

SUMMER- 2018 Examinations Model Answer

Page 1 of 15

Important suggestions to examiners:

Subject Code: 22221

- 1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme.
- 2) The model answer and the answer written by candidate may vary but the examiner may try to assess the understanding level of the candidate.
- 3) The language errors such as grammatical, spelling errors should not be given more importance. (Not applicable for subject English and communication skills)
- 4) While assessing figures, examiner may give credit for principle components indicated in a figure. The figures drawn by candidate and model answer may vary. The examiner may give credit for any equivalent figure drawn.
- 5) Credits may be given step wise for numerical problems. In some cases, the assumed constant values may vary and there may be some difference in the candidate's answers and model answer.
- 6) In case some questions credit may be given by judgment on part of examiner of relevant answer based on candidate understands.
- 7) For programming language papers, credit may be given to any other program based on equivalent concept.

Q.1	Attempt any FIVE : 10 Marks
a)	Define reluctance and flux density.
Ans:	i) Reluctance (s) :- (1 Marks)
	Reluctance is the property of the substance which opposes the creation of flux in it.
	ii) flux density:- (1Mark)
	Magnetic flux is passing perpendicularly per unit area is called magnetic flux
	density. $B = \varphi / A W b / m^2$ $B = Magnetic density \varphi = flux a = Area$
b)	Define frequency and time period.
Ans:	(i) Frequency :(1 Mark)
	The total number of cycles per second.
	ii) Time period:(1 Mark)
	The time (in sec) required by an alternating quantity to complete its one cycle is known as
	time period.
c)	State units for active power, relative power, apparent power.
Ans:	i) Active Power (P):- (1/2 Mark)
	The active power is defined as the average power Pavg taken by or consumed by the given circuit.
	$P = V.I.Cos\phi$ Unit: - Watt OR Kilowatt

	Subject Code		SUMMER- 2018 Ex Model A pawe		
	Subject Code	: 22221	Model Answe	er Page 2 of 15	
	ii) Reactive	e Power (Q):-		(1/2 Mark)	
	- C	-	wer is defined as the p V) and current (I) i.e	product of voltage and current (V, I) and sine e. ϕ	
	Ur	nits: - VAR OR KV	AR		
	iii) Appare	ent power (s):-		(1 Mark)	
		Apparent power	is defined as the proc	luct of rms values of voltage (v) and current	
	(I) it	is given by			
		S=V.I	Units: - VA OR	KVA	
d)		e sequence in three			
Ans:	called phase	sequence.	-	upply reach their maximum positive values is (2 Mark)	\$
<u>e)</u>		nt types of DC moto	rs.		
Ans:	Types of D	C Motor :- Shunt Motor		(2 Mark)	
	,				
	ii) DC	Series Motor			
	iii) DC	Compound Motor:			
		a) Short Shunt compo	und motor	
		b) Long short compo	und motor	
			Or		
) Cumulative compo		
		b) Differential compo	and DC motor	
f)	Select suitab (i) Fan (ii) H		or for each of the fol	lowing :	
Ans:			n: Capacitor start indu	ction motor (ceiling fan) (1 Mark)	
	· · · · ·	Iome mixer: Univers		(1 Mark)	
g)	State main d	lifference between l	ELCB and MCB.		
				(2 Mark)
	Point	E	LCB	МСВ	
		ELCB operates on	leakage current i.e.	MCB operates on phase current. It is	
Ans:		difference between		used to disconnect the circuit when there	
			ed to disconnect the	is over load/short circuit condition.	
		circuit when there	is earth leakage.		
					

SUMMER- 2018 Examinations N/L- J-1 A

	Subject (Code: 22221	Model Answer	Page 3 of 15			
Q.2		t any THREE :		12 Marks			
a)							
Ans:	i) Dynar	nically induced emf:		(2 Mark)			
	If flux linking with a particular conductor is brought about by moving the						
	stat	ionary field or by movi	ing the magnetic field w.r.t. to sta	ationary conductor. Then the e.m.f.			
	ind	uced in coil or conducto	or is known as "Dynamically induc	ced e.m.f.			
			$E = B l. v. sin\theta$ volts				
	ii) Static	cally induced EMF.		(2 Mark)			
		In the Statically	induced emf flux linked with coil	or winding changes (d Φ /dt) and			
	C	coil or winding is station	nary such induced emf is called St	atically induced emf			
			$E = -N (d\Phi/dt)$				
b)(i)	Differen	tiate AC and DC quar	ntity w.r.t. time varying wavefor	m.			
Ans:	Differen	tiate DC supply with A	AC supply:	(2 Mark)			
		Γ					
	S.No.	Points	AC Supply	DC Supply			
	1.	Wave form	Alternating Current	O Direct Current			
b)(ii)	Explain impedance triangle.						
Ans:	is a right	-	h perpendicular sides represent re	(2 Mark) nce and impedance of AC circuit. It sistance and reactance and			

SUMMER-2018 Examinations

Subject Code: 22221

Model Answer

Page 4 of 15

Ans:		p transformer and step down transformer transformer and step down transformer	er. (Any two points 2 Mark)		
	S.No.	Step-up transformer	Step-down transformer		
	1.	No of turns of secondary windings are greater than primary	No of turns of secondary are smaller than primary.		
	2	Secondary voltage is greater than primary	Secondary voltage is smaller than primary.		
	3	Secondary current rating is less than primary current rating	Secondary current rating is greater than primary.		
c) (ii)		ed load and unbalanced load in three ph			
Ans:	-	ced load and unbalanced load in three p			
	Sr. No.	Balanced load	Unbalanced load		
	1.	All three phase current and line currents are equal	All three phase current and line currents are not equal		
	2	Neutral current is zero if the load is three phase four wire	Neutral current is not zero if the load is three phase four wire		
	3	Phase displacement between phase voltage and phase current of all three phases is equal	Phase displacement between phase voltage and phase current of all three phases is not equal		
d)	Explain v	vorking principle of three phase induction	on motor.		
	•		(4 Mark)		
Ans:	 Working principle of 3-phase induction motor: When 3-phase stator winding is energized from a 3-phase supply, a rotating magnetic field 				
Ans:			rom a 3-phase supply, a rotating magnetic field		
Ans:	> V	When 3-phase stator winding is energized fi	rom a 3-phase supply, a rotating magnetic field stator at synchronous speed Ns (= 120 f/P).		
Ans:		When 3-phase stator winding is energized for s set up in air gap which rotates round the s			
Ans:	v « ii F «	When 3-phase stator winding is energized for s set up in air gap which rotates round the s	stator at synchronous speed Ns (= 120 f/P).		
Ans:	is is is is is is is is is is is is is i	When 3-phase stator winding is energized for a set up in air gap which rotates round the s The rotating field passes through the air gap	stator at synchronous speed Ns (= 120 f/P).		
Ans:	is is is is is is is is is is is is is i	When 3-phase stator winding is energized for a set up in air gap which rotates round the s The rotating field passes through the air gap tationary.	stator at synchronous speed Ns (= 120 f/P).		

Subject Code: 22221

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous) (ISO/IEC-27001-2005 Certified)

SUMMER– 2018 Examinations <u>Model Answer</u> produces flux

Page 5 of 15

	These rotor current produces flux
	> According to faradays law of electromagnetic induction torque is produced due to
	interaction between stator and rotor flux
	Which tends to move the rotor.so rotor starts rotating
	> In the same direction as the rotating field according to Lenz's law.
Q.3	Attempt any THREE : 12 Marks
a)	Describe Fleming's right hand rule and left hand rule.
Ans:	1) Fleming's Right Hand Rule:(2 Mark)
	Arrange three fingers of right hand mutually perpendicular to each other, if the first figure
	indicates the direction of flux, thumb indicates the direction of motion of the conductor, and ther
	the middle finger will point out the direction of induced current.
	2) Left hand rules: (2 Mark)
	According to Fleming's left hand rule if we stretch the thumb, the center finger and the
	middle finger of our left hand such that they are mutually perpendicular to each other. If the center
	finger gives the direction of current and middle finger points in the direction of magnetic field
	then the thumb points towards the direction of the force or motion of the conductor.
b)	Describe working principle of a transformer.
Ans:	working principle of a transformer: (4 Marks)
	Applied Alternating Coil 1 Coil 2 Applied Alternating Current Supply
	Working Principle: -
	> The primary winding is connected to AC supply an ac current starts flowing through it.
	\blacktriangleright The AC primary current produces an alternating flux in the core.
	This Changes flux gets linked with the secondary winding through the core
	\succ The varying flux will induce voltage into the secondary winding according to the faraday's

Subject	Code: 22221		2018 Examinations <u> Answer</u>	Page 6 of 15
la	ws of electromagne	tic induction.		
			OR	
	A Transform	mer works on the pr	inciple of Faradays law of electromagn	etic induction.
W		-	to a.c supply, applied alternating volta	
	n alternating current	-	to all supply, applied allerhaling for	age encontrols
a	e	C		
	This current	flowing through the	e primary winding produces an alternat	ting magenetic
fl	ux (Ø).This flux link	s with secondary w	inding through the magenetic core & in	nduces an emf
ir	it according to the	faraday's laws of ele	ectromagnetic induction.	
	C	·	C C	
		/ * / *		
c) Classif	y three phase indu	ction motor and co	mpare them on any four points.	
C	assify three phase	induction motor :		(2 Marks)
	1. Squirrel cage I.M	1		
	2. Slip ring 3-Ph I.			
Comp	parison :		(Any four points each 1/2 Mark, Tot	tal 2 Marks)
S.No	3-phase sq	uirrel cage I.M	Slip ring 3-Ph I.M	
1	Rotor is in the for	rm of bars	Rotor is in the form of 3-ph windi	ng
2	No slip-ring and l		Slip-ring and brushes are present	
3	External resistance	e cannot	External resistance can be connect	ted
	be connected	· .		
4	Small or moderat		High Starting torque	
5	Starting torque is		Starting torque can be adjust	
6	Simple constructi	on	Completed construction	
7	High efficiency		Low efficiency	
8	Less cost		More cost	
9	Less maintenance		Frequent maintenance due to slip- and brushes.	ring
10	Size is compact for	or same HP	Relatively size is larger	
11	Speed control by		Speed can be control by stator & r	otor
	method only		control method	
d) Evolui	n concept of Limit	cwitch and float cw	itch	
	n concept of Limit t switch:-	Switch and float SM	11CH.	(2 Marks)
		ntact type switch de	vice which is used to detect position of	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
hagon		• •	The micro switch consists of set of cont	•
-	-		itch, the lever is pressed. It operates the	
INC). W	men me target objec	a is near to nmit SW	non, the level is pressed. It operates the	= microswitch
1	ntact positions are ch		,	

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous) (ISO/IEC-27001-2005 Certified)

	Subject Co		UMMER– 2018 1 <u>Model Ans</u>		Page 7 of 15
				14 NO	
	ii) Float s	witch:-			(2 Marks)
	It has float moves upv	and a micro switch. The vard and microswitch is o the microswitch is releas	float rests on the perated and cont	ce which is used to detect level e fluid surface. As the level is fact positions are changed. We return to their normal condition	increased, float hen the float move
Q.4	Attempt a	ny THREE :			12 Marks
a)	Compare	electric circuit and mag		any four points.	
Ans:	S.No	Magnetic and Electric Electric circ	(Any Four P	oint expected : 1 Mark each Magnetic circ	
	1	Path traced by the curren electric current.	nt is known as	The magnetic circuit in which flow	ch magnetic flux
	2 EMF is the driving force in the electric circuit. The unit is Volts. 3 There is a current I in the electric circuit which is measured in amperes.			MMF is the driving force in circuit. The unit is ampere to	-
				There is flux φ in the magnetic which is measured in the we	ber.
	4	The flow of electrons de current in conductor.		The number of magnetic line decides the flux.	
	5	Resistance (R) oppose th current. The unit is Ohm	ne flow of the	Reluctance (S) is opposed by to the flux. The Unit is ampere turn/web	
	6	$R = \rho$. l/a. Directly proportional to	1.	$S = 1/(\mu_0\mu_r a).$ Directly proportional to 1. In	

SUMMER- 2018 Examinations

Su				018 Examinations	
	ibject Co	ode: 22221	Model	Answer	Page 8 of 1
			oportional to a. nature of material.	proportional to $\mu =$ Inversely proportion	
	7	The current $I = EMF/Resistance$		The Flux = MMF/H	
	8	The current density		The flux density	
	9		urrent law and voltage la to the electric circuit.	W Kirchhoff mmf law applicable to the ma	
L) Id	lentify			owing parts of DC mot	- -
^{D)} Bi	rush, Po				our points each 01 Mar
		Sr.No	Parts of DC motor	Material used	
		1.	Winding	Cooper or Aluminum	
		2.	Armature	Thin silicon steel stamp	oing
		3.	Brush	Carbon or graphite	
		5.	Diusii	Carbon of graphic	
		<u> </u>	Pole	Thin silicon steel stamp	ving
	xplain v	4.	Pole	Thin silicon steel stamp	or.
	xplain v	4.	Pole	Thin silicon steel stamp	or.
Ans:		4. with diagram	Pole	Thin silicon steel stamp f speed of DC shunt mot (Diagram 2 Ma	or.
Ans: Tł	he chara	4. with diagram	Pole field control method o ion for dc shunt motor i	Thin silicon steel stamp f speed of DC shunt mot (Diagram 2 Ma	
Ans: Th <i>N</i> Fr	he chara $T \propto \frac{E_b}{\phi}$ a rom abo	4. with diagram is cteristic equations, of we equations, of	Pole field control method o ion for dc shunt motor i $I_a R_a$ Ic shunt motor speed N	Thin silicon steel stamp f speed of DC shunt mot (Diagram 2 Ma	to flux. By decreasing fi

Subject Code: 22221

SUMMER- 2018 Examinations Model Answer

Page 9 of 15

	Subject Code: 22221	SUMMER– 2018 Examinations <u>Model Answer</u>	Page 10 of 15				
e)		f electrical equipment's or machines.					
Ans:	Need of earthing of electrical equipment's or machines:						
	(Any Four point are expected: 1 Mark each, Total 4 Marks)						
	1. Earthing provides protection to the electrical machinery due to leakage current.						
	2. Earthing provides protection to Tall Building & structure against lightening stroke						
	3. Earthing is protects h	numan from shocks.					
	4. To provide an alterna	ative path for the leakage current to flow tow	vards earth.				
	5. To save human life f	rom danger of electrical shock due to leakag	e current.				
	6. To provide safe path	to dissipate lightning and short circuit curre	nts.				
	7. To provide stable pla	tform for operation of sensitive electronic ec	quipment's.				
Q.5	Attempt any TWO :		12 Marks				
		wing for a sinusoidal voltage source having					
a)	$\left(314 t \frac{\pi}{6}\right)$ volt. (i) Maximu	um value (ii) Frequency (iii) Time period	v) Phase (v) RMS voltage				
	(vi) Form factor.						
Ans:	$v = 400\sin(314t - \frac{\pi}{6})$)					
	Comparing the above equation	on with					
	$v = V_m \sin(\omega t - \theta)$))					
	i) Maximum value	=400V	(1 Marks)				
	ii) Frequency = f	<u>314</u> =50Hz	(1 Marks)				
	iii) Time period = 1/2	$f = 2 \times \pi_{20mS}$	(1 Marks)				
	iv) Phase = 30°		(1 Marks)				
	v) RMS voltage =	$\frac{V_m}{\sqrt{2}}$ =400/1.414=282.88	(1 Marks)				
	vi) Form Factor = 1.	11 (1 Marks)					

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous) (ISO/IEC-27001-2005 Certified)

	Subject Code: 22221	SUMMER– 2018 Examinations <u>Model Answer</u>	Page 11 of 15
	Calculate current per phase, to fig. 1.	otal active power, total reactive pov	ver for a circuit shown in
b)		400 V (3+j4) Ω (3+j4) Ω (3+j4) Ω	
Ans:	Current per phase = Vph/Zph	Fig. 1	(1 Marks)
	Zph= 5		
	Curent per phase = $400/5 = 80$ A		(1 Marks)
	Power factor of load = $R/Z=3/5=0$).6	
	Active power =		
	$Z_{ph} = 5\Omega$		
	$I_{ph} = 400 / 5 = 1$	8.4	
	$P_{ACTIVE} = 3V_{PH}I$		(1 Marks)
	$= 3 \times 40$	$00 \times 80 \times (3/5)$	
	=57.6 <i>k</i>	W	(1 Marks)
	$Q_{REACTIVE} = 3V_{PH}$	$I_{PH}SIN\phi$	(1 Marks)
	$=3 \times 4$	$00 \times 80 \times (4/5) = 76.8 kVAr$	(1 Marks)
c)		ach of the following : lit phase motor (iii) Universal ma t capacitor run (vi) Permanent capac	
Ans:	i) Shaded pole motor		(1 Marks)
	Sta Wir	Squirrel cage (b) Sa	

Subject Code: 22221

SUMMER– 2018 Examinations <u>Model Answer</u>

Page 12 of 15

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous) (ISO/IEC-27001-2005 Certified)

	Subject C	ode: 22221	SUMMER– 2018 <u>Model An</u>		Page 14 of 15
	To F	Z = 55.85 ∠5 ind Current=	Z = 7.51 Ω — — — — — — — — —	R + jXL	(1/2 mark)
		$I = \frac{v}{z}$	I = <u>230</u> =	= 4 . 11 ∠ – 57.51 <i>amp</i>	(1/2 Mark)
		I=4.11Amp	55.85 ∠57.51 		(1/2 Mark)
	Active P	ower:			
			′ ∗ <i>I</i> ∗ cos Ø 30 ∗ 4. 11 ∗ 0. 53	(1 M	lark)
	Ractive		01.00 <i>watt</i>		(1 Mark)
			′ ∗ <i>I</i> ∗ sin Ø 30 ∗ 4. 11 ∗ 0. 84	(1 M	lark)
		P = 7	97.34 <i>var</i>		(1 Mark)
b)	(i) Servo-		ons for each of the follow shless DC motor (iii) Step		
Ans:	(i)	Servo motor:	ontrol systems nines	(Any T	Two points - 2 Marks)
	(ii)	Brushless dc1) Electric ve2) Electronic3) Position cc4) Industrial a	hicles toys ontrol systems	(Any	Two points - 2 Marks)
	(iii)	 Stepper moto Printers CNC mach Robotic hat Valve cont 	nines	(Any	Two points - 2 Marks)

SUMMER-2018 Examinations

Subject Code: 22221

Model Answer

Page 15 of 15

c)	-	Prepare a table showing difference between fuse and MCB on following points : cost, size, ratings available, switching operation after fault, maintenance, application.					
Ans:	(Any Six points each point - 1 Mar						
	Sr.No POINTS		FUSE	МСВ			
	1	cost	Fuse is cheap	MCB is costly			
	2	Size	Fuse small size	MCB large size			
	3 Ratings Fuse rating		Fuse rating is in Amperes	MCB rating is also in Amperes but its available in selected current ratings like 1A,2A, 5A,25A			
	4	Switching operation	Fuse wire is melted and the circuit is broken	In MCb there is bimetallic strip which bends and operates the trip circuit to disconnect load from supply.			
	5	Maintenance	Fuse requires replacement	MCB is a resettable protection			
	6	Appplication	short circuit protection	Overload and short circuit protection			

-----END-----