sulphate process	4
f	Chip Bin Chips Hot Trentine Imagested Recovery Imagested Residue Imagested Recovery Imagested Recovery	1 mark
	 As a fuel 	each for
	 As a solvent 	any four
	For production of ether	, <u>j</u>
	 Plasticizer 	
	Butyl acrylate	
	• N butyl acetate	

Model Answer

Subject Name: Chemical Process Technology

		• glycols	
4		Attempt any four	12
	a	Cleansing action of soap The dirt on skin or cloth sticks due to greasy matter. When rubbed with soap solution, it is easily washed away. Soap molecule has a polar end (-COO-Na+) and a non polar end (a long carbon chain of 12 to 18 carbons). The polar end is water soluble while the non polar end is oil soluble. Normally oil droplets in contact with water tend to coalesce to form oil layer and aqueous layer. The non polar ends of soap molecules dissolve in the oil droplet leaving the carboxyl ate ends projecting into the surrounding water. Due to the presence of negatively charged carboxylic groups, each of the oil droplets surrounded by an ionic atmosphere. Oil droplets do not coalesce due to the repulsion between similar charges thus stable emulsion of oil in water is formed. In this way soap cleans by emulsifying the fat or grease containing dirt. Water lonic end [polar and hydrophilic]	3
		Hydro carbon chain [non-polar and hydrophobic]	1
	b	Phenol production by Raschig process	4
		The Raschig process has two vapour-phase catalyst stages. Purified benzene is fed to a heater,	
		packed reactor containing ferric chloride & cupric chloride catalyst. Chlorination with HCl-O ₂	
		at 220 [°] C occurs with a short residence time to produce 10-20% conversion of benzene.	
		Fractionation separates unreacted benzene from chlorobenzene & polychlorobenzene.	
		The crude chlorobenzene is scrubbed with phenol, water washed & sent to the second	
		catalytic stage. Here it is hydrolyzed in a tubular high temp furnace with either SiO_2 or	

Model Answer

Subject Name: Chemical Process Technology

	$Ca_3(PO_4)_2$ as the catalyst. Phenol from the hyd	rolyzer is washed with water, then extracted by	
	benzene & finally purified by two stage distilla	ation. HCl vapours from the high temp catalytic	
	hydrolyzer is recycled to the hydrochlorination	stage	
c	Difference between sulphate and sulphite pr	ocess	1 mark for
	Sulphate Process	Sulphite Process	each point
	This process is alkaline in nature due to	This process is acidic in nature due	in both
	use of caustic and sodium carbonate	presence of sulfur dioxide.	processes.
	Cooking chemicals are recovered from	Sulfur dioxide is recovered.	(any four)
	black liquor		
	Pulp produced by the kraft process is	Acidic sulfite processes degrade cellulose	
	stronger than that made by other pulping	more than the kraft process, which leads to	
	processes	weaker fibers.	
	Fiber yield is less.	Fiber yield is more.	
	Comparatively difficult to bleach the	Can be bleached easily.	
	pulp.		
d	Chemical reactions involved in the mfg. of a	lcohol from molasses	
	Invertase		3
	$C_{12}H_{22}O_{11} \ > \ C_{6}H_{12}O_{6} \ + \ C_{6}H_{12}O_{6}$		
	sucrose yeast Glucose fructose		
	zymase		
	$C_6H_{12}O_6 \longrightarrow 2 C_2H_5OH + 2CO_2$		
	Glucose yeast alcohol		
	Chemical reactions involved in the mfg. of a	cetic acid	1
	$CH_3CHO + \frac{1}{2}O2 = CH_3COOH$		
e	Varnish		2
	Varnish is defined as homogeneous colloidal d	spersion solution of natural or synthetic resins	
	in oils or thinner or both.		
	Uses		1 mark
	For the protection of articles against corrosion		each for

<u>Model Answer</u>

Subject Name: Chemical Process Technology

Subject Code:

17427

Model Answer

Subject Name: Chemical Process Technology

Model Answer

Subject Name: Chemical Process Technology

Subject Code: 17427

decomposition of the peroxide during the oxidation step.H2 over nickel catalyst at 1000c in a batch reactor is used for purification. Oxidation is carried out in the presence of air in an aqueous emulsion stabilized by an alkali such as sodium carbonate in the 8.5-10.5 pH range. Vent gases are passed through a condenser to recover hydrocarbon. The cumene peroxide thus formed is cleaved in an acidifier containing 10-25% H₂SO₄. This 2 is an agitated vessel at 55-650C. The reaction products are separated into an aqueous acid layer for recycle to the cleavage vessel and an oil layer containing 76 wt % cumene.14% phenol.8% acetone % 1-2% α - methyl styrene & acetophenone. This mix is separated in a series of four distillation steps, that last three of which are under vacuum. Phenol is the overhead of the last vacuum fractionator. H,50, Crude pheno llea Vage Wash Oxidizer Air Acidified wash wate 4 Methyl styrene Cumene recycle Annuan Vacuum Vacuum Cumano Methyl Crystallizer stynend celon Phonal Acstophenone. b Soap by continuous process **Process** Glycerides plus catalyst are added at the bottom of the hydrolysis tower where high pressure water at 230-250oC is passed countercurrently to the glycerides. And triglycerides are brake 4 into fatty acid and glycerin with a 15-20% glycerin solution being removed from bottom of the tower. The fatty acid is passed overhead to a flash tank to remove excess steam. The crude fatty acid are vacuum distilled and the condensate in the distillate receiver is either available as a marketable product or for soap mfg.

<u>Model Answer</u>

Subject Name: Chemical Process Technology

Model Answer

Subject Name: Chemical Process Technology

Subject Code:

17427

Polystyrene production is carried out by free radical initiation or by coordinated catalyst. Bulk suspension and emulsion polymerizations are in use. In emulsion polymerization initiators are per-sulphates and emulsifiers are soap. Polymerisation is accomplished 3-5 m³ enameled reactors fitted with water jacket stirrer and reflux condenser.

The monomer is Suspended in aqueous phase using a stabilizer, sodium sulphate is added to control pH A thorough agitation keeps the monomer suspended in medium. The aqueous phase emulsified and mixed with monomer. The emulsion is sent into reactor which is kept &

Model Answer

Subject Name: Chemical Process Technology

		heated at 60 °C. The polymerization is carried out in nitrogen atm. Catalyst is added into the	
		reactor. The reaction takes place for 3-6 hrs, after which sent into coagulator. The polymer	
		formed the latex is separated by centrifugation. The polymer is washed & sent to drier.	
		Reactions	
		$C_6H_6 + H_2C = CH_2 \rightarrow C_6H_5CH_2CH_3$	2
		$C_6H_5CH_2CH_3 \rightarrow C_6H_5CH=CH_2+H_2$	2
		$C_6H_5CH=CH_2+H_2 \rightarrow [C_6H_5-CH_2-CH_2-]n$	
6		Attempt any two	16
	a	Refining of Oil	
		The colour and flavor to fats of edible and non-edible oils is mainly due to presence of non-glyceride	5
		components. Free fatty acids, waves, coloured bodies, mucilaginous materials, gossypol compounds	5
		(found only in cottonseed oil) and phosphatides are responsible for the undesirable properties of fat	
		or oil used for edible purposes and industrial applications. Most of those compounds are removed by	
		treatment with aqueous solution of caustic soda at 40° -85°C . It reduces fatty acid contents to 0.01%.	
		This process of refining is carried out in a tank called batch. The aquous emulsion of soaps formed	
		from fatty acids along with the other impurities (soap-stock) settles to the bottom and is taken out.	
		Then refined oil is washed with water to remove traces of alkali and soap stock. Oils which are	
		refined with soda ash or ammonia generally require a treatment with caustic soda. After water-	
		washing., the oil is dried by heating in a vaccum or by filtering through dry filter and material. This	
		refined oil is used for industrial purposes or may be processed further to achieve food value.	
		Oil Alkali Finished solvent Extracted oil Fuller's earth carbon manufacture Finished solvent Extracted oil Fuller's earth Finished solvent Fuller's Finished solvent Fuller's Finished solvent Fuller's Finished solvent Fuller's Finished solvent Finished oil Finished oil	3

Model Answer

Subject Name: Chemical Process Technology

i) Raw materials :	
1. Molasses (Black strap):	
Molasses is considered as the mother liquor left after the removal of sugar crystals. Hence,	
it is a by-product of the sugar industry. It contains about 55% sugar (2/3 sucrose and 1/3	
invert sugar.	3 mark
2. Yeast :	for raw
i. Selected strains of saccharomyces cerevisiae : are commonly employed for	materi
fermentation. It produces a large amount of alcohol. Yeast is a source of different	and
enzymes.	proces
ii. Preparation of inoculum :From the selected strains of yeast, the inoculum is	
prepared. The starter containing yeast is in its log phase. The yeast developed in a seed	
tank should be pure and free from contamination and mutation.	
iii. Preparation of medium : The molasses is difuted with water to 10 to 18%. These	
molasses can be used directly as fermentation medium. Nutrients such as ammonium	
sulphates or ammonium phosphate may be added to improve the quality of fermentation.	
The pH value of the medium is adjusted to 4 or 5 by adding sulphuric or lactic acid. Lactic	
acid is particularly beneficial as it inhabits the growth of butyric acid bacteria. pH below 5	
inhibits lactic acid bacteria. Other possible microbial contaminants are inhibited by high	
sugar and alcohol concentration and the anaerobic condition of the fermentation. /as a	
result of these considerations, the molasses medium is not sterilized.	
iv. Fermentation : Alcoholic fermentation is an example of anaerobic fermentation.	
Fermentation has therefore to be carried out in the absence of oxygen. In alcoholic	
fermentation, the carbon dioxide produced pushes out air and automatically creates an	
anaerobic atmosphere. The fermentation reaction being exothermic, the fermenter get	
heated and no temperature control is needed. The fermentation is carried out for 50 hours	
at 30 to 40° C in fermenter, after mixing yeast starter and medium.	
v. Recovery : The fermented mesh (beer) is distilled to obtain pure ethyl alcohol. The	

<u>Model Answer</u>

Subject Name: Chemical Process Technology

Model Answer

Subject Name: Chemical Process Technology

