
 MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION
 (Autonomous)

 (ISO/IEC - 27001 - 2013 Certified)

 SUMMER– 18 EXAMINATION
 Subject Name: System Programming Model Answer Subject Code:

 Page 1 of 27

17634

Important Instructions to examiners:
1) The answers should be examined by key words and not as word-to-word as given in the model answer

scheme.
2) The model answer and the answer written by candidate may vary but the examiner may try to assess

the understanding level of the candidate.
3) The language errors such as grammatical, spelling errors should not be given more Importance (Not

applicable for subject English and Communication Skills.
4) While assessing figures, examiner may give credit for principal components indicated in the figure.

The figures drawn by candidate and model answer may vary. The examiner may give credit for any
equivalent figure drawn.

5) Credits may be given step wise for numerical problems. In some cases, the assumed constant values
may vary and there may be some difference in the candidate’s answers and model answer.

6) In case of some questions credit may be given by judgement on part of examiner of relevant answer
based on candidate’s understanding.

7) For programming language papers, credit may be given to any other program based on equivalent
concept.

Q.

No.

Sub

Q.

N.

Answers Marking

Scheme

1. Answer any FIVE of the following: 20 Marks

 (a) Draw a neat labelled diagram of foundation of system programming. 4M

 Ans:

(Diagram :4

marks)

 (b) What is binary search? Explain with an example. 4M

 Ans: Binary Search Algorithm: A more systematic way of searching an ordered table.

This technique uses following steps for searching a keywords from the table.

1. Find the middle entry (N/2 or (N+1)/2)

2. Start at the middle of the table and compare the middle entry with the keyword to

be searched.

3. The keyword may be equal to, greater than or smaller than the item checked.

(Algorithm:

2 marks,

Example: 2

marks)

 MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION
 (Autonomous)

 (ISO/IEC - 27001 - 2013 Certified)

 SUMMER– 18 EXAMINATION
 Subject Name: System Programming Model Answer Subject Code:

 Page 2 of 27

17634
4. The next action taken for each of these outcomes is as follows

If equal, the symbol is found

If greater, use the top half of the given table as a new table search

If smaller, use the bottom half of the table.

Example:

The given nos. are: 1,3,7,11,15

To search number 11 Indexing the numbers from list [0] up to list[5]

Pass 1

Low=0, High = 5, Mid= (0+5)/2 = 2

So, list [2] = 3 is less than 7

Pass 2

Low= (Mid+1)/2 i.e. (2+1)/2 = 1, High = 5, Mid= (1+5)/2 = 6/2 = 3

So list [3] = 11 and the number if found.

 (c) What is meant by implementation of macro call within macros? Give an

example.

4M

 Ans:  The macro can be used within macro. The macro or macro calls are

“abbreviations” of the sequence of instruction.

 Therefore these “abbreviation” should be available within other macro definition.

 To handle macros calls within macros, the macro processor must be able to work

recursively. Recursively Procedures implemented with the help of stack.

 Stack a storage scheme that allocates a separate storage area for variable

associated with each call to the procedure

Syntax:

MACRO

MACRO_NAME1

MEND

MACRO

MACRO_NAME2

MACRO_NAME1 //calling macro within macro

--

--

MEND

Example:
MACRO

ADD &A1

L 1,&A1

ST 1,&A1

MEND

MACRO

ADDITION &A1,&A2

(Description:

2 marks,

Example:2

marks)

 MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION
 (Autonomous)

 (ISO/IEC - 27001 - 2013 Certified)

 SUMMER– 18 EXAMINATION
 Subject Name: System Programming Model Answer Subject Code:

 Page 3 of 27

17634
ADD &A1

ADD &A2

MEND

 Above code shows two macros ADD and ADDITION.

 Within the definition of ADDITION macro, macro ADD is called two times with

different parameter A1 and A2.

 Use of macro within macro result in macro expansion on multiple levels. Such way

the macro within macro involves several levels.

 (d) State the six phases of compiler. 4M

 Ans: 1) Lexical Phase:-

 Its main task is to read the source program and if the elements of the program

are correct it generates as output a sequence of tokens that the parser uses for

syntax analysis.

2) Syntax Phase:-

 In this phase the compiler must recognize the phases (syntactic construction);

each phrase is a semantic entry and is a string of tokens that has meaning, and

2
nd

 Interpret the meaning of the constructions.

 Syntactic analysis also notes syntax errors and assure some sort of recovery.

Once the syntax of statement is correct, the second step is to interpret the

meaning (semantic). There are many ways of recognizing the basic constructs

and interpreting the meaning.

3) Interpretation Phase:-

 This phase is typically a routine that are called when a construct is recognized.

 The purpose of these routines is to on intermediate form of source program

and adds information to identifier table.

4) Code optimization Phase:-

 Two types of optimization are performed by compiler, machine dependent and

machine independent.

5) Storage Assignment:-

The purpose of this phase is as follows: -

 Assign storage to all variables referenced in the source program.

 Assign storage to all temporary locations that are necessary for intermediate

results.

 Assign storage to literals.

 Ensure that storage is allocated and appropriate locations are initialized.

6) Code generation:-

 This phase produce a program which can be in Assembly or machine

language.

7) Assembly phase:-

 The compiler has to generate the machine language code for computer to

understand.

(6 phases of

compiler: 4

marks)

 MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION
 (Autonomous)

 (ISO/IEC - 27001 - 2013 Certified)

 SUMMER– 18 EXAMINATION
 Subject Name: System Programming Model Answer Subject Code:

 Page 4 of 27

17634
 (e) Draw a labelled diagram of general loading scheme. 4M

 Ans:

(Labeled

diagram :4

marks)

 (f) Mention the necessity of overlays in linking loader. 4M

 Ans:  Sometimes a program may require more storage space than the available one

Execution of such program can be possible if all the segments are not required

simultaneously to be present in the main memory.

 In such situations only those segments are resident in the memories that are

actually needed at the time of execution.

 But the question arises what will happen if the required segment is not present in

the memory?

 Naturally the execution process will be delayed until the required segment gets

loaded in the memory. The overall effect of this is efficiency of execution process

gets degraded.

 The efficiency can then be improved by carefully selecting all the interdependent

segments. The assembler cannot do this task. Only the user can specify such

dependencies.

 The inter dependency of the segments can be specified by a tree like structure

called static overlay structures.

 The overlay structure contains multiple root/nodes and edges. Each node

represents the segment. The specification of required amount of memory is also

essential in this structure.

 The two segments can lie simultaneously in the main memory if they are on the

same path.

 Consider following example to understand the concept. In this, various segments

along with their memory requirements are shown.

(Relative

Explanation:

4 marks)

 MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION
 (Autonomous)

 (ISO/IEC - 27001 - 2013 Certified)

 SUMMER– 18 EXAMINATION
 Subject Name: System Programming Model Answer Subject Code:

 Page 5 of 27

17634
 Nodes S1, and S7 are root nodes.

 Nodes S2 and S3 are interdependent nodes; so, lie simultaneously in the main

memory. Similarly, S4, S5, and S6 are on the same path therefore lie

simultaneously in the main memory. In this way overlay structure is formed.

 (g) Define the terms: Assemblers and Compiler.

 Ans:  Assemblers:
o The program known as assembler is written to automate the translation of

assembly language to machine language. Input to the language is called as source

program and output of assembler is machine language translation called as object

program.

 Compilers:

o A compiler is a computer program (or set of programs) that transforms source code

written in a programming language (the source language) into another computer

language (the target language, often having a binary form known as object

code).The most common reason for converting a source code is to create an

executable program. E.g. Javac , TurboC, CC (used in Unix/Linux).

(Assembler: 2

marks,

Compiler: 2

marks)

 MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION
 (Autonomous)

 (ISO/IEC - 27001 - 2013 Certified)

 SUMMER– 18 EXAMINATION
 Subject Name: System Programming Model Answer Subject Code:

 Page 6 of 27

17634
2. Answer any TWO of the following : 16 Marks

 (a) Draw the flowchart for pass 2 of a two pass assembler. 8M

 Ans:

(Correct

diagram:8

marks)

 (b) Describe the design of absolute loader with respect to its performance based on

(1) Allocation, (2) Loading, (3) Relocation, (4) Linking.

8M

 Ans:  Absolute loader is a kind of loader in which relocated object files are created,

loader accepts these files and places them at specified locations in the memory.

 This type of loader is called absolute because no relocation information is

needed; rather it is obtained from the programmer or assembler.

 The starting address of every module is known to the programmer, this

corresponding starting address is stored in the object file, then task of loader

becomes very simple and that is to simply place the executable form of the

machine instructions at the locations mentioned in the object file.

 In this scheme, the programmer or assembler should have knowledge of memory

management.

 The resolution of external references or linking of different subroutines are the

issues which need to be handled by the programmer.

 The programmer should take care of two things:

o First thing is: specification of starting address of each module to be used. If some

modification is done in some module then the length of that module may vary.

This causes a change in the starting address of immediate next module, it‟s then

(Description:

4 marks,

example with

performance

parameters:

4 marks)

 MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION
 (Autonomous)

 (ISO/IEC - 27001 - 2013 Certified)

 SUMMER– 18 EXAMINATION
 Subject Name: System Programming Model Answer Subject Code:

 Page 7 of 27

17634
the programmer's duty to make necessary changes in the starting addresses of

respective modules.

o Second thing is, while branching from one segment to another the absolute starting

address of respective module is to be known by the programmer so that such

address can be specified at respective JMP instruction.

 For example

Line number

1 MAIN START 1000

. .

. .

. .

1 JMP 5000

16 STORE ;instruction at location 2000

 END

1 SUM START 5000

2

20 JMP 2000

21 END

 In this example there are two segments, which are interdependent.

 At line number 1 the assembler directive START specifies the physical starting

address that can be used during the execution of the first segment MAIN.

 Then at line number 15 the JMP instruction is given which specifies the physical

starting address that can be used by the second segment.

 The assembler creates the object codes for these two segments by considering the

stating addresses of these two segments. (ALLOCATION)

 During the execution, the first segment will be loaded at address 1000 and second

segment will be loaded at address 5000 as specified by the programmer. Thus the

problem of linking is manually solved by the programmer itself by taking care of

the mutually dependent dresses. (LINKING)

 As you can notice that the control is correctly transferred to the address 5000 for

invoking the other segment, and after that at line number 20 the JMP instruction

transfers the control to the location 2000, necessarily at location 2000 the

instruction STORE of line number 16 is present. Thus resolution of mutual

references and linking is done by the programmer. (RELOCATION)

 The task of assembler is to create the object codes for the above segments and

along with the information such as starting address of the memory where actually

the object code can be placed at the time of execution.

 The absolute loader accepts these object modules from assembler and by reading

the information about their starting addresses, it will actually place (load) them in

the memory at specified addresses. (LOADING)

 MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION
 (Autonomous)

 (ISO/IEC - 27001 - 2013 Certified)

 SUMMER– 18 EXAMINATION
 Subject Name: System Programming Model Answer Subject Code:

 Page 8 of 27

17634
 (c) Describe token with respect to lexical analysis with a suitable example and

classify the tokens.

8M

 Ans:  The first phase of compiler is lexical analysis. It works as a text scanner. This

phase scans the source code as a stream of characters and converts it into

meaningful lexemes. Lexical analyzer represents these lexemes in the form of

tokens as:

<token-name, attribute-value>

 Algorithm of Lexical Analysis phase of compiler is as follows

1. The first tasks of the lexical analysis algorithm are to the input character string

into token.

2. The second is to make the appropriate entries in the tables.

3. A token is a substring of the input string that represents a basic element of the

language. It may contain only simple characters and may not include another

token. To the rest of the compiler, the token is the smallest unit of currency.

Only lexical analysis and the output processor of the assembly phase concern

themselves with such elements as characters. Uniform symbols are the

terminal symbols for syntax analysis.

 Lexical analysis recognizes three types of token: Terminal symbols, possible

identifiers, and literals.

 It checks all tokens by first comparing them with the entries in the terminal table.

Once a match is found, the token is classified as a terminal symbol and lexical

analysis creates a uniform symbol of type “TRM” and inserts it in the uniform

symbol table. If a token is not a terminal symbol, lexical analysis proceeds to

classify it as a possible identifier or literal. Those tokens that satisfy the lexical

rules for forming identifiers are classified as “possible identifiers”.

Example:

Consider following program
WCM: PROCEDURE (RATE, START, FINISH);

 DECLARE (COST, RATE, START, FINISH) FIXED BINARY (31) STATIC;

 COST = RATE * (START-FINISH) + 2*RATE*(START-FINISH-100);

 RETURN (COST);

END;

(Description

:4 marks,

Example: 2

marks,

Classification

:2 marks)

 MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION
 (Autonomous)

 (ISO/IEC - 27001 - 2013 Certified)

 SUMMER– 18 EXAMINATION
 Subject Name: System Programming Model Answer Subject Code:

 Page 9 of 27

17634
Class PTR(TOKENS)

 IDN WCM

TRM :

TRM PROCEDURE

TRM (

IDN RATE

Uniform symbols of first statement

Classification of TOKENS:

Tokens are classified as

1. Terminal symbols: Keywords or assembler directives are referred to as terminal

symbols. For e.g. in above program PROCEDURE, DECLARE, RETURN,

END,*, (, etc are identified as terminal symbols.

2. Possible identifiers: a user defined string that identifies specific variables or

procedures, etc. For e.g. in above program RATE, COST, START, FINISH are

identifiers.

3. Literals: a constant value is referred as literal. For e.g. in above program 2, 100,

31 are literals.

3. Answer any FOUR of the following: 16 Marks

 (a) Write in brief about any two components of system software. 4M

 Ans: The components of system software are

1. Assembler: It is a language translator that takes as input assembly language

program (ALP) and generates its machine language equivalent along with

information required by the loader.

2. Macros: The assembly language programmer often finds that certain set of

instructions get repeated often in the code. Instead of repeating the set of

instructions the programmer can take the advantage of macro facility where macro

is defined to be as “Single line abbreviation for a group of instructions”. The

template for designing a macro is as follows

3. Loader: It is responsible for loading program into the memory, prepare them for

execution and then execute them.

OR

Loader is a system program which is responsible for preparing the object

programs for execution and start the execution.

4. Linker: A linker which is also called binder or link editor is a program that

combines object modules together to form program that can be executed. Modules

are parts of a program.

5. Compiler: Compiler is a language translator that takes as input the source

(Description

of any 2

components :

2 marks

each)

 MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION
 (Autonomous)

 (ISO/IEC - 27001 - 2013 Certified)

 SUMMER– 18 EXAMINATION
 Subject Name: System Programming Model Answer Subject Code:

 Page 10 of 27

17634
program (Higher level program) and generates the target program (Assembly

language program or machine language program).

 (b) Explain random entry searching with an example. 4M

 Ans: Binary search algorithms are operated on tabled that are ordered and packed.

Therefore it has to be used in conjunction with sort algorithms which both ordered

and pack the data. So a considerable improvement can be achieved by inserting

elements in a random way. The random entry number K is generated from the key. If

the K
th

 position is valid, then the new element is put there; if not then some other cell

must be found for the insertion.

Here the first problem is to generate a random number from the key. This can be

achieved by dividing a four character keyword by the table length N and use the

remainder. Another method is to treat a keyword as a binary fraction and multiply it

by another binary fraction:

L 1, SYMBOL

M 0, RHO

 The result is 64 bit product in registers 0 and 1. If RHO is chosen carefully, the low

order 31 bits will be evenly distributed between 0 and 1, and the second multiplication

by N will generate number uniformly distributed over 0… (N-1). This is known as

power residue method.

The second problem is the procedure to be followed when the first trial entry results

in a filled position. This problem can be resolve by using one of the following

methods:

1) Random entry with replacement: A sequence of random numbers is

generated from the keyword. From each of these a number between 1 and N is formed

and the table is probed at that position. Probing are terminated when a void space is

found.

2) Random entry without replacement: this is the same as above expect that

any attempt to probe the same position twice is bypassed.

3) Open addressing: if the first probe gives a position K and that position is

filled, then the next location K+1 is probed and so on until a free position is found. If

the search runs off the bottom of the table, then it is renewed at the top.

Example:

Consider a table of 17 positions (N=17) in which the following 12 numbers are to be

stored.

19, 13, 05, 27, 01, 26, 31, 16, 02, 09, 11, 21

These items are to be entered in the table at the position defined by the remainder

after division by 17; if that position is filled, then the next position is examined, etc.

The following table shows progress entry for the 12 items. The column „probes to

find‟ gives the number of probes necessary to find the corresponding item in the

tables; thus it takes 3 probes to find item 09, 2 probes to find item 11 and 1 to find

item 26. The column „probes to find‟ gives the number of probes necessary to

determine that the item is not in the table; thus the search for the number 54 would

give an initial position of 3 and it would take 4 probes to find that the item is not

present.

(Description:

2marks,

Example:

2 marks)

 MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION
 (Autonomous)

 (ISO/IEC - 27001 - 2013 Certified)

 SUMMER– 18 EXAMINATION
 Subject Name: System Programming Model Answer Subject Code:

 Page 11 of 27

17634

Positio

n

Item probes to

find

probes to find

not

0 1

1 01 1 6

2 19,02* 1 5

3 02 2 4

4 21 1 3

5 05 1 2

6 1

7 1

8 1

9 26, 09* 1 7

10 27, 09* 1 6

11 09, 11* 3 5

12 11 2 4

13 13 1 3

14 31 1 2

15 1

16 16 1 1

 16 54

Length of the table N = 17

Items stored M=12

Density p = 12/17 = 0.705

Probes to store Ts = 16

Average probes to find Tp = 16/12 = 1.33

Average probes to find Tn = 54/16 = 3.37

 (c) Describe the four tasks performed by Macro-processor. 4M

 Ans: The basic task of Macro processor is as follows:-

1) Recognize the macro definitions.

2) Save the Macro definition.

3) Recognize the Macro calls.

4) Perform Macro Expansion.

1) Recognize the Macro definitions: - A macro processor must recognize macro

definitions identified by the MACRO and MEND pseudo-ops. When MACROS and

MENDS are nested, the macro processor must recognize the nesting and correctly

match the last or outer MEND with the first MACRO.

2) Save the Macro definition: - The processor must store the macro instruction

definitions which it will need for expanding macro calls.

3) Recognize the Macro calls: - The processor must recognize macro call that

(Description

of 4 tasks: 1

mark each)

 MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION
 (Autonomous)

 (ISO/IEC - 27001 - 2013 Certified)

 SUMMER– 18 EXAMINATION
 Subject Name: System Programming Model Answer Subject Code:

 Page 12 of 27

17634
appears as operation mnemonics. This suggests that macro names be handled as a type

of opcode.

4) Perform Macro Expansion: - The processor must substitute for macro definition

arguments the corresponding arguments from a macro call, the resulting symbolic text

is then substituted for the macro call.

 (d) For the following sub-expression, draw the intermediate code with optimization:

z = (x + y) * (x + y) + 3 (x + y).

4M

 Ans: MATRIX NO OPERATOR OP1 OP2 First Try

M1 + X Y L 1, X

 A 1, Y

 ST 1, M1

M2 * M1 M1 L 1, M1

 M 1,M1

 ST 1,M2

M3 * 3 M1 L 1,=F‟3‟

 M M1,3

 ST M1,M3

M4 * M2 M3 L 1,M2

 M M2,M3

 ST M2,M4

M5 = Z M4 L 1, M4

 ST 1,Z

(Optimized

table:2

marks,

Intermediate

code: 2

marks)

 (e) Describe the design of absolute loader. 4M

 Ans:

Design of absolute loader

(Diagram:

2marks,

Description:

2 marks)

 MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION
 (Autonomous)

 (ISO/IEC - 27001 - 2013 Certified)

 SUMMER– 18 EXAMINATION
 Subject Name: System Programming Model Answer Subject Code:

 Page 13 of 27

17634

Absolute Loader: Absolute loader is a kind of loader in which relocated object files

are created, loader accepts these files and places them at specified locations in the

memory. This type of loader is called absolute because no relocation information is

needed; rather it is obtained from the programmer or assembler. The starting address

of every module is known to the programmer, this corresponding starting address is

stored in the object file, then task of loader becomes very simple and that is to simply

place the executable form of the machine instructions at the locations mentioned in

the object file. In this scheme, the programmer or assembler should have knowledge

of memory management. The resolution of external references or linking of different

subroutines is the issues which need to be handled by the programmer. The

programmer should take care of two things: first thing is: specification of starting

address of each module to be used. If some modification is done in some module then

the length of that module may vary. This causes a change in the starting address of

immediate next. Modules, it‟s then the programmer's duty to make necessary changes

in the starting addresses of respective modules. Second thing is, while branching from

one segment to another the absolute starting address of respective module is to be

known by the programmer so that such address can be specified at respective JMP

instruction. For example

In this example there are two segments, which are interdependent. At line number 1

the assembler directive START specifies the physical starting address that can be used

during the execution of the first segment MAIN. Then at line number 15 the JMP

instruction is given which specifies the physical starting address that can be used by

the second segment. The assembler creates the object codes for these two segments by

considering the stating addresses of these two segments. During the execution, the

first segment will be loaded at address 1000 and second segment will be loaded at

address 5000 as specified by the programmer. Thus the problem of linking is

manually solved by the programmer itself by taking care of the mutually dependent

dresses. As you can notice that the control is correctly transferred to the address 5000

for invoking the other segment, and after that at line number 20 the JMP instruction

transfers the control to the location 2000, necessarily at location 2000 the instruction

STORE of line number 16 is present. Thus resolution of mutual references and linking

is done by the programmer. The task of assembler is to create the object codes for the

above segments and along with the information such as starting address of the

 MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION
 (Autonomous)

 (ISO/IEC - 27001 - 2013 Certified)

 SUMMER– 18 EXAMINATION
 Subject Name: System Programming Model Answer Subject Code:

 Page 14 of 27

17634
memory where actually the object code can be placed at the time of execution. The

absolute loader accepts these object modules from assembler and by reading the

information about their starting addresses, it will actually place (load) them in the

memory at specified addresses.

Thus the absolute loader is simple to implement in this scheme

1) Allocation is done by either programmer or assembler

2) Linking is done by the programmer or assembler

3) Resolution is done by assembler

4) Simply loading is done by the loader

5) As the name suggests, no relocation information is needed, if at all it is

required then that task can be done by either a programmer or assembler

Advantages:

1) It is simple to implement

2) This scheme allows multiple programs or the source programs written

different languages. If there are multiple programs written in different

languages then the respective language assembler will convert it to the

language and a common object file can be prepared with all the ad resolution.

3) The task of loader becomes simpler as it simply obeys the instruction

regarding where to place the object code in the main memory.

4) The process of execution is efficient.

Disadvantages:

1) In this scheme it is the programmer's duty to adjust all the inter segment

addresses and manually do the linking activity. For that, it is necessary for a

programmer to know the memory management.

 (f) What are the data structures required to implement direct linking loader. 4M

 Ans: Databases required for Pass 1 and Pass 2 of direct linking loader with their purposes

listed below:

Pass 1

1. Input object decks

2. A parameter, the Initial Program Load Address (IPLA) supplied by the

programmer or the operating system that specifies the address to load the first

segment.

3. A Program Load Address (PLA) counter, used to keep track of each

segment‟s assigned location.

4. A table, the Global External Symbol Table (GEST), that is used to store each

external symbol and its corresponding assigned core address.

5. A copy of the input to be used later by pass 2. This may be stored on an

auxiliary storage device, such as magnetic tape, disks or drum, or the original

objects deck may be reread by the loader a second time for pass 2.

6. A printed listing, the load map that specifies each external symbol and its

assigned value.

(Any 6 Data

structures: 4

marks)

 MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION
 (Autonomous)

 (ISO/IEC - 27001 - 2013 Certified)

 SUMMER– 18 EXAMINATION
 Subject Name: System Programming Model Answer Subject Code:

 Page 15 of 27

17634
Pass 2

1) Copy of object program inputted to pass1

2) The Initial Program Load Address parameter (IPLA)

3) The Program Load Address Counter (PLA)

4) The Global External Symbol Table (GEST), prepared by pass1, containing

each external symbol and its corresponding absolute address value.

5) An array, the Local External Symbol array (LESA), which is used to establish

a correspondence between the ESD ID numbers, used on ESD and RLD cards,

and the corresponding external symbols‟ absolute address value.

4. Answer any FOUR of the following: 16 Marks

 (a) Compare shell sort and address calculations sort. 4M

 Ans: Sr.

No.
Shell Sort Address Calculation Sort

1
Avg. Time(approx.) =

B*N*(log2 (N))
2 Avg. Time(approx.) = E*N

2 Extra Storage = none Extra Storage = 2.2*N (approx.)

3

It requires floors and hence

work in divide and conquer

method.

It follows linear approach for

solution.

4
It is slower than address

calculation sort

It is faster than other method if

space is available

5
It compare with their

distances
It compare with their addresses

(Any 4 Points

of

Comparison:

1 mark each)

 (b) Describe the issues in implantation of macroprocessor within an assembler. 4M

 Ans: {{**Note: - Diagram is optional**}}

Implementation within an assembler.

Issues of incorporating the macro processor into pass 1 of assembles.

 The program becomes too large to fit into the core of some machines.

 The program becomes complex in action with macros

The macro processor can be implemented within an assembler using two different

ways, they are.

1. It can be added as a macro processor to an assembler, making a complete a pass

over the input text before pass 1 of the assembler

Or

2. It can be implemented within pass 1 of the assembler.

Macro processor combined with assembler pass - 1.

The implementation of the macro processor within pass 1 eliminates the overhead of

intermediate files, and can improve this integration of macro processor and assembler

by combining similar functions. For example the assembler regular pseudo -ops

(Any two

issues/Disad

vantages: 2

marks each)

 MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION
 (Autonomous)

 (ISO/IEC - 27001 - 2013 Certified)

 SUMMER– 18 EXAMINATION
 Subject Name: System Programming Model Answer Subject Code:

 Page 16 of 27

17634
handles can be used to identify MACRO pseudo -ops of the macro processor. The

macro name table can be combined with the assembler machine op table or pseudo -

op table.

Flowchart of a macro processor combined with assembler part 1

Advantage and incorporating the macro processor into pass 1 of assembler.

Many functions do not have to be implemented twice.

 There is less over head during processing: functions are combined and it is not

necessary to create intermediate files as output from the macro processor and

input to the assembler.

 Move flexibility is available to the programmer in that he may use all the features

of the assembler in conjunction with macros.

 (c) Write about bottom up parsing technique and how it differs from top down

parsing.

4M

 Ans: Bottom-up parsing:-

Bottom-up parsing starts from the leaf nodes of a tree and works in upward direction

till it reaches the root node. Here, we start from a sentence and then apply production

rules in reverse manner in order to reach the start symbol. The image given below

depicts the bottom-up parsers available.

(Description:

2 marks,

Any 2 points

of

differentiatio

 MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION
 (Autonomous)

 (ISO/IEC - 27001 - 2013 Certified)

 SUMMER– 18 EXAMINATION
 Subject Name: System Programming Model Answer Subject Code:

 Page 17 of 27

17634

Shift-Reduce Parsing:Shift-reduce parsing use two unique steps for bottom-up

parsing. These steps are known as shift-step and reduce-step.

LR Parser:The LR parser is a non-recursive, shift-reduce, bottom-up parser. It uses a

wide class of context-free grammar which makes it the most efficient syntax analysis

technique. LR parsers are also known as LRk parsers, where L stands for left-to-right

scanning of the input stream; R stands for the construction of right-most derivation in

reverse, and k denotes the number of look ahead symbols to make decisions.

There are three widely used algorithms available for constructing an LR parser:

 SLR1 – Simple LR Parser:

 LR1 – LR Parser:

 LALR1 – Look-Ahead LR Parser:

Sr. Top – down parsing Bottom up parsing

1) It is easy to implement It is efficient parsing method

2) It can be done using recursive

decent or LL(1) parsing

method

It is a table driven method and can

be done using shift reduce, SLR,

LR or LALR parsing method

3) The parse tree is constructed

from root to leaves

The parse tree is constructed from

leaves to root

4) In LL(1) parsing the input is

scanned from left to right and

left most derivation is carried

out

In LR parser the input is scanned

from left to right and rightmost

derivation in reverse is followed

5) It cannot handle left recursion The left recursive grammar is

handled by this parser

6) It is implemented using

recursive routines

It is a table driven method

7) It is applicable to small class

of grammar

It is applicable to large class of

grammar

n: 2 marks)

 MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION
 (Autonomous)

 (ISO/IEC - 27001 - 2013 Certified)

 SUMMER– 18 EXAMINATION
 Subject Name: System Programming Model Answer Subject Code:

 Page 18 of 27

17634
 (d) Write the purpose of storage allocation and interpretation phase. 4M

 Ans: The purpose of storage allocation is to:

1) Assign storage to all variables referenced in the source program.

2) Assign storage to all temporary locations that are necessary for intermediate

results, e.g. the results of matrix lines. These storage references were reserved by

the interpretation phase and did not appear in the source code.

3) Assign storage to literals.

4) Ensure that the storage is allocated and appropriate locations are initialized.

The purpose of interpretation phase is to:

1) This phase is typically a collection of routines that are called when a construct is

recognized in syntactic phase.

2) The purpose of these routines is to on intermediate form of the source program

and add information to identifier table. It interprets the precise meaning into the

matrix or identifier table.

(Purpose of

storage

allocation : 2

marks and

interpretatio

n phase: 2

marks)

 (e) Describe what is dynamic binding . 4M

 Ans: In dynamic binding, the binder first prepares a load module in which along with

program code the allocation and relocation information is stored. The loader

simply loads the main module in the main memory. If any external ·reference to a

subroutine comes, then the execution is suspended for a while, the loader brings

the required subroutine in the main memory and then the execution process is

resumed. Thus dynamic binding both the loading and linking is done dynamically.

Advantages

1) The overhead on the loader is reduced. The required subroutine will be

load in the main memory only at the time of execution.

2) The system can be dynamically reconfigured.

Disadvantages

1) The linking and loading need to be postponed until the execution. During the

execution if at all any subroutine is needed then the process of execution

needs to be suspended until the required subroutine gets loaded in the main

memory

(Description:

4 marks)

 (f) Write what is meant by overlays. Explain with a diagram.

 Overlay: An overlay is a part of a program (or software package) which has the same

load origin as some other part(s) of the program. Overlays are used to reduce the main

memory requirement of a program.

Explanation:

The subroutines of a program are needed at different times. For e.g. Pass 1 and

pass 2 of an assembler are call other subroutine it is possible to produce an overlay

structure that identifiers mutually exclusive subroutines.

In order for the overlay structure to work it is necessary for the module loader

(Description:

2 marks,

Diagram with

its

description: 2

marks)

 MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION
 (Autonomous)

 (ISO/IEC - 27001 - 2013 Certified)

 SUMMER– 18 EXAMINATION
 Subject Name: System Programming Model Answer Subject Code:

 Page 19 of 27

17634
to the various procedures as they are needed. The portion of the loader that actually

intercepts the “calls” and loads the necessary procedure is collect the overlay

supervision or simply the upper.

Above program consisting of five subprogram (A, B, C, D & E) that require look

bytes of core. The arrow indicate that subprogram A only calls B, D and E;

subprogram B only calls C and E; subprogram D only calls E; and subprogram C and

E do not call any other routine procedures B and D are never in use at the same time;

neither are C and E. If are load only those procedures that are actually to be used at

any particular time, the amount of core needed is equal to the longest path of the

overlay structure. This happens to be 70k.

Overlay reduces the memory requirement of a program. It also makes it

possible to execute program where size exceeds the amount of memory which can be

allocated to them.

For the execution of overlay structured program, the root is loaded in memory and

given control for the execution. Other overlays are loaded as and when headed.

Loading of an overlay overwrite a previously loaded overlay with the same load

origin.

5. Answer any FOUR of the following: 16 Marks

 (a) Explain the significance of System Programming. 4M

 Ans: {{**Note: Any relevant answer shall be considered**}}

1. System programming, as an operating system, compiler, or utility program that

controls some aspect of the operation of a computer

2. It deals with computer components like registers and memory locations.

3. It is useful to control and manage computer systems

4. It is concerned with data transfer, reading from and writing to files, compiling,

linking, loading, starting and stopping programs, and even fiddling with the

individual bits of a small word of memory.

5. It deals with writing device drivers and operating systems, or at least directly using

(Any 4

Significance: 1

mark each)

 MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION
 (Autonomous)

 (ISO/IEC - 27001 - 2013 Certified)

 SUMMER– 18 EXAMINATION
 Subject Name: System Programming Model Answer Subject Code:

 Page 20 of 27

17634
them; programmers exploit this low-level knowledge.

6. Generally feature extremely small run-time images, because they often have to run

in resource constrained environments

7. If implemented properly, can be very efficient: to take advantage of the hardware.

8. System programs can sometimes be written to extend the functionality of the

operating system itself and provide functions that higher level applications can use.

9.

 (b) Write the issues in implementation of a single pass macro processor. 4M

 Ans: 1 It requires additional variables as Macro Definition Input (MDI) and Macro

Definition Level Counter (MDLC) and its status needs to be maintained.

2 While performing Macro Definition pass simultaneously with “Macro Expansion

pass there must be two separate Argument List Arrays maintained.

3 Separate Read Sub routine needs to be maintain.

(Any 2

Issues: 2

marks each)

 (c) Write four methods of machine independent optimization 4M

 Ans: The possible algorithm for four optimization techniques are as follows:-

1) Elimination of common sub expression

2) Compile time compute.

3) Boolean expression optimization.

4) Move invariant computations outside of loops.

1) Elimination of common sub expression: -The elimination of duplicate matrix

entries can result in a more can use and efficient object program. The common

sub-expression must be identical and must be in the same statement.

i. The elimination algorithm is as follows:-

ii. Place the matrix in a form so that common sub-expression can be recognized.

iii. Recognize two sub-expressions as being equivalent.

iv. Eliminate one of them.

v. After the rest of the matrix to reflect the elimination of this entry.

(4 methods: 1

mark each)

 MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION
 (Autonomous)

 (ISO/IEC - 27001 - 2013 Certified)

 SUMMER– 18 EXAMINATION
 Subject Name: System Programming Model Answer Subject Code:

 Page 21 of 27

17634

2) Compile time compute: - Doing computation involving constants at compile time

save both space and execution time for the object program.

The algorithm for this optimization is as follows:-

i. Scan the matrix.

ii. Look for operators, both of whose operands were literals.

iii. When it found such an operation it would evaluate it, create new literal,

delete old line

iv. Replace all references to it with the uniform symbol for the new literal.

v. Continue scanning the matrix for more possible computation.

For e.g.- A = 2 * 276 / 92 * B

The compile time computation would be

Matrix Before optimization Matrix After optimization

3) Boolean expression optimization: - We may use the properties of boolean

expression to shorten their computation.

e.g. In a statement If a OR b Or c,

Then …… when a, b & c are expression rather than generate code that will

always test each expression a, b, c. We generate code so that if a computed as

true, then b OR c is not computed, and similarly for b.

4) Move invariant computation outside of loops: - If computation within a loop

depends on a variable that does not change within that loop, then computation

may be moved outside the loop.

 MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION
 (Autonomous)

 (ISO/IEC - 27001 - 2013 Certified)

 SUMMER– 18 EXAMINATION
 Subject Name: System Programming Model Answer Subject Code:

 Page 22 of 27

17634
This requires a reordering of a part of the matrix. There are 3 general problems

that need to be solved in an algorithm.

1. Recognition of invariant computation.

2. Discovering where to move the invariant computation.

3. Moving the invariant computation.

 (d) Explain with an example how linear search is performed. 4M

 Ans: In Linear Search algorithm, it start with the first element in the list. Compare the

current element to the key element, if the current element matches the key element

then it is declare search found and stop. If the current element is not equal to the key

element then set the current element to be the next element and repeat above sequence

till end. At the end if element is not found then simply declare element is not exist in

list.

Example: -

78 64 54 75 47 34 46

Search Number: 54 in the list, i.e. key = 54

78 64 54 75 47 34 46

No Match; Take next number:

78 64 54 75 47 34 46

No Match: Take next number:

78 64 54 75 47 34 46

Match Found (Target = 54)

Search found Stop

(Description :

2 marks,

Example: 2

marks)

 MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION
 (Autonomous)

 (ISO/IEC - 27001 - 2013 Certified)

 SUMMER– 18 EXAMINATION
 Subject Name: System Programming Model Answer Subject Code:

 Page 23 of 27

17634
 (e) Define Parser. Draw the parse tree for the string abbccd.

 Parser: - It is a system software that construct the parsing tree to identify syntactical

errors in given statement. It can generate tree in top down approach or bottom up

approach.

Assume Given grammar as follows: -

S xyz | aBCD

B b|bB

C c|cC

D d

(Definition: 2

marks,

Parse tree: 2

marks)

 (f) Explain how Grammar is used for finding syntactic error in syntax analysis

phase of compiler.

 1. Reductions are tested consecutively for match between Old Top of Stack field and

the actual Top of Stack, until match is found.

2. When Match is found, the action routine specified in the action field are executed

in order from left to right.

3. When control returns to the syntax analyser, it modifies the Top of the Stack to

agree with the New Top of Stack field.

4. Step 1 is then repeated starting with the reduction specified in the next reduction

field.

(4 steps : 1

mark each)

 MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION
 (Autonomous)

 (ISO/IEC - 27001 - 2013 Certified)

 SUMMER– 18 EXAMINATION
 Subject Name: System Programming Model Answer Subject Code:

 Page 24 of 27

17634
6. Answer any TWO of the following: 16 Marks

 (a) Sort the given numbers in descending order using radix exchange sort. Show the

steps:

78, 387, 42, 09, 12, 881

8M

 Ans: Pass 1:

Step 1: - Equalize numbers for 3 digit.

078, 387, 042, 009, 012, 881

Step 2: - Put Numbers in associated place. Consider LSB, i.e. unit position.

 0 1 2 3 4 5 6 7 8 9

078 078

387 387

042 042

009 009

012 012

881 881

Step 3: - Retrieve the data in reverse sequence.

009, 078, 387, 042, 012, 881

Pass 2:

Step 4: - Put Numbers in associated place. Consider 10
th

 position (Since numbers

needs to arrange in descending order arrange cells in descending order.

 0 1 2 3 4 5 6 7 8 9

009 009

078 078

387 387

042 042

012 012

881 881

Step 5: - Retrieve the data in reverse sequences.

387, 881, 078, 042, 012, 009

Pass 3:

Step 6: - Put Numbers in associated place. Consider 100
th

 position (Since numbers

needs to arrange in descending order arrange cells in descending order.

(Pass 1: 3

marks, Pass

2: 3 marks,

Pass 3: 2

marks)

 MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION
 (Autonomous)

 (ISO/IEC - 27001 - 2013 Certified)

 SUMMER– 18 EXAMINATION
 Subject Name: System Programming Model Answer Subject Code:

 Page 25 of 27

17634
 0 1 2 3 4 5 6 7 8 9

387 387

881 881

078 078

042 042

012 012

009 009

Step 7: - Retrieve the data in reverse sequences.

881, 387, 078, 042, 012, 009

 (b) Draw a flow chart of Pass I of a two pass macroprocessor. 8M

 Ans:

(Correct flow

chart: 8

marks)

 MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION
 (Autonomous)

 (ISO/IEC - 27001 - 2013 Certified)

 SUMMER– 18 EXAMINATION
 Subject Name: System Programming Model Answer Subject Code:

 Page 26 of 27

17634

 (c) Describe the databases used in lexical, syntactic and Symantic phases of

compiler.

8M

 Ans: Databases used in Lexical Phase:

1. Source Program: Original form of program; appears to the compiler as a string of

characters.

2. Terminal table: A permanent database that has an entry for each terminal symbol.

Each entry consists of the terminal symbol, an indication of its classification and

its precedence.

Symbol Indicator Precedence

3. Literal Table: - Created by lexical analysis to describe all literal used in the source

program. There is one entry for each literal consisting of a value, a number of

attributes, an address denoting the location of the literal at execution time, and

other information.

Literal Base Scale Precision Other Information Address

4. Identifier table: -

Created by Lexical analysis to describe all identifiers used in the source program.

There is one entry for each identifier. Lexical analysis creates the entry and places

the name of the identifier into that entry. Since in many languages identifiers may

be from 1 to 31 symbols long the lexical phase may enter a pointer in the identifier

table for efficiency of storage.

Name Data Attributes Address

5. Uniform Symbol Table: Created by Lexical analysis, to represent the program as a

string of tokens rather than of individual characters. Each uniform symbol

contains the identification of the table of which the token is a member.

Table Index

Databases used in Syntactic and Semantic Phase of Compiler:-

1. Uniform Symbol Table: -

Created by lexical phase and containing the source program in the form of

uniform symbols. It is used by the syntax and interpretation phases as the source

of input to the stack. Each symbol from the UST Enters the stack only once.

Table Index

(Database for

Lexical

Phase: 5

marks,

Syntactic and

Semantic

Phase

Database: 3

marks)

 MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION
 (Autonomous)

 (ISO/IEC - 27001 - 2013 Certified)

 SUMMER– 18 EXAMINATION
 Subject Name: System Programming Model Answer Subject Code:

 Page 27 of 27

17634
2. Stack: -

The stack is the collection of uniform symbols that is currently being worked on

by the syntax analysis and interpretation phases. Additions to or deletions from

the stack are made by the phases that use it. The stack is organized on LIFO basis.

Term Top of stack refers to the most recent entry and Bottom of Stack refers to

the oldest of entry.

3. Reductions: - The syntax rules of the source language are contained in the

reduction table. The syntax analysis phase in an interpreter driven by the

reductions. The general form of the rule of reduction is

Label: Old Top of Stack / Action Routines/ New Top of Stack/ Next Reduction

