

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

SUMMER-17 EXAMINATION Model Answer

Subject code

17651

page 1 of 29

Important Instructions to examiners:

- 1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme.
- 2) The model answer and the answer written by candidate may vary but the examiner may try to assess the understanding level of the candidate.
- 3) The language errors such as grammatical, spelling errors should not be given more Importance (Not applicable for subject English and Communication Skills.
- 4) While assessing figures, examiner may give credit for principal components indicated in the figure. The figures drawn by candidate and model answer may vary. The examiner may give credit for any equivalent figure drawn.
 - 5) Credits may be given step wise for numerical problems. In some cases, the assumed constant values may vary and there may be some difference in the candidate's answers and model answer.
 - 6) In case of some questions credit may be given by judgement on part of examiner of relevant answer based on candidate's understanding.
 - 7) For programming language papers, credit may be given to any other program based on equivalent concept.

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

SUMMER-17 EXAMINATION Model Answer

Subject code

17651

page 2 of 29

Q No.		Ans	wer		Marks
1	Attempt any	FIVE of the following			20
1-a	Four Indian	refineries with their locat	tion and capacity.		1 mark
		Name	Location	Capacity (MMTPA)	each for any four
		Reliance petroleum Ltd	Jamnagar	33	
		Indian Oil Corporation Limited	Koyali in Gujarat	13.7	
		Manglore Refinery and Petrochemicals Ltd	Manglore in Karnataka	9.69	
		Chennai Petroleum Corporation Ltd	Manali	9.5	
		Indian Oil Corporation Limited.	Mathura in Uttar Pradesh	8.0	
		Cochin Refineries Ltd.	Cochin, Kerala.	7.5	
		Hindustan Petroleum Corporation Ltd.	Visakhapattanam in Andhra Pradesh	7.5	
		Bharat Petroleum Corporation Ltd.	Mumbai.	6.9	
		Indian Oil Corporation Limited	Panipat in Haryana	6.0	
		Indian Oil Corporation Limited	Barauni in Bihar	6.0	
		Hindustan Petroleum Corporation Ltd.	Mumbai	5.5	
	Note: Any other Ind	lian refineries should be g	riven due considerati	on	
1-b	-	es for gasoline			½ mark
		I distillation: specifies the	evaporation character	istics of gasoline	each for

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

SUMMER-17 EXAMINATION Model Answer

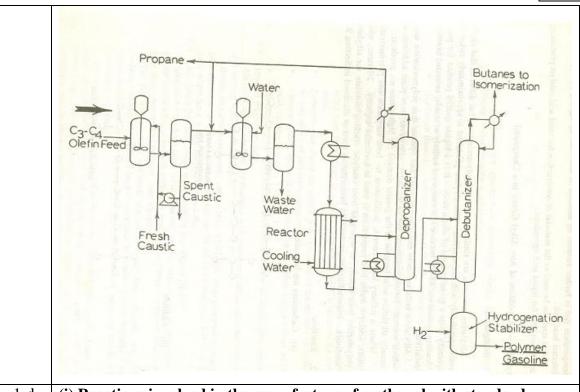
Subject code 17651 page 3 of 29

	1/6	151 Page 3
	which gives an idea of the flash point	naming any
	2. Reid vapour pressure (volatility tests): volatility tests are intended for	four
	smooth performance of engine under all weather.	
	3. Octane number: It is used for measuring the anti knocking qualities of	
	gasoline	
	4. Gum content: specifies the oxidation stability of gasoline	
	5. Sulfur content	
	Test properties for diesel	½ mark
	1. Pour point	each for
	2. Aniline point-Diesel index (Cetane number)	naming any
	3. Flash point	four
	4. Calorific value	
	5. Viscosity.	
1-c	Flow sheet for polymerization process	4

(Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

SUMMER-17 EXAMINATION Model Answer


Subject code

17651

page 4 of 29

1

1

1-d (i) Reactions involved in the manufacture of methanol with standard conditions:

Methanol is produced by catalytic hydrogenation of CO

Main reaction: $CO + 2H_2 \rightarrow CH_3OH$

Side reactions: $CO + 3H_2 \rightarrow CH_4 + H_2O$

 $2CO + 2H_2 \rightarrow CH_4 + CO_2$

xCO + y H₂ →high molecular weight alcohols and hydro carbons

 $Temperature: 300^{0}C$

Pressure: 200-300 atm

Catalyst: Mixed catalyst of Zn, Cr, Mn Or Al oxides

(ii) Reactions involved in the manufacture of Formaldehyde with standard conditions:

i. oxidation

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

SUMMER-17 EXAMINATION Model Answer

			Subject code	176	51 page 5 o
	$CH_3OH + 1/2 O_2$	→HCHO + H ₂ O			
	ii. Pyrolysis				1
	СН₃ОН→НСНО	+ H ₂			
	iii. Side reaction				
	CH₃OI	$H + 3/2 O_2 \rightarrow 2H_2O + CO_2$			
	Temperature: 450-	-550^{0} C			
	Pressure: 1.2a	utm			1
	Catalyst: Ag or Cu	a gauze or their oxides.			
1-e	Fractions obtained	ed from crude oil with th	eir boiling point range		1 mark
		Fractions	Boiling point range	1	each for
					any four
		1. Uncondensed gases	< 30°C		
		2. Petroleum ether	30-70°C		
		3.Gasoline or petrol or motor spirit	40-120°C		
		4. Naphtha	120-180°C		
		5. Kerosene oil	180-250°C		
		6. Diesel oil	250-320°C		
		7.Heavy oil On vacuum distillation of heavy oil gives lubricating oil, petroleum jelly, greases, paraffin wax etc.	320-400°C		
		8.Residue	> 400°C		

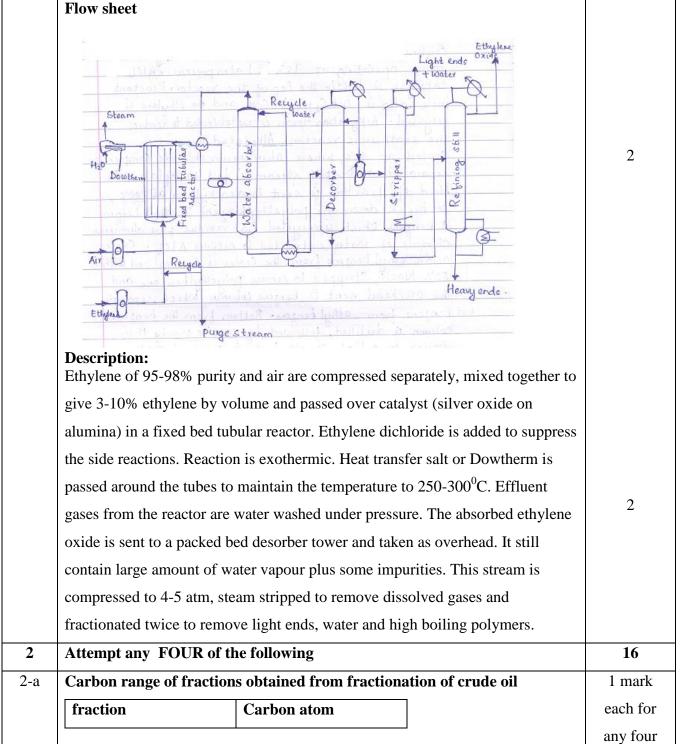
(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

SUMMER-17 EXAMINATION Model Answer

Subject code

nage **6** of **29**

Waste water treatment in petroleum and petrochemical industry. Four process of waste water treatment:		1 mark
Four process of weste water treatments		1 IIIuII
rour process of waste water treatment.		each
i. Primary treatment		
ii. Secondary treatment		
iii. Tertiary treatment		
iv. pretreatment		
Primary treatment:		
This treatment consists of oil removal in two stages by physical methods.	The	
first stage of oil removal is done in smallponds or basin where major portion	on of	
the oil is removed by using baffles, floatation and skimming methods.	The	
second stage of oil removal is mainly by API separator or other gra-	avity	
separator.		
Secondary treatment: This includes chemical method and biological met	thod.	
The main purpose of chemical method is to remove emulsified oil with add	lition	
of flocculating agents and also to remove suspended solids and toxic substa	nces	
thereby conditioning the effluent for further treatment by biological meth	nods.	
Biological treatment aims at the removal of all oxidisable and organic m	atter	
from the waste water.		
Tertiary treatment: This treatment removes specific pollutants to	meet	
regulatory discharge requirement. This includes chlorination, ion excha	ange,	
reverse osmosis, activated carbon etc.		
Pretreatment: It is done to remove water from the used oil. Water plus use	ed oil	
is placed in large settling tanks which separates oil and water. It involves		
following steps-a. Filtering & demineralization		
b. Propane Deasphalting process &		
c. Distillation.		
Manufacture of ethylene oxide		
	iii. Tertiary treatment Primary treatment: This treatment consists of oil removal in two stages by physical methods. first stage of oil removal is done in smallponds or basin where major portion the oil is removed by using baffles, floatation and skimming methods. second stage of oil removal is mainly by API separator or other graseparator. Secondary treatment: This includes chemical method and biological method and purpose of chemical method is to remove emulsified oil with add of flocculating agents and also to remove suspended solids and toxic substatements thereby conditioning the effluent for further treatment by biological method biological method is to remove a suspended solids and toxic substatements at the removal of all oxidisable and organic method is to remove water. Tertiary treatment: This treatment removes specific pollutants to regulatory discharge requirement. This includes chlorination, ion excharge reverse osmosis, activated carbon etc. Pretreatment: It is done to remove water from the used oil. Water plus use is placed in large settling tanks which separates oil and water. It involves following steps-a. Filtering & demineralization b. Propane Deasphalting process & c. Distillation.	iii. Tertiary treatment Primary treatment: This treatment consists of oil removal in two stages by physical methods. The first stage of oil removal is done in smallponds or basin where major portion of the oil is removed by using baffles, floatation and skimming methods. The second stage of oil removal is mainly by API separator or other gravity separator. Secondary treatment: This includes chemical method and biological method. The main purpose of chemical method is to remove emulsified oil with addition of flocculating agents and also to remove suspended solids and toxic substances thereby conditioning the effluent for further treatment by biological methods. Biological treatment aims at the removal of all oxidisable and organic matter from the waste water. Tertiary treatment: This treatment removes specific pollutants to meet regulatory discharge requirement. This includes chlorination, ion exchange, reverse osmosis, activated carbon etc. Pretreatment: It is done to remove water from the used oil. Water plus used oil is placed in large settling tanks which separates oil and water. It involves following steps-a. Filtering & demineralization b. Propane Deasphalting process & c. Distillation.



(Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

SUMMER-17 EXAMINATION Model Answer

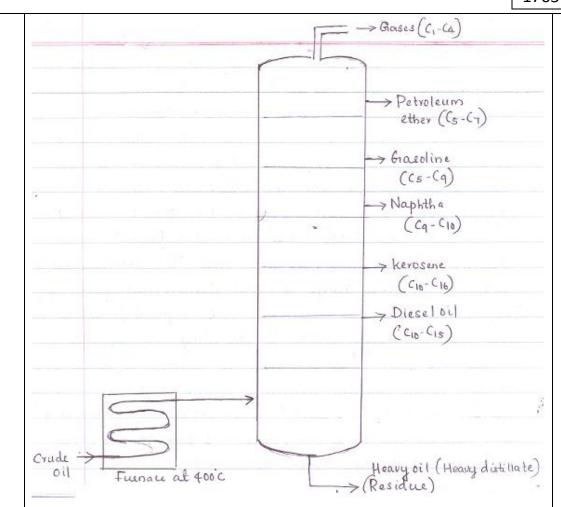
Subject code 17651 page 7 of 29

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

SUMMER-17 EXAMINATION Model Answer

			Subject code	17651	page 8 of 29
	Gases	1-4			
	Gasoline	5-12			
	Naphtha	8-12			
	Kerosene and jet fuel	11-13			
	Diesel and fuel oil	13-17			
	Atmospheric. Gas oil				
	Heavy fuel oil	20-45			
	Atmospheric distillation	Over 30			
	residue				
	Vacuum distillation	Over 60			
	residue				
2-b	Refining process.				
	Refining of crude takes	place in two stages-	first stage (Atmosp	heric	
	distillation) and second sta	ge (vacuum distillation.)			
	Atmospheric distillation:				
	Crude oil is preheated to	300-350°C in a tubular f	furnace. Hot vapours	plus	
	liquid are passed through	a tall fractionating column	.It consists of a numb	per of	2
	horizontal bubble cap tray	rs, which provide intimate	contact between esca	aping	
	vapours and downcoming	liquid. Separation of variou	us fractions is based of	on the	
	fact that hydrocarbons of c	rude oil boil at different ter	mperatures.		

(Autonomous)


(ISO/IEC - 27001 - 2005 Certified)

SUMMER-17 EXAMINATION Model Answer

Subject code

17651

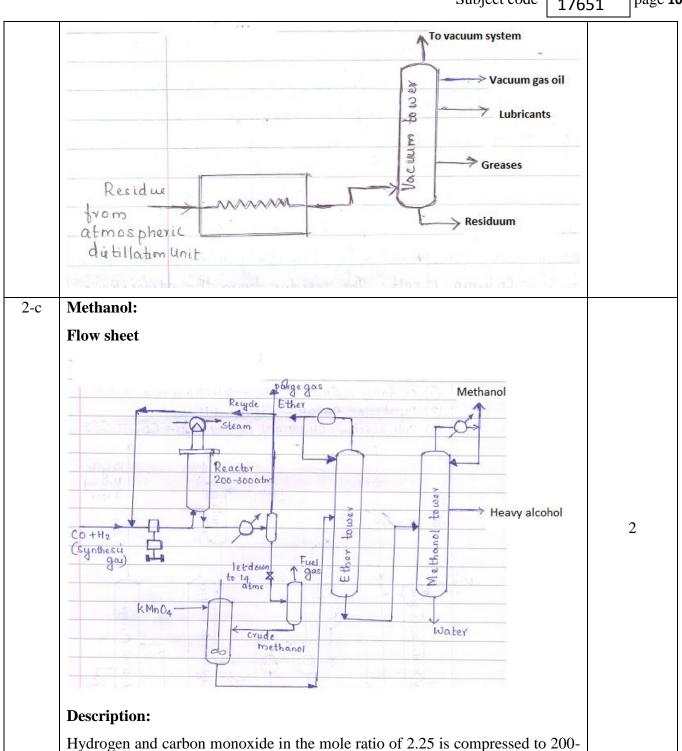
page **9** of **29**

Vacuum distillation:

Goudron or residuum.

The residue from the atmospheric distillation column is send to vacuum distillation unit where absolute pressure is maintained at 10 to 40mm of Hg using multiple stages of steam jet ejectors. Vacuum columns have large diameters. They use distillation trays only when products have to be withdrawn from sides. Often packing materials like structured sheet metal or randomly packed Raschig rings are used because packings has low pressure drop than distillation trays. The bottoms of vacuum distillation column is known as

2



(Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

SUMMER-17 EXAMINATION Model Answer

Subject code 17651 page **10** of **29**

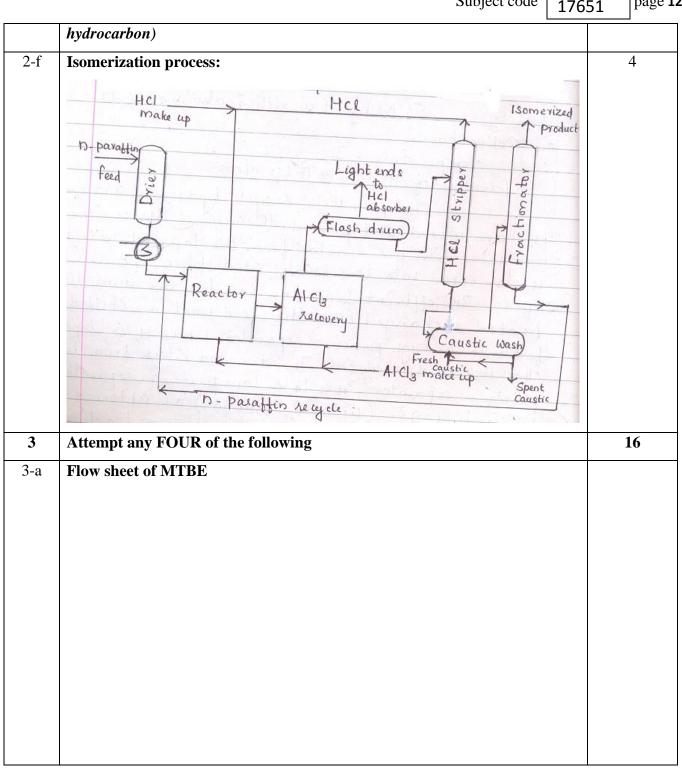
(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

SUMMER-17 EXAMINATION Model Answer

Subject code 17651 page 11 of 29

		17051	
	300 atm, mixed with recycle gas and fed to a high pressure converter. Inte		
	preheating is done to maintain the temperature of 300-375°C. Reactor is cop	pper	
	lined steel vessel and contains mixed catalyst of Zn, Cr, Mn Or Al oxides.	Exit	2
	gases are cooled by heat exchange with reactants, then with water. The metha	anol	
	condenses under full operating pressure to maximize yield. Liquid methano	ol is	
	depressurized, purified by potassium permanganatr to remove traces of keto	nes,	
	aldehydes and other impurities, sent to a stripper to remove light ends such	h as	
	dimethyl ether and to fractionators to separate methanol from high moiec	ular	
	weight compounds.		
2-d	Octane number: Octane number is defined as the percentage volume of		_
	isooctane in a mixture of isooctane and – heptanes that gives the same knock	king	2
	characteristics as the fuel under consideration		
	Cetane number:		
	It is defined as the percentage volume of n-cetane in a mixture of n-cetane	and	
	heptamethyl nonane that gives the same ignition delay as the fuel un	nder	2
	consideration.		
2-е	Chemicals derived from C1 hydrocarbon with application:		1 mark
	1. Methanol – in the production of formaldehyde, drugs, pesticides, chemic	als	each
	such as acetic acid, methyl amines, esters, component of gasoline-alcoho	ol	
	mixture for petrol engine (any one)		
	2. Formaldehyde – In the manufacture of phenolic, urea and melamine		
	resins,in the manufacture of methylene diisosyanate, 1,4butandiol (any o	one)	
	3. Chloromethane in the production of silicons, tetramethyl lead, synthet	ic	
	rubber, herbicides, amines(any one)		
	4. Methylene dichloride – Good paint removal solvent, good propellant fo	r	
	aerosols(any one)		
	(Due consideration should be given for any other chemical derived from	<i>C1</i>	
l			

(Autonomous)


(ISO/IEC - 27001 - 2005 Certified)

SUMMER-17 EXAMINATION Model Answer

Subject code

17651

page **12** of **29**

(Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

SUMMER-17 EXAMINATION Model Answer

Subject code

17651

page **13** of **29**

4

4

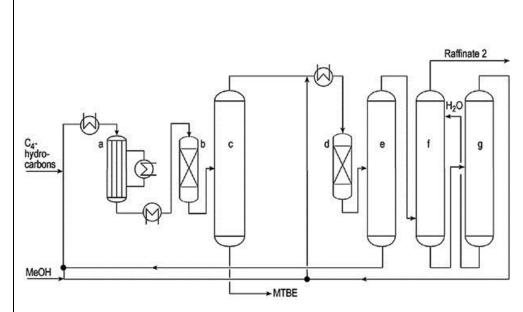


Figure: Two-stage Oxeno-MTBE-Process

First stage: a) Multi tubular reactor; b) Adiabatic reactor; c) First C4 distillation tower (debutanizer)

Second stage d) Secondary adiabatic reactor e) Second C4 distillation tower for Methanol recovery f) Methanol extraction g) Methanol tower

3-b Udex process

Extractor consists of packed or plate column, where the feed is introduced at the bottom and the solvent is fed counter current to feed. The temperature is kept around 40-50°C. Extract is the desirable product. Extract and raffinate are settled in a settling column. Most of the raffinate is send to the extractor as reflux. Rich extract from the bottom of the column goes to a stripper, where solvent and aromatics are separated. Aromatics still contain some as impurity which is removed by washing with water in a wash solvent column.BTX is obtained as top product from the washer. Non aromatics raffinate can be easily purified by washing with water alone.

(Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

SUMMER-17 EXAMINATION Model Answer

Subject code 17651 page 14 of 29

Subject code 176	51 page
Reformate 12 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	
3-c Test properties:	½ mark
(i) Gasoline:	each for
1. ASTM distillation: specifies the evaporation characteristics of gasoline	any 2
which gives an idea of the flash point	
2. Reid vapour pressure (volatility tests): volatility tests are intended for	
smooth performance of engine under all weather.	
3. Octane number: It is used for measuring the anti knocking qualities of	
gasoline	
4. Gum content: specifies the oxidation stability of gasoline	
5. Sulfur content	
(ii)Kerosine	
1. Flash point and fire point	
2. Smoke point(Burning quality)	½ mark
3. Volatility	each for
4. Sulfur content	any 2
5. Aniline point	
(iii)Diesel	

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

SUMMER-17 EXAMINATION Model Answer

	Subject code	17651	page 15 of 29
	1. Pour point	1/2	mark
	2. Aniline point-Diesel index (Cetane number)	ea	ch for
	3. Flash point	a	ny 2
	4. Calorific value		
	5. Viscosity.		
	(iv)Lubricating oil	1/2	mark
	1. Flash point	ea	ch for
	2. Pour point	a	ny 2
	3. Viscosity and viscosity index		
	4. Oxidation stability		
	5. Carbon residue		
3-0	Formaldehyde		
	Flow sheet		
	Methanol Heated Air Formalddehyde 37%Solution		2
	Description:		
	Reactions: oxidation		
	$CH_3OH + 1/2 O_2 \rightarrow HCHO + H_2O$		

(Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

SUMMER-17 EXAMINATION Model Answer

Subject code

17651

page **16** of **29**

2

ii. Pyrolysis

 $CH_3OH \rightarrow HCHO + H_2$

iii. Side reaction

 $CH_3OH + 3/2 O_2 \rightarrow 2H_2O + CO_2$

Temperature: 450-550°C

Pressure: 1.2atm

Catalyst: Ag or Cu gauze or their oxides.

Air is sent for pre-heating using reactor outlet product. Eventually heated air and methanol are fed to a methanol evaporator unit. The feed ratio is about 30 – 50 % for CH₃OH: O₂. After reaction, the product is a vapour mixture with temperature 450 – 900°C. The product gas is cooled and then fed to the absorption tower. From the absorber, HCHO + methanol rich water stream is obtained as the bottom product. The stream is sent to a light end stripper eventually to remove any light end compounds that got absorbed in the stream. The light end stripper bottom product is fed to a distillation tower that produces methanol vapour as the top product and 37% formaldehyde as the bottom product.

3-e **Alkylation**

Description

In cascade type sulfuric acid (H₂SO₄) alkylation units, the feedstock (propylene, butylenes and fresh isobutane) enters the reactor and contacts the concentrated sulfuric acid catalyst (in concentrations of 85% to 95% for good operation and to minimize corrosion). The reactor is divided into zones, with olefins fed through distributors to each zone, and the sulfuric acid and isobutanes flowing over baffles from zone to zone. The reactor effluent is separated into hydrocarbon and acid phases in a settler, and the acid is returned to the reactor.

2

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

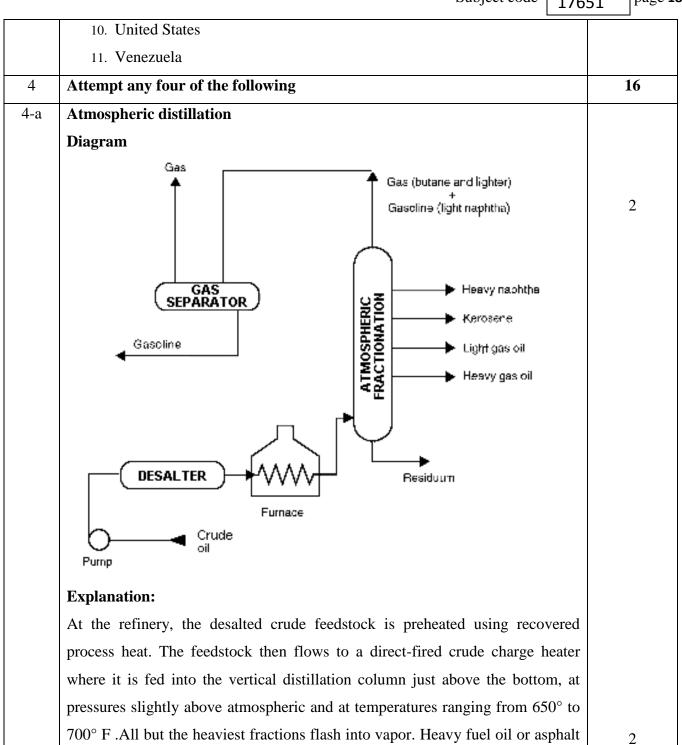
SUMMER-17 EXAMINATION Model Answer

Subject code

17651

page 17 of 29

The hydrocarbon phase is hot-water washed with caustic for pH control before being successively depropanized, deisobutanized, and debutanized. The alkylate obtained from the deisobutanizer can then go directly to motor-fuel blending or be rerun to produce aviation-grade blending stock. The isobutane is recycled to the feed. **Flow Sheet** Recycle isobutane Feedstock 2 REACTOR DEISOBUTANIZER ACID SETTLER Alkylate Recycle acid Fresh acid Reject acid 3-f ½ mark Global crude oil producers each for Kuwait any 8 Brazil Mexico **United Arab Emirates** Canada Iran China Russia Saudi Arabia



(Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

SUMMER-17 EXAMINATION Model Answer

Subject code 17651 page **18** of **29**

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

SUMMER-17 EXAMINATION Model Answer

Subject code

17651

page **19** of **29**

residue is taken from the bottom. At successively higher points on the tower, the various major products including lubricating oil, heating oil, kerosene, gasoline, and uncondensed gases (which condense at lower temperatures) are drawn off.

The fractionating tower, a steel cylinder about 120 feet high, contains horizontal steel trays for separating and collecting the liquids. At each tray, vapors from below enter perforations and bubble caps. They permit the vapors to bubble through the liquid on the tray, causing some condensation at the temperature of that tray. An overflow pipe drains the condensed liquids from each tray back to the tray below, where the higher temperature causes reevaporation.

4-b **Hydrocracking**

Description

Hydrocracking is a two-stage process combining catalytic cracking and hydrogenation, wherein heavier feed stocks are cracked in the presence of hydrogen to produce more desirable products. Charge stock, recycle hydrogen and make up hydrogen are mixed and passed through a heater. The mixture enters the reactor from the top while cold hydrogen is admitted in to the reactor at different points. The effluent from the reactor is immediately heat exchanged with the feed mixture, chilled and fed in to a high pressure separator where hydrogen is separated and recycled. The treated stock from high pressure separator goes to low pressure separator where fuel gas are obtained. Liquid fractions from the bottom are sent to fractionators where distillates are separated and heavy oil from the bottom is recycled.

Flow Sheet

2

(Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

SUMMER-17 EXAMINATION Model Answer

Subject code 17651 page 20 of 29 Fresh gas Quench Products Recycle gas compressor 2 FRACTIONATION separator separator Recycle Two Stage Hydrocracking 4-c Petrochemicals derived from C2 hydrocarbon ½ mark Ethylene - the simplest olefin; used as a chemical feed stock and each for ripening stimulant naming any 2. Tetrachloroethylene - also called perchloroethylene; used as a dry 4 and $\frac{1}{2}$ cleaning solvent and degreaser mark each for writing Vinyl Chloride: used to make polyvinyl chloride (PVC) any one Acetylene: used as a fuel and a chemical building block application Ethanol: Solvent in the manufacture of varnishes, in medicines and drugs, as a disinfectant, antidote to methanol poisoning

Ethylene oxide: used in the production of ethylene glycol, detergents,

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

SUMMER-17 EXAMINATION Model Answer

	Subject code	17651	page 21 of 29
ethanol amines,glycol ethers			
7. Styrene: in the manufacture of polystyrene, st	tyrene butadiene ru	bber,	
styrene acrylonitrile, polyester resins			
4-d Chemical reactions involved in the manufacture of			
(i) Butadiene			
Main reaction: : n-Butane → Butadiene + Hydrogen.			
$C_4H_{10} \rightarrow CH_2 = CH - CH = CH_2 + 2H_2$			2
Side reaction: n-Butane→ n-Butylene + Hydrogen.			
$C_4H_{10} \rightarrow : C_4H_8 + H_2$			
(ii) Butyl acetate			
Butyl alcohol	Water H ₂ O + O CH ₃ COCH ₂ CH ₃ CH Butyl acetate	3	2
4-e Definition			
(i) Thermal cracking			
It is a process that breaks or cracks the heavier, higher b	boiling-point petrole	eum	
fractions into more valuable products such as gasoline,	fuel oil, and gas oils	8	2
with the application of high temperature and pressure.			
Eg Cracks large hydrocarbon molecules to lighter hydro	ocarbons like LPG a	ind	
gasoline			
(ii) Catalytic cracking			

(Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

SUMMER-17 EXAMINATION Model Answer

Subject code 17651 page 22 of 29

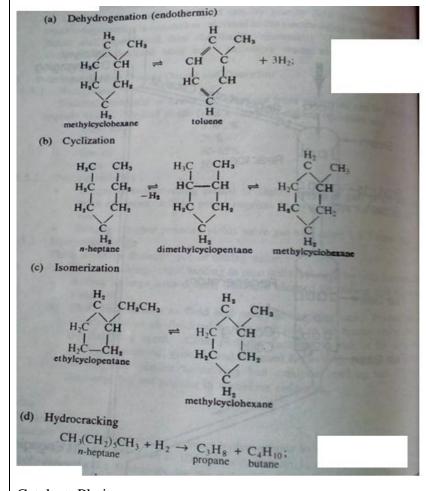
	L.		
	Catalytic cracking breaks complex hydrocarbons into simpler molecules v	with	
	the help of a catalyst(under less severe temperature compared to there	mal	
	cracking) in order to increase the quality and quantity of lighter, more desira	able	2
	products and decrease the amount of residuals. This process rearranges	the	
	molecular structure of hydrocarbon compounds to convert heavy hydrocarbon	bon	
	feedstock into lighter fractions such as kerosene, gasoline, LPG, heating	oil,	
	and petrochemical feedstock.		
	Eg Cracks heavy gas oil into gasoline of high octane number		
4-f	Composition of petroleum		
	Hydrocarbons in crude oil:		
	There are four main types of hydrocarbons found in crude oil.		
	1. paraffins (15-60%)		2
	2. naphthenes (30-60%)		
	3. aromatics (3-30%)		
	4. asphaltics (remainder)		
	Elemental composition of petroleum		
	1. Carbon - 83 to 87%		
	2. Hydrogen - 10 to 14%		
	3. Nitrogen - 0.1 to 2%		
	4. Oxygen - 0.05 to 1.5%		2
	5. Sulfur - 0.05 to 6.0%		
	6. Metals - < 0.1%		
5	Attempt any FOUR of the following		16
5-a	Uses of (any two)	2 1	marks
	(i) MTBE: -fuel component in fuel for gasoline engines, react	tion	each
	medium & extraction solvent to replace aromatics		
1	1		

(Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

SUMMER-17 EXAMINATION Model Answer

Subject code


17651

page 23 of 29

- (ii) Styrene: in the manufacture of polystyrene, styrene butadiene rubber, styrene acrylonitrile, polyester resins
- (iii) Ethanol: solvent for paints, manufacturing of chloroform, acetaldehyde, Solvent in the manufacture of varnishes, in medicines and drugs, as a disinfectant, antidote to methanol poisoning

5-b Four chemical reaction involved in reforming process with standard conditions

1 mark each

Catalyst: Platinum

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

SUMMER-17 EXAMINATION Model Answer

Subject code 17651

page **24** of **29**

	Pressure:	15-50 atms	
	Temperat	eure: 470-525 ^o C	
5-c	Petroche	micals manufactured from benzene, toluene and xylene	4
	Benzene-	styrene,phenol,cychlohexane,cumene,acetone,aniline ethyl	
	benzene,b	pisphenol,nylon 6,6	
	Toluene -	- benzene, toluenediisocynate, nylon,caprolactum, phenol, benzyl	
	chloride		
	Xylene-b	lending fuel, phthalicanhydride, isophthalic acid which is competitive	
	with phth	alic acid for reinforced plastics &plasticizers, dimethyl terephthalate	
	used in po	olysterfibre& films	
5-d	Fractions (i)	s belonging to the following list of test properties: Octane number: gasoline	1 mark each
	(ii)	Aniline point: diesel, kerosene (any one)	
	(iii)	Smoke point: kerosene	
	(iv)	Cetane number: diesel	
5-e	Uses (i)	Formaldehyde: In the manufacture of melamine resins, urea resins, phenolic resins	½ mark each for any 2 uses
	(ii)	Ethylene oxide: In the manufacture of ethylene glycol, nonionic detergents, ethanolamines	½ mark each for any 2 uses
	(iii)	Acetaldehyde: In the manufacture of acetic acid, acetic anhydride	½ mark each for any 2 uses
	(iv)	Butadiene: used in wide variety of synthetic rubbers & polymer resins.	½ mark each for any 2 uses
5-f		thods for dehydration and desaltification hemical treatment	

(Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

SUMMER-17 EXAMINATION Model Answer

of **29**

any 4

Subject code 176	551 page
	751
2. Gravity settling	½ mark each for
3. Centrifugal separation	any 4
4. Electric desalter	methods
5. Electrostaticseparation	
6. using hot water as extracting agent	
7. less common process involves filtering heated crude using	
diatomaceous earth	
Electric desalting: The feedstock crude is heated between 150° & 350° F to	
reduce viscosity & surface tension for easier mixing & separation of the water.	
The principle of operation is that under a charged electric field, the polar	2
molecules orient. A potential of 20,000-30,000 volts is applied between	
electrodes through which crude is passed. Water present in the form of	
emulsion also coalesces and agglomerates into a stream entrapping all the salts	
in the process. Brine collects at the bottom of the desalter, while crude floats	
above and forms a separate stream.	
High Voltage power System 20,000V- 30,000V	
Crude Heat exchanges / > Desalted Crude	
O A (M)	
water.	
Brine	
(Due consideration should be given for any other method)	
6 Attempt any FOUR of the following	16
6-a Safety measures followed in petrochemical industry	1 mark
1. Personal – Hearing protection, respiratoryprotection, safety glasses	each for

2. Vehicles – Vehicle entry is by permit only & keys are to be left in park

(Autonomous)

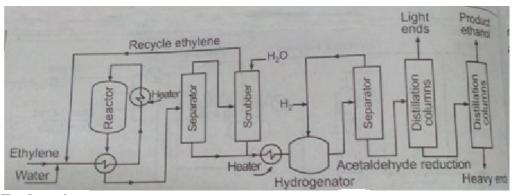
(ISO/IEC - 27001 - 2005 Certified)

SUMMER-17 EXAMINATION Model Answer

Subject code

17651

page **26** of **29**


points

vehicles

- 3. Special authorization permits For excavation, temporary electrical facilities
- 4. Electrical precautions –All electrical tools, cords& equipments must be grounded or double insulated.
- 5. Emergency warning system & procedure –When an alarm sounds, secure all equipments & shut down all machines.
- 6. To establish a system to identify & manage all hazardous chemicals in the factory thorough the provision of material safety data sheets & procedures for proper use, storage, handling & movement of the hazardous chemicals internal & external safety audit should be done.
- 7. Proper plant maintenance, Piping connected to a work area from vessels, pumps & other sources is isolated with a solid plate prior to the start of work.
- 8. Sewer cover must be in good condition with no openings for vapour flow.

6-b **Hydration process**

Flow sheet

Explanation:

Hydration reaction is addition of water .Synthetic ethyl alcohol is made by

2

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

SUMMER-17 EXAMINATION Model Answer

		170	51 page 2	7 of 29
l	hydration of ethylene.			
	CH2=CH2+H2O→C2H5OH			
]]	The catalyst use is H_3PO_4 .			
]]	Temp300 ⁰ c Pressure: 6.8MPa			
l I	Ethylene & water are combined with a recycle steam in the ratio ethylene to)	2	
	water 1/0.6, furnace heats the mixture to 300°c, & the gases reacts over the			
	catalyst .Unreacted reagents are separated & recirculated, Byproduct			
8	acetaldehyde is hydrogenated over a catalyst to form more alcohol.			
6-c I	Uses		1 mark	
	(i) Kerosene: illuminant, fuel for stoves		each for any 1	
	(ii) Diesel: in many installations for generating electricity, diesel engineering	ine	1 mark	
	fuel, carbureting of water gas		each for	
			any 1 1 mark	
	(iii)Lubricating oil: for lubrication in machines		each for	
	(iv)Gasoline: As a motor fuel for IC engines, solvent for dry cleaning		any 1 1 mark	
			each for	
			any 1	
6-d I	Diagram of vacuum distillation unit		4	

(Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

SUMMER-17 EXAMINATION Model Answer

Subject code page 28 of 29 17651 To vacuum system Vacuum Vacuum gas oil Lubricating oils Vacuum Residuum residuum Furnace **Hydrogenation process:** 6-е Flow sheet To blar 01 fuel Accumulator 2 bractiona tor Hydrogenated product **Description:** It is the addition of hydrogen to an olefin

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

SUMMER-17 EXAMINATION Model Answer

Subject code 17651

page **29** of **29**

		170	<u> </u>
	mixing of palladium hydrogena	and hydrocarbon feed flows concurrently in a fixed bed reactor. Intimate hydrogen and reactants in the reactor bed is essential to make the best use of catalyst. Poor hydrogen distribution results to inadequate diolefination. Additional equipment for high temperature hydrogen stripping is or removal of polymer in order to extend the useful life of catalyst.	2
6-f	Physical	properties of	1/2 mark
	(i)	Methanol: M.P97.8°C,B.P-64.7°C,molecular wt-32.04,density-0.788 g /cc at 20°C	each 1/2 mark
	(ii)	Formaldehyde: soluble in water, alcohol and polar solvents, M.P118 ^o C, B.P19 ^o C	each
	(iii)	Ethanol: B.P78.3 ^o C,M.P.—112 ^o C, Flash point- 21 ^o C	1/2 mark each
	(iv)	Propylene oxide: -molecular weight-58.08, B.P33.9 ^o C, density - 0.831g/cc	1/2 mark each