21718 3 Hours / 100 Marks

Seat No.								
----------	--	--	--	--	--	--	--	--

Instructions:

- (1) All Questions are *compulsory*.
- (2) Answer each next main Question on a new page.
- (3) Illustrate your answers with neat sketches wherever necessary.
- (4) Figures to the right indicate full marks.
- (5) Assume suitable data, if necessary.
- (6) Use of Non-programmable Electronic Pocket Calculator is permissible.
- (7) Mobile Phone, Pager and any other Electronic Communication devices are not permissible in Examination Hall.

Marks

1. Attempt any TEN of the following:

 $10 \times 2 = 20$

- (a) Define Mechanical Advantage (MA) & Velocity Ratio (VR).
- (b) Define effort and state its SI units.
- (c) Define ideal machine.
- (d) Define force & state its SI units.
- (e) State principle of transmissibility.
- (f) Draw diagram of like parallel & unlike parallel force system.
- (g) What is space diagram and vector diagram?
- (h) State Lami's theorem.
- (i) State relation between resultant and equilibrant.
- (j) Define angle of repore.
- (k) State advantages of friction.
- (1) State VR of screw jack and give the meaning of each terms used in it.

[1 of 8] P.T.O.

17204 [2 of 8]

2. Attempt any FOUR:

- $4 \times 4 = 16$
- (a) The law of machine is P = 0.02 W + 30 N. It has velocity ratio of 82. Calculate effort & effort lost in friction for a load of 1200 kN.
- (b) In a differential axle & wheel, the diameter of wheel is 400 mm & diameter of bigger axle is 100 mm and smaller axle is 80 mm. If an effort of 50 N can lift a load of 1500 N. Find the velocity ratio & efficiency of the machine.
- (c) A screw jack has pitch of 5 mm and length of lever as 150 mm. An effort required to lift a load of 80 kN is 500 N. Calculate the efficiency and state the type of machine.
- (d) Find the orthogonal component of the following forces:
 - (1) 300 N acting NE, (2) 500 N acting 30° west of south, (3) 25 N due south &(4) 50 N due North.
- (e) Define couple and state any four properties of couple.
- (f) Calculate the resultant in magnitude, direction and position with respect to 30 N force for the parallel forces system as shown in fig (I).

fig (I).

3. Attempt any FOUR:

 $4 \times 4 = 16$

(a) Four forces act on a bar as shown in fig (II). Determine their resultant in magnitude and direction, if AB = 2 m, BC = 2 m, CD = 3 m.

fig (II).

(b) Calculate the resultant of force system as shown in fig (III).

fig (III).

- (c) Solve graphically Q. No. 3(b)
- (d) Calculate the resultant of force system as shown in fig (IV). w.r.t. A point.

P.T.O.

17204 [4 of 8]

- (e) Define space diagram, vector diagram. State the use of vector diagram in graphic statics.
- (f) Two forces of magnitude 100 N pull and 80 N push are acting at a point making an angle of 135° between them. Find the resultant in magnitude & direction.

4. Attempt any FOUR:

 $4 \times 4 = 16$

(a) Two cables are tied together at C and loaded as shown in fig (V). Determine the tension in cables AC & BC using Lami's theorem.

- (b) State the relation between resultant and equilibrium. Also state analytical conditions of equilibrium for non-concurrent force system.
- (c) A beam AB 6 m long rests on two supports 4 m apart the right hand end is over hanging by 2 m, the beam carries a udl of 4 kN/m over the entire span. Determine the reactions of supports.
- (d) A beam AB is loaded as shown in fig (VI). Calculate the reactions at A & B.

17204 [5 of 8]

(e) Calculate the reaction given by the plane at A & B supporting a 800 N sphere as shown in fig (VII).

fig (VII).

(f) Solve Question No. 4 (d) graphically.

5. Attempt any FOUR:

 $4 \times 4 = 16$

- (a) A block of weight 200 N rest on a rough horizontal surface. Find the magnitude of the force to be applied at an angle of 30° to the horizontal in order to just move the body on the surface. Assume $\mu = 0.30$.
- (b) A body of weight 300 N is resting on inclined plane making an angle of 30° to the horizontal. A pull of 80 N applied parallel & up the plane. Calculate co-efficient of friction and force of friction.
- (c) A block weighing 50 N is resting on 30° rough inclined plane. A force of 12 N parallel to plane is applied to the block up the plane and the block is just on the point of moving down the plane. Find the co-efficient of friction.
- (d) Draw a neat & labelled sketch of ladder friction. Show all forces acting on it.
- (e) What do you understand by the term 'Reversibility' of a machine? Explain the difference between a reversible and a self locking machine.

17204 [6 of 8]

- (f) In a machine, it was found that an effort had to be moved through a distance of 500 mm to move load by 50 mm. Using this machine a load of 10 kN was raised by an effort of 1.25 kN. Determine :
 - (i) Velocity ratio
 - (ii) Mechanical advantage
 - (iii) Efficiency
 - (iv) Effort lost in friction

6. Attempt any FOUR:

 $4 \times 4 = 16$

- (a) Determine centroid of T section with respect to bottom having flange $200 \text{ mm} \times 20 \text{ mm}$ and web $20 \times 200 \text{ mm}$.
- (b) Locate the centroid of angle section ISA $150 \times 150 \times 10$ mm.
- (c) Calculate the \overline{X} for the channel section as shown in fig. (VIII).

fig (VIII).

17204 [7 of 8]

- (d) A solid cone having base diameter 150 mm and height 150 mm is placed on top of cylinder of dia. 150 mm and height 200 mm such that axis are co-linear locate C.G. w.r.t. bottom.
- (e) On a solid inverted cone 200 mm diameter and 600 mm height a sphere of 300 mm diameter is placed co-axially locate C.G. w.r.t. apex of cone.
- (f) A right circular cone of base dia. 100 mm and height 200 mm is placed on the hemisphere of the same diameter. Calculate its C.G.

17204 [8 of 8]