
MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION
(Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

MODEL ANSWER
SUMMER– 17 EXAMINATION

Subject Title: DESIGN AND ANALYSIS OF ALGORITHMS Subject Code:

Page | 1

17636

Important Instructions to examiners:
1) The answers should be examined by key words and not as word-to-word as given in the model answer

scheme.
2) The model answer and the answer written by candidate may vary but the examiner may try to assess the

understanding level of the candidate.
3) The language errors such as grammatical, spelling errors should not be given more Importance (Not

applicable for subject English and Communication Skills.
4) While assessing figures, examiner may give credit for principal components indicated in the figure. The

figures drawn by candidate and model answer may vary. The examiner may give credit for any equivalent
figure drawn.

5) Credits may be given step wise for numerical problems. In some cases, the assumed constant values
may vary and there may be some difference in the candidate’s answers and model answer.

6) In case of some questions credit may be given by judgement on part of examiner of relevant answer
based on candidate’s understanding.

7) For programming language papers, credit may be given to any other program based on equivalent
concept.

Q.

No

.

Sub

Q. N.

Answer Marking

Scheme

1. Solve any FIVE: (5x4= 20)

Marks

 (a) Explain Recursion with suitable example. 4M

 Ans: i. Recursion is the process of repeating the items in a self-similar way.

ii. Recursion is a programming technique in which a call to a method appears in that

method’s body (i.e., a method calls itself)

iii. In programming languages, if a program allows you to call a function inside the

same function, then it is called a recursive call of the function.

iv. While using recursion programmer need to specify exit condition in the function,

otherwise the program will go into infinite loop.

Example for recursion - Calculating the factorial of a number

#include<stdio.h>

int fact(int);

main()

{

int num;

printf("\n Enter the number : ");

scanf("%d", num);

printf("\n Factorial of %d = %d", num fact 9num));

return 0;

(Explanation

: 2 marks,

Example: 2

marks)

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION
(Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

MODEL ANSWER
SUMMER– 17 EXAMINATION

Subject Title: DESIGN AND ANALYSIS OF ALGORITHMS Subject Code:

Page | 2

17636

}

int fact (int n);

{

if (n==1)

return 1;

}

 (b) Define Graph. Directed graph and undirected graph. Mention how to represent a

graph.

4M

 Ans: Graph: a graph is nonempty set of vertices & edges denoted by G & given by G=V, E)

Directed Graph: a directed graph is also identified as digraph with an ordered pair(u, v)

Undirected Graph: An undirected graph includes set of objects (called vertices or

nodes) that are connected together, where all the edges are bidirectional. An undirected

graph is sometimes called an undirected network.

Sequential representation of graphs:

Two methods for sequential representation of graph:

1. Adjacency matrix.

2. Linked representation.

Linked representation of graph:

(Definition: 2

marks,

Representati

on of Graph:

2 marks)

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION
(Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

MODEL ANSWER
SUMMER– 17 EXAMINATION

Subject Title: DESIGN AND ANALYSIS OF ALGORITHMS Subject Code:

Page | 3

17636

 (c) Explain general Greedy Method. List various Greedy strategies. 4M

 Ans: The greedy method is the most straight forward design technique which has n inputs and

requires obtaining a subset that satisfies some constraints. Any subset that satisfies these

constraints is called a feasible solution. We are required to find a feasible solution that

either maximizes or minimizes a given objective function. A feasible solution that does

this is called an optimal solution. There is usually an obvious way to determine a

feasible solution, but not necessarily an optimal solution.

The greedy method suggests that one can devise an algorithm which works in stages,

considering one input at a time. At each stage, a decision is made regarding whether or

not a particular input is in an optimal solution. This is done by considering the inputs in

an order determined by some selection procedure. If the inclusion of the next input into

the partially constructed optimal solution will result in an infeasible solution, then this

input is not added to the partial solution. The selection procedure itself is based on some

optimization measure. This measure may or may

not be the objective function.

Greedy method control abstraction Algorithm

procedure GREEDY(A.n)

I IA(l:n) contains then inputs//

solution - ¢ I /initialize the solution to emptyI I

for i - 1 to n do

x - SELECT(A)

if FEASIBLE(solution,x)

then solution - UNION(solution,x)

endif

repeat

return (solution)

end GREEDY

Various Greedy strategies:

Greedy-choice: A global optimum can be arrived at by selecting a local optimum

Optimal substructure: An optimal solution to the problem contains an optimal solution

to sub problems

(Explanation

: 3 marks,

Strategies: 1

mark)

 (d) What is heap? Enlist its operation. 4M

 Ans: Heap is a special case of balanced binary tree data structure where the root-node key is (Definition: 2

marks,

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION
(Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

MODEL ANSWER
SUMMER– 17 EXAMINATION

Subject Title: DESIGN AND ANALYSIS OF ALGORITHMS Subject Code:

Page | 4

17636

compared with its children and arranged accordingly. If α has child node β then −

key(α) ≥ key(β)

As the value of parent is greater than that of child, this property generates Max Heap.

Based on these criteria, a heap can be of two types –

Min-Heap – Where, the value of the root node is less than or equal to either of its

children.

Max-Heap – Where, the value of the root node is greater than or equal to either of its

children.

Operations in Heap:

 Find-max or Find-min

 Insert

 Extract-min [or extract-max]

 Delete-max or delete-min

Operation: 2

Marks)

 (e) Explain Breath first search algorithm using any one example. 4M

 Ans: Breadth-first search (BFS) is a graph search algorithm that begins at the root node and

explores all

the neighbouring nodes. Then for each of those nearest nodes, the algorithm explores

their unexplored neighbor nodes, and so on, until it finds the goal.

Breadth First Search Algorithm

Step 1: SET STATUS = 1 (ready state) for each node in G

Step 2: Enqueue the starting node A and set its STATUS = 2 (waiting state)

Step 3: Repeat Steps 4 and 5 until QUEUE is empty

Step 4: Dequeue a node N. Process it and set its STATUS = 3 (processed state).

Step 5: Enqueue all the neighbours of N that are in the ready state (whose STATUS = 1)

and set their STATUS = 2 (waiting state)

[END OF LOOP]

Step 6: EXIT

Example: Consider the graph G given in figure below. The adjacency list of G is also

given. Assume that G represents the daily flights between different cities and we want to

fly from city A to I with minimum stops. That is, find the minimum path P from A to I

given that every edge has a length of 1.

(Algorithm:

2 marks,

Any

Example: 2

marks)

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION
(Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

MODEL ANSWER
SUMMER– 17 EXAMINATION

Subject Title: DESIGN AND ANALYSIS OF ALGORITHMS Subject Code:

Page | 5

17636

The minimum path P can be found by applying the breadth-frst search algorithm that

begins at city A and ends when I is encountered. During the execution of the algorithm,

we use two arrays: QUEUE and ORIG. While QUEUE is used to hold the nodes that

have to be processed, ORIG is used to keep track of the origin of each edge. Initially,

FRONT = REAR = –1. The algorithm for this is as follows:

(a) Add A to QUEUE and add NULL to ORIG.

FRONT = 0 QUEUE = A
REAR = 0 ORIG = \0

(b) Dequeue a node by setting FRONT = FRONT + 1 (remove the FRONT element of

QUEUE) and enqueue the neighbours of A. Also, add A as the ORIG of its

neighbours.
FRONT = 1 QUEUE = A B C D
REAR = 3 ORIG = \0 A A A

(c) Dequeue a node by setting FRONT = FRONT + 1 and enqueue the neighbours of B.

Also, add B as the ORIG of its neighbours.

FRONT = 2 QUEUE = A B C D E
REAR = 4 ORIG = \0 A A A B

(d) Dequeue a node by setting FRONT = FRONT + 1 and enqueue the neighbours of C.

Also, add C as the ORIG of its neighbours. Note that C has two neighbours B and G.

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION
(Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

MODEL ANSWER
SUMMER– 17 EXAMINATION

Subject Title: DESIGN AND ANALYSIS OF ALGORITHMS Subject Code:

Page | 6

17636

Since B has already been added to the queue and it is not in the Ready state, we will

not add B and only add G.

FRONT = 3 QUEUE = A B C D E G
REAR = 5 ORIG = \0 A A A B C

(e) Dequeue a node by setting FRONT = FRONT + 1 and enqueue the neighbours of D.

Also, add D as the ORIG of its neighbours. Note that D has two neighbours C and G.

Since both of them have already been added to the queue and they are not in the

Ready state, we will not add them again.

FRONT = 4 QUEUE = A B C D E G
REAR = 5 ORIG = \0 A A A B C

(f) Dequeue a node by setting FRONT = FRONT + 1 and enqueue the neighbours of E.

Also, add E as the ORIG of its neighbours. Note that E has two neighbours C and F.

Since C has already been added to the queue and it is not in the Ready state, we will

not add C and add only F.

FRONT = 5 QUEUE = A B C D E G F
REAR = 6 ORIG = \0 A A A B C E

(g) Dequeue a node by setting FRONT = FRONT + 1 and enqueue the neighbours of G.

Also, add G as the ORIG of its neighbours. Note that G has three neighbours F, H,

and I.

FRONT = 6 QUEUE = A B C D E G F H I
REAR = 9 ORIG = \0 A A A B C E G G

Since F has already been added to the queue, we will only add H and I. As I is our

final

destination, we stop the execution of this algorithm as soon as it is encountered and

added

to the QUEUE. Now, backtrack from I using ORIG to find the minimum path P.

Thus, we have P as A -> C -> G -> I.

 (f) Explain Dijkstra’s algorithm finds the shortest path from a single source to the

other nodes of a graph.

4M

 Ans: Dijkstra algorithm, named after its discoverer, Dutch computer scientist Edsger Dijkstra,

is a greedy algorithm that solves the signal-source shortest path problem fro a directed

graph G=(V.E) with nonnegative edge weights i.e.. we assume that w(u,v)≥0 for each

edge(u,v) E.

Dijkstra algorithm maintain a set of S of vertices whose final shortest path weights from

the source s have already been determined. That is, for all vertices v S, we have

d[v]=δ(s,v). The algorithm repeatedly selects the vertex u V-S with the minimum

(Explanation

: 4 marks)

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION
(Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

MODEL ANSWER
SUMMER– 17 EXAMINATION

Subject Title: DESIGN AND ANALYSIS OF ALGORITHMS Subject Code:

Page | 7

17636

shortest path estimate, inserts into S and relaxes all edges leaving u. we maintain a

priority queue Q that contains all the vertices in v-s, keyed by their d values. Graph G is

represented by adjacency lists.

DIJKSTRA (G, w, s)

1. INITIALIZE SINGLE-SOURCE (G, s)

2. S ← // S will ultimately contains vertices of final shortest-path weights from s

3. Initialize priority queue Q i.e., Q ← V[G]

4. while Q= priority queue Q is not empty do

5. do u ← EXTRACT_MIN(Q) // Pull out new vertex

6. S ← S {u} // Perform relaxation for each vertex v adjacent to u

7. for each vertex v [u]

8. do Relax (u, v, w)

 (g) Explain job scheduling with appropriate example. 4M

 Ans: Job scheduling is the process of allocating system resources to many different tasks by

an operating system (OS). The system handles prioritized job queues that are awaiting

CPU time and it should determine which job to be taken from which queue and the

amount of time to be allocated for the job. This type of scheduling makes sure that all

jobs are carried out fairly and on time.

Example

Let n = 4,

Process (P1, P2, P3, P4) = (100, 10, 15, 27)

Deadline (D1, D2, D3, D4) = (2, 1, 2, 1)

d max = 2

Feasible Solution Processing Sequence Profit value

(1, 2) 2, 1 110

(1, 2) 1, 3 or 3, 1 115

(1, 2) 4, 1 127

(1, 2) 2, 3 25

(1, 2) 4, 3 42

(1, 2) 1 100

(1, 2) 2 10

(1, 2) 3 15

(1, 2) 4 27

Solution (1, 4) is optimal. In this solution only job1 and job4 are processed and the value

(Explanation

: 2 marks,

Example: 2

marks)

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION
(Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

MODEL ANSWER
SUMMER– 17 EXAMINATION

Subject Title: DESIGN AND ANALYSIS OF ALGORITHMS Subject Code:

Page | 8

17636

is 127. These jobs must be followed in order, job4 followed by job1. Thus the

processing of job4 begins at time 0 and that of job1 is completed.

2. Solve any TWO : (2x8=16)

Marks

 (a) Explain with suitable example the Depth first search, write the algorithm for DFS. 8M

 Ans: The Depth-first search (DFS) algorithm progresses by expanding the starting node of G

and then going deeper and deeper until the goal node is found, or until a node that has no

children is encountered. When a dead-end is reached, the algorithm backtracks,

returning to the most recent node that has not been completely explored.In other words,

depth-first search begins at a starting node A which becomes the current node.Then, it

examines each node N along a path P which begins at A. That is, we process a neighbor

of A, then a neighbour of neighbour of A, and so on. During the execution of the

algorithm, if we reach a path that has a node N that has already been processed, then we

backtrack to the current

node. Otherwise, the unvisited (unprocessed) node becomes the current node.

Step 1: SET STATUS = 1 (ready state) for each node in G

Step 2: Push the starting node A on the stack and set its STATUS = 2 (waiting state)

Step 3: Repeat Steps 4 and 5 until STACK is empty

Step 4: Pop the top node N. Process it and set its STATUS = 3 (processed state)

Step 5: Push on the stack all the neighbours of N that are in the ready state (whose

STATUS = 1) and set their STATUS = 2 (waiting state)

[END OF LOOP]

Step 6: EXIT

Example: Consider the graph G given in figure. The adjacency list of G is also given.

Suppose we want to print all the nodes that can be reached from the node H (including H

itself).

One alternative is to use a depth-first search of G starting at node H.

(Explanation

:4 marks,

Example:4

marks)

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION
(Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

MODEL ANSWER
SUMMER– 17 EXAMINATION

Subject Title: DESIGN AND ANALYSIS OF ALGORITHMS Subject Code:

Page | 9

17636

Solution

a) Push H onto the stack.

b) Pop and print the top element of the STACK, that is, H. Push all the neighbours of H

onto the stack that are in the ready state. The STACK now becomes

c) Pop and print the top element of the STACK, that is, I. Push all the neighbours of I

onto the stack that are in the ready state. The STACK now becomes

d) Pop and print the top element of the STACK, that is, F. Push all the neighbours of F

onto the stack that are in the ready state. The STACK now becomes

e) Pop and print the top element of the STACK, that is, C. Push all the neighbours of C

onto the stack that are in the ready state. The STACK now becomes

f) Pop and print the top element of the STACK, that is, G. Push all the neighbours of G

onto the stack that are in the ready state. Since there are no neighbours of G that are

in the ready state, no push operation is performed. The STACK now becomes

g) Pop and print the top element of the STACK, that is, B. Push all the neighbours of B

onto the stack that are in the ready state. Since there are no neighbours of B that are

in the ready state, no push operation is performed. The STACK now becomes

h) Pop and print the top element of the STACK, that is, E. Push all the neighbours of E

onto the stack that are in the ready state. Since there are no neighbours of E that are

in the ready state, no push operation is performed. The STACK now becomes empty.

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION
(Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

MODEL ANSWER
SUMMER– 17 EXAMINATION

Subject Title: DESIGN AND ANALYSIS OF ALGORITHMS Subject Code:

Page | 10

17636

 (b) Explain the concept heap sort, and sort the following number using heap sort.

(Use Min and Max method to sort)

16, 14, 10, 8, 7, 9, 3, 2, 4, 1

8M

 Ans: Heap Sort is one of the best sorting methods being in-place and with no quadratic worst-

case scenarios. Heap sort algorithm is divided into two basic parts:

 Creating a Heap of the unsorted list.

 Then a sorted array is created by repeatedly removing the largest/smallest

element from the heap, and inserting it into the array. The heap is reconstructed

after each removal.

Given,

16 14 10 8 7 9 3 2 4 1

The given numbers are already on max-heap.

Max-Heap

So we need to calculate min-heap.

(Explanation

:2 marks,

Sorting: 6

marks)

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION
(Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

MODEL ANSWER
SUMMER– 17 EXAMINATION

Subject Title: DESIGN AND ANALYSIS OF ALGORITHMS Subject Code:

Page | 11

17636

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION
(Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

MODEL ANSWER
SUMMER– 17 EXAMINATION

Subject Title: DESIGN AND ANALYSIS OF ALGORITHMS Subject Code:

Page | 12

17636

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION
(Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

MODEL ANSWER
SUMMER– 17 EXAMINATION

Subject Title: DESIGN AND ANALYSIS OF ALGORITHMS Subject Code:

Page | 13

17636

Final Min-Heap

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION
(Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

MODEL ANSWER
SUMMER– 17 EXAMINATION

Subject Title: DESIGN AND ANALYSIS OF ALGORITHMS Subject Code:

Page | 14

17636

1 2 7 4 3 16 9 14 8 10

 (c) Describe process scheduling with any one algorithm. 8M

 Ans: The process scheduling is the activity of the process manager that handles the removal

of the running process from the CPU and the selection of another process on the basis

of a particular strategy.

Process scheduling is an essential part of Multiprogramming operating systems. Such

operating systems allow more than one process to be loaded into the executable

memory at a time and the loaded process shares the CPU using time multiplexing.

Process Scheduling Queues

The OS maintains all PCBs in Process Scheduling Queues. The OS maintains a

separate queue for each of the process states and PCBs of all processes in the same

execution state are placed in the same queue. When the state of a process is changed, its

PCB is unlinked from its current queue and moved to its new state queue.

The Operating System maintains the following important process scheduling queues −

 Job queue − this queue keeps all the processes in the system.

 Ready queue − this queue keeps a set of all processes residing in main memory,

ready and waiting to execute. A new process is always put in this queue.

 Device queues − the processes which are blocked due to unavailability of an I/O

device constitute this queue.

(Description:

4 marks ,

Algorithm: 4

marks)

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION
(Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

MODEL ANSWER
SUMMER– 17 EXAMINATION

Subject Title: DESIGN AND ANALYSIS OF ALGORITHMS Subject Code:

Page | 15

17636

First Come First Serve (FCFS)

 Jobs are executed on first come, first serve basis.

 It is a non-preemptive, pre-emptive scheduling algorithm.

 Easy to understand and implement.

 Its implementation is based on FIFO queue.

 Poor in performance as average wait time is high.

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION
(Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

MODEL ANSWER
SUMMER– 17 EXAMINATION

Subject Title: DESIGN AND ANALYSIS OF ALGORITHMS Subject Code:

Page | 16

17636

Wait time of each process is as follows :

Process Wait Time : Service Time - Arrival Time

P0 0 - 0 = 0

P1 5 - 1 = 4

P2 8 - 2 = 6

P3 16 - 3 = 13

Average Wait Time: (0+4+6+13) / 4 = 5.75

3. Solve any TWO: (2x8=16)

Marks

 (a) Explain Job scheduling in detail. 8M

 Ans: Job scheduling is the process of allocating system resources to many different tasks by

an operating system (OS).

 The problem is stated as below.

There are n jobs to be processed on a machine. Each job i has a deadline di≥ 0 and profit

pi≥0 .Pi is earned if the job is completed by its deadline. The job is completed if it is

processed on a machine for unit time. Only one machine is available for processing jobs.

Only one job is processed at a time on the machine. A feasible solution is a subset of

jobs J such that each job is completed by its deadline. An optimal solution is a feasible

solution with maximum profit value.

Example : Let n = 4, (p1,p2,p3,p4) = (100,10,15,27), (d1,d2,d3,d4) = (2,1,2,1)

(Job

scheduling

description:

4 marks, any

relevant

example: 4

marks)

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION
(Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

MODEL ANSWER
SUMMER– 17 EXAMINATION

Subject Title: DESIGN AND ANALYSIS OF ALGORITHMS Subject Code:

Page | 17

17636

Sr.no Feasible

solution

Processing

sequence

value

1 (1,2) 2,1 110

2 (1,3) 1,3 or 3,1 115

3 (1,4) 4,1 127

this is optimal one

4 (2,3) 2,3 25

5 (3,4) 4,3 42

6 1 1 100

7 2 2 10

8 3 3 15

9 4 4 27

 (b) What is big-Oh and theta? Write objectives of time analysis of algorithm. 8M

 Ans: Big-oh notation:

Big-oh is the formal method of expressing the upper bound of an algorithm’s running

time. It is the measure of the longest amount of time it could possibly take for the

Algorithm to complete. More formally, for non-negative functions, f(n) and g(n), if there

Exists an integer n0 and a constant c>0 such that for all integers n>n0 .

g (n) is an asymptotic upper bound for f (n).

(Big-Oh

Explanation:

2 marks,

Theta

Explanation:

2 marks,

Definition of

time Analysis:

2 marks,

Example: 2

marks)

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION
(Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

MODEL ANSWER
SUMMER– 17 EXAMINATION

Subject Title: DESIGN AND ANALYSIS OF ALGORITHMS Subject Code:

Page | 18

17636

Theta notation

Time complexity:

Time complexity of an algorithm is the amount of computer time required to execute

an algorithm. Time complexity is a function describing the amount of time an

algorithm takes in terms of the amount of input to the algorithm. "Time" can mean

the number of memory accesses performed, the number of comparisons between

integers, the number of times some inner loop is executed, or some other natural unit

related to the amount of real time the algorithm will take.

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION
(Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

MODEL ANSWER
SUMMER– 17 EXAMINATION

Subject Title: DESIGN AND ANALYSIS OF ALGORITHMS Subject Code:

Page | 19

17636

Example:

 (c) Compare any two searching and sorting algorithm 8M

 Ans:

Binary search Linear search

Binary search requires the input data

to be sorted

linear search doesn't requires the input

data to be sorted

Binary search requires an ordering

comparison;

linear search only requires equality

comparisons

Binary search has complexity O(log

n);

linear search has complexity O(n)

Binary search requires random access

to the data

linear search only requires sequential

access

Binary search is considered to be a

more efficient method that could be

used with large lists.

Linear search is too slow to be used

with large lists due to its o(n) average

case performance.

(Difference

Between

Binary and

Linear

Search: 4

Marks, 1

Mark for 1

Point)

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION
(Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

MODEL ANSWER
SUMMER– 17 EXAMINATION

Subject Title: DESIGN AND ANALYSIS OF ALGORITHMS Subject Code:

Page | 20

17636

(Any two

sorting

algorithms

can be

considered: 4

marks, any 4

points)

4. Solve any TWO: (2x8=16)

Marks

 (a) Explain quick sort algorithm with suitable example. Also explain time complexity

of quick sort algorithm.

8M

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION
(Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

MODEL ANSWER
SUMMER– 17 EXAMINATION

Subject Title: DESIGN AND ANALYSIS OF ALGORITHMS Subject Code:

Page | 21

17636

 Ans:

Quick sort uses divide and conquer approach for solving problems. Quick sort is quite

similar to merge sort. It works by selecting elements from unsorted array named as a

pivot and split the array into two parts called sub arrays and reconstruct the former part

with the elements smaller than the pivot and the latter with elements larger than the

pivot. This operation is called as partitioning. The algorithm repeats this operation

recursively for both the sub arrays. In general, the leftmost or the rightmost element is

selected as a pivot. Let us consider an array of elements A [3, 7, 8, 5, 2, 1, 9, 5, 4] and

sorting the array into ascending order using quick sort. We use divide and conquer

approach with recursive method.

(

Explanation

of quick sort

algorithm:4

Marks,

Example:2

Marks, Time

complexity of

quick sort:2

Marks)

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION
(Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

MODEL ANSWER
SUMMER– 17 EXAMINATION

Subject Title: DESIGN AND ANALYSIS OF ALGORITHMS Subject Code:

Page | 22

17636

Example:

Fig: Quick Sort

Time complexity of quick sort:

Quick sort is the fastest sort on the average running time complexity of O (n log n)

When compared to other sophisticated algorithms. Usually, selecting the leftmost or

rightmost element as a pivot causes the worst case running time of O (n2) when the

array is already sorted. Likewise, it is not efficient if all the input elements are equal, the

algorithm will take quadratic time O (n2) to sort an array of equal elements. However,

these worst case scenarios are infrequent. There are more advanced version of quick sort

are evolved with a solution to selecting pivot.

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION
(Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

MODEL ANSWER
SUMMER– 17 EXAMINATION

Subject Title: DESIGN AND ANALYSIS OF ALGORITHMS Subject Code:

Page | 23

17636

 (b) Solve the following problems:

Consider 5 items along their respective weight and values.

I = I1 , I2, I3, I4, I5

 W = 5,10,20,30,40

 V = 30,20, 100, 90, 100

 The capacity of knapsack W = 60, obtain the solution for the above given knapsack

problem.

8M

 Ans: Initially,

Items Wi Vi

I1 5 30

I2 10 20

I3 20 100

I4 30 90

I5 40 160

Taking value per weight ratio i.e Pi=Vi/Wi

Items Wi Vi Pi=Vi/Wi

I1 5 30 6

I2 10 20 2

I3 20 100 5

I4 30 90 3

I5 40 160 4

(Correct

solved

problem: 8

Marks)

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION
(Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

MODEL ANSWER
SUMMER– 17 EXAMINATION

Subject Title: DESIGN AND ANALYSIS OF ALGORITHMS Subject Code:

Page | 24

17636

Now arrange the value of Pi in descending order,

Items Wi Vi Pi=Vi/Wi

I1 5 30 6

I3 20 100 5

I5 40 160 4

I4 30 90 3

I2 10 20 2

Now fill the Knapsack according to decreasing value of Pi.

First we choose item I1 whose weight is 5.

Now the remaining capacity of Knapsack =55.

Next we choose item I3 with weight of 20.

After inserting I3, remaining capacity of Knapsack =35,

Now insert I5 with weight of 40, but remaining capacity =35, so we can insert only 35

out of 40.so we choose fractional part of item I5.the value of fractional part of

I5=(160/40*35)=140.

Thus the maximum value obtained=30+100+140=270.

I1 I2 I3 I4 I5

1.0 0.0 1.0 0.0 .87

Resultant vector=

 (c) Explain Lower Bonds for Comparison Based sorting with appropriate example 8M

 Ans: A comparison based sorting algorithm sorts objects by comparing pairs of them.

Example selection sort, merge sort are comparison based algorithms.

In lower bound the goal is to prove that any algorithm must take time Ω(g(n)) time to

solve the problem, where now our goal is to do this for g(n) as large as possible. Lower

bounds help us understand how close we are to the best possible solution to some

problem: e.g., if we have an algorithm that runs in time O(n log2 n) and a lower bound

of Ω(n log n), then we have a log(n) “gap”: Often, we prove lower bounds in restricted

models of computation, that specify what types of operations may be performed on the

input and at what cost. So, a lower bound in such a model means that if we want to do

better, we would need somehow to do something outside the model. Sorting algorithms

only operate on the input array by comparing pairs of elements and moving elements

(Description

of lower

bound: 4

marks, Any

Relevant

Example: 4

marks)

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION
(Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

MODEL ANSWER
SUMMER– 17 EXAMINATION

Subject Title: DESIGN AND ANALYSIS OF ALGORITHMS Subject Code:

Page | 25

17636

around based on the results of these comparisons. In particular, let us make the

following definition.

 Definition: A comparison-based sorting algorithm takes as input an array [a1,a2,... ,an]

of n items, and can only gain information about the items by comparing pairs of them.

Each comparison (“is ai > aj?”) returns YES or NO and counts a 1 time-step. Reorder

items based on the results of comparisons made. In the end, the algorithm must output a

permutation of the input in which all items are in sorted order. For instance, Quicksort,

Merge sort, and Insertion-sort are all comparison-based sorting algorithms

Theorem: Any deterministic comparison-based sorting algorithm must perform Ω(n log

n) comparisons to sort n elements in the worst case. Specifically, for any deterministic

comparison-based sorting algorithm A, for all n ≥ 2 there exists an input I of size n such

that A makes at least log2 (n!) = Ω(n log n) comparisons to sort I.

 To prove this theorem, we cannot assume the sorting algorithm is going to necessarily

choose a pivot as in Quicksort, or split the input as in Merge sort — we need to

somehow analyze any possible (comparison-based) algorithm that might exist. The way

we will do this is by showing that in order to sort its input, the sorting algorithm is

implicitly playing a game of “20 questions” with the input, and an adversary by

responding correctly can force the algorithm to ask many questions before it can tell

what is the correct permutation to output.

Proof: Recall that the sorting algorithm must output a permutation of the input [a1,a2,...

,an]. The key to the argument is that (a) there are n! different possible permutations the

algorithm might output, and (b) for each of these permutations, there exists an input for

which that permutation is the only correct answer. For instance, the permutation

[a3,a1,a4,a2] is the only correct answer for sorting the input [2, 4, 1, 3]. In fact, if you

fix a set of n distinct elements, then there will be a 1-1 correspondence between the

different orderings the elements might be in and the permutations needed to sort them.

Given (a) and (b) above, this means we can fix some set of n! inputs (e.g., all orderings

of {1, 2,... ,n}), one for each of the n! output permutations. let S be the set of these

inputs that are consistent with the answers to all comparisons made so far (so, initially,

|S| = n!). We can think of a new comparison as splitting S into two groups: those inputs

for which the answer would be YES and those for which the answer would be NO.

Let’s do an example with n = 3, and S as initially consisting of the 6 possible orderings

of {1, 2, 3}: (123),(132),(213),(231),(312),(321).

Suppose the sorting algorithm initially compares the first two elements a1 and a2.

Half of the possibilities have a1 > a2 and half have a2 > a1. So, the adversary can

answer either way and let’s say it answers that a2 > a1. This narrows down the input to

the three possibilities: (123),(132),(231).

Suppose the next comparison is between a2 and a3. In this case, the most popular answer

is that a2 > a3, so the adversary returns that answer which removes just one ordering,

leaving the algorithm with: (132),(231).

 It now takes one more comparison to finally isolate the input ordering and determine the

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION
(Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

MODEL ANSWER
SUMMER– 17 EXAMINATION

Subject Title: DESIGN AND ANALYSIS OF ALGORITHMS Subject Code:

Page | 26

17636

correct permutation to output. Alternative view of the proof: Another way of looking at

the proof we gave above is as follows. For a deterministic algorithm, the permutation it

outputs is solely a function of the series of answers it receives (any two inputs producing

the same series of answers will cause the same permutation to be output). So, if an

algorithm always made at most k < lg(n!) comparisons, then there are at most 2 k < n!

different permutations it can possibly output. In other words, there is some permutation

it can’t output. So, the algorithm will fail on any input for which that permutation is the

only correct answer.

5. Solve any TWO : (2x8=16)

Marks

 (a) Describe greedy method for job scheduling with deadlines profits using example. 8M

 Ans: Given a set of ‘n’ jobs, where each job ‘i' is associated with an integer deadline di>=0

and a profit Pi > 0. For any job ‘I’ the profit ‘Pi’ is earned if and only if the job is

completed within its deadline. To complete the job, one has to process he job on a given

single machine for a one unit of time. A feasible solution for this problem is to identify a

subset J of jobs in such way that, each job must be completed by its deadline. The value

of the feasible solution J is the sum of the profits of the job in the subset J i.e

There is need to find out the feasible solution which must be an optimal solution which

gives maximum profit value. Therefore, in a job scheduling problem there is need to

identify a subset of jobs which are scheduled in a proper order to give maximum profit

during the processing of them.

Example:

Let n=4 , four jobs are there having profits (p1,p2,p3,p4) = (100,10,15,27) with

deadlines (d1,d2,d3,d4) = (2,1,2,1). The feasible solutions are defined in the following

way:

Solution # Feasible Solution Processing Sequence Profit Value

1 (1,2) 2,1 110

2 (1,3) 1,3 or 3,1 115

3 (1,4) 4,1 127

4 (2,3) 2,3 25

5 (3,4) 4,3 42

6 (1) 1 100

7 (2) 2 10

8 (3) 3 35

9 (4) 4 27

10 (2,4) (2,4) 37

(Explanation

:4 Marks,

Example: 4

Marks)

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION
(Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

MODEL ANSWER
SUMMER– 17 EXAMINATION

Subject Title: DESIGN AND ANALYSIS OF ALGORITHMS Subject Code:

Page | 27

17636

In the above listed feasible solutions, the solution number 3 is the optimal since only job

number 1 and 4 are processed that gives the maximum profit value as the 127. In this

feasible solution, first job number 4 must be processed which is followed by the

processing of the job number 1. Thus the processing of job number 4 begins at time of

zero units and as it is completed in 1 unit of time immediately job number one will be

start and processing will be completed in 2 unit of time.

To obtain optimal solution by applying greedy approach, there is need to formulate an

optimization measure to determine the strategy for defining proper sequencing of jobs

for processing.

Suppose, in a first attempt the objective function is chosen as the sum of profit as an

optimal solution which is shown in the following equation.

In this case, in job scheduling problem, the next job for processing will be selected that

increases the sum of profit. To apply this strategy, there is required to sort the jobs in a

non-decreasing order of profit Pi.

In example number 1: the jobs are sorted and shown in the following way:

Jobs (J1, J2, J3, J4) (J1, J4, J3, J2)

Profit (100, 10, 15, 27) (100, 27,15,10)

Deadline (2, 1, 2,, 1) (2, 1, 2, 1)

In this case,

If job J1 is added to feasible solution i.e J ={J1}, Profit = 100

If job J2 is added to J = {J1, J2} then , Profit = 100 + 27 = 127

So this sequence gives the maximum profit of 127 so it is the optimal solution.

 (b) Explain the concept radix sort. Write a program to sort the series of number using

radix sort.

8M

 Ans: Radix Sort is a sorting algorithm that is useful when there is a constant “d” such that all

the keys are d digit numbers. To execute Radix-Sort, for p=1 toward “d “, it sorts the

numbers with respect to the pth digit from the right using any linear time stable sort.

Radix sort is sometimes used to sort records of information that are keyed by multiple

fields.

The following procedure assumes that each element in the n element array A has d digits

where digit 1 is the lowest-order digit and digit d is the highest order digit.

(Explanation

: 4 Marks,

Program:4

Marks,

Program

with other

logic and

other

Language

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION
(Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

MODEL ANSWER
SUMMER– 17 EXAMINATION

Subject Title: DESIGN AND ANALYSIS OF ALGORITHMS Subject Code:

Page | 28

17636

RADIX-SORT(A,d)

1. for i - 1 to d

2. do use a stable sort to sort Array A on digit i

Since a linear time sorting algorithm is used „d‟ times and d is a constant, the running
time of Raix Sort is linear. When each digit is in the range 1 to k, and k is not too large,
counting sort is the obvious choice. Each pass over n d-digit numbers takes (n + k)

Program to sort the elements by using Radix Sort
1. #include<stdio.h>

2.

3. int getMax(int arr[], int n) {

4. int mx = arr[0];

5. int i;

6. for (i = 1; i < n; i++)

7. if (arr[i] > mx)

8. mx = arr[i];

9. return mx;

10. }

11.

12. void countSort(int arr[], int n, int exp) {

13. int output[n]; // output array

14. int i, count[10] = { 0 };

15.

16. // Store count of occurrences in count[]

17. for (i = 0; i < n; i++)

18. count[(arr[i] / exp) % 10]++;

19.

20. for (i = 1; i < 10; i++)

21. count[i] += count[i - 1];

22.

23. // Build the output array

24. for (i = n - 1; i >= 0; i--) {

25. output[count[(arr[i] / exp) % 10] - 1] = arr[i];

26. count[(arr[i] / exp) % 10]--;

27. }

28.

29. for (i = 0; i < n; i++)

30. arr[i] = output[i];

31. }

32.

33. // The main function to that sorts arr[] of size n using Radix

Sort

34. void radixsort(int arr[], int n) {

35. int m = getMax(arr, n);

36.

37. int exp;

38. for (exp = 1; m / exp > 0; exp *= 10)

39. countSort(arr, n, exp);

40. }

41.

42. void print(int arr[], int n) {

43. int i;

should be

Considered)

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION
(Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

MODEL ANSWER
SUMMER– 17 EXAMINATION

Subject Title: DESIGN AND ANALYSIS OF ALGORITHMS Subject Code:

Page | 29

17636

44. for (i = 0; i < n; i++)

45. printf("%d ", arr[i]);

46. }

47.

48. int main() {

49. int arr[] = { 170, 45, 75, 90, 802, 24, 2, 66 };

50. int n = sizeof(arr) / sizeof(arr[0]);

51. radixsort(arr, n);

52. print(arr, n);

53. return 0;

54. }

 (c) Design minimum spanning tree for given graph. Give the assumption to simulate

the given graph with the help of prims algorithm.

8M

 Ans:
Step 1: The start vertex is taken as “ a”

S={a}, V/S = {b, c, d, e, f, g}

Select the edge with minimum weight as a -> c = 5, so lightest edge ={a, c}.

OR

Suppose A vertex is the root i.e. r. by EXRACT-MIN(Q) procedure. Now u=r &

Adj[a]={c.d}. Removing u from the set Q and adds it to the set V-Q of vertices in the tree.

Now, update the key and π fields of every vertex v adjacent to u but not in the tree.

Key[c]=∞ W[a,c]=2 i.e., w(u,v)< Key[c] So, π[c]=0 & Key[c]=5 And Key[c]=∞

(Correct

spanning

Tree: 8

Marks)

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION
(Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

MODEL ANSWER
SUMMER– 17 EXAMINATION

Subject Title: DESIGN AND ANALYSIS OF ALGORITHMS Subject Code:

Page | 30

17636

Step 2: The vertex ‘c’ is taken and from c there are three edges exist to reach to the

destination vertex ‘b’ , which are c -> e = 9, c -> g = 3 and c->d = 2. With respective

of this, c - > d edge is taken as it has minimum cost of 2.

S={a, c},

V/S = {b, d, e, f, g}

Select the edge with minimum weight as c -> d = 2,

so lightest edges ={ {a, c}, {c, d}}

Step 3: The vertex ‘d’ is taken and from d there are two edges exist to reach to the

destination vertex ‘b’ , which are d -> g = 7, d -> f = 7 with same cost. With

respective of this, d - > f edge is taken as it has minimum cost of 7.

S={a, c, d, f},

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION
(Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

MODEL ANSWER
SUMMER– 17 EXAMINATION

Subject Title: DESIGN AND ANALYSIS OF ALGORITHMS Subject Code:

Page | 31

17636

V/S = {b, e, g}

Select the edge with minimum weight as d -> f = 7,

So lightest edges ={ {a, c}, {c, d}, {d, f}}

Step 4: The vertex ‘f’ is taken and from f there are two edges exist to reach to the

destination vertex ‘b’ , which are f -> e = 2, f -> b = 3. With respective of this, f - > e

edge is taken as it has minimum cost of 2.

S={a, c, d, e},

V/S = {b, f, g}

Select the edge with minimum weight as f - > e = 2

So lightest edges ={ {a, c}, {c, d}, {d, f}, {f, e} }

Step 4: The vertex ‘e’ is taken and from e there is single edge exist to reach to the

destination vertex ‘b’, which is e -> b = 1. With respective of this, e -> b edge is

taken as it has minimum cost of 1.

S={a, c, d, e, b},

V/S = { g}

Select the edge with minimum weight as e - > b = 1

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION
(Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

MODEL ANSWER
SUMMER– 17 EXAMINATION

Subject Title: DESIGN AND ANALYSIS OF ALGORITHMS Subject Code:

Page | 32

17636

So lightest edges ={ {a, c}, {c, d}, {d, f}, {f, e}, {e, b} }

The minimum spanning tree is

6. Solve any TWO: (2x8=16)

Marks

 (a) Explain the following term:

(i) Algorithm and its properties.

(ii) Linear searching.

8M

 Ans: An algorithm is “a finite set of precise instructions for performing a computation or for

solving a problem”. To solve a problem step-by-step procedure need to follow in order

to get a solution. An Algorithm is a self-contained step-by-step set of operations to be

followed. So that, before developing a program always there is need to define the logic

of the program in terms of the algorithm.

Properties of Algorithm

1. Input: what the algorithm takes in as input.

2. Output: what the algorithm produces as output.

3. Definiteness: the steps are defined precisely.

4. Correctness: should produce the correct output.

5. Finiteness: the steps required should be finite.

6. Effectiveness: each step must be able to be performed in a finite amount of time.

(To Explain

Algorithm: 2

Marks, to

write four

properties: 2

Marks)

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION
(Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

MODEL ANSWER
SUMMER– 17 EXAMINATION

Subject Title: DESIGN AND ANALYSIS OF ALGORITHMS Subject Code:

Page | 33

17636

7. Generality: the algorithm should be applicable to all problems of a similar form.

(ii) Linear Searching

Explanation: Linear search, also called as sequential search, is a very simple method

used for searching an array for a particular value. It works by comparing the value to be

searched with every element of the array one by one in a sequence until a match is

found. Linear search is mostly used to search an unordered list of elements (array in

which data elements are not sorted). For example, if an array A[] is declared and

initialized as, int A[] = {10, 8, 2, 7, 3, 4, 9, 1, 6, 5};

In the array, the value to be searched is 7, then searching means to find whether the

value 7 is present in the array or not. If yes, then it returns the position of its occurrence.

Here, POS = 3 (index starting from 0).

Algorithm LINEAR_SEARCH (A, N, VAL)

Step 1: [INITIALIZE] SET POS = -1

Step 2: [INITIALIZE] SET I = 1

Step 3: Repeat Step 4 while I<=N

Step 4: IF A[I] = VAL

SET POS = I

PRINT POS

Go to Step 6

[END OF IF]

[END OF LOOP]

Step 6: EXIT

SET I = I + 1

Step 5: IF POS = –1

PRINT VALUE IS NOT PRESENT

IN THE ARRAY

[END OF IF]

In Steps 1 and 2 of the algorithm, the value of POS and I are initialized.

In Step 3, a while loop is executed that till I is less than N (total number of elements in

the array).

In Step 4, a check is made to see if a match is found between the current array element

and VAL.

If a match is found, then the position of the array element is printed, else the value of I is

incremented to match the next element with VAL. However, if all the array elements

have been compared with VAL and no match is found, then it means that VAL is not

(Explanation

:2 Marks,

Algorithm:2

Marks)

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION
(Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

MODEL ANSWER
SUMMER– 17 EXAMINATION

Subject Title: DESIGN AND ANALYSIS OF ALGORITHMS Subject Code:

Page | 34

17636

present in the array.

 (b) Explain the following term:

(i) Topological sorting

(ii) Graph representation

8M

 Ans: Topological sort: an ordering of the vertices in a directed acyclic graph, such that: If

there is a path from u to v, then v appears after u in the ordering.

Topological sorting problem: given digraph G = (V , E) , find a linear ordering of

vertices such that: for any edge (v , w) in E , v precedes w in the ordering.

Example: Consider three DAGs shown in Fig.1 and their possible topological sorts.

Figure No. 1

Algorithm

The algorithm for the topological sort of a graph (for figure number 1)that has no

cycles focuses on selecting a node N with zero in-degree, that is, a node that has no

predecessor. The two main steps involved in the topological sort algorithm include:

1. Selecting a node with zero in-degree

2. Σ Deleting N from the graph along with its edges

Algorithm Topological Sort

Step 1: Find the in-degree INDEG(N) of every node graph

Step 2: Enqueue all the nodes with a zero in-degree

Step 3: Repeat Steps 4 and 5 until the QUEUE is empty

Step 4: Remove the front node N of the QUEUE by setting

(Explanation

2 Marks,

Algorithm

Example: 2

Marks)

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION
(Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

MODEL ANSWER
SUMMER– 17 EXAMINATION

Subject Title: DESIGN AND ANALYSIS OF ALGORITHMS Subject Code:

Page | 35

17636

FRONT = FRONT + 1

Step 5: Repeat for each neighbour M of node N:

a) Delete the edge from N to M by setting INDEG(M) = INDEG(M) - 1

b) IF INDEG(M) = , then Enqueue M, that is, add M to the rear of the queue

[END OF INNER LOOP]

[END OF LOOP]

Step 6: Exit

ii) Graph representation

Graph: a graph is non-empty set of vertices & edges denoted by G & given by G= (V,

E)

Sequential representation of graphs:

Two methods for sequential representation of graph:

1) Adjacency matrix.

2) Linked representation.

1) Adjacency representation of graph

2) Linked representation of graph:

(To explain

Graph and

Graph

Representati

on: Each

Method of

representatio

n 2 Marks

*2: 4 Marks)

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION
(Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

MODEL ANSWER
SUMMER– 17 EXAMINATION

Subject Title: DESIGN AND ANALYSIS OF ALGORITHMS Subject Code:

Page | 36

17636

 (c) Write an algorithm to illustrate the use of Binary search algorithm. Give an

example.

8M

 Ans: Binary search algorithm is used to search a particular element in the list of ‘n’ number of

elements. The primary condition for binary search is that, number must be in a sorted

order.

Example:

Let ai is an array, where 1≤ i ≤ n containing list of elements in a non-decreasing sorted

order. Consider a problem of determining whether a given element ‘x’ is present in the

list or not. With respective of this problem, if element ‘x’ is present in the list then there

is need to determine a value I such that ai = x. If ‘x’ is not present in the list, then i must

be set to zero.

Let p=(n,ai,……………,al,x) denote an arbitrary instance of this search problem where:

n = number of elements in a search problem p

ai to l containing list of “n” number of elements

To search the element ‘x’ in the given list, Divide-and -Conquer method can be used in

which if problem P containing more than one elements then P is divided into sub-

problems. To divide the problem ‘P’ in number of sub-problems, the index ‘q’ is

selected in the range [i , l] and x is compared with aq . The three possible conditions are

there

1) If x = aq : that is present at the first position of array ai i.e x

= aq, in this case problem ‘P’ is solved immediately.

2) If x < aq : in this case, x has to be search in a sub list ai,

ai+1, ……., aq-1. The problem P is reduces to (qi-1, ai,…….,aq-1, x)

3) If x > aq : In this case, x will be searched from aq+1 to l.

The problem P is reduces to (l-q, aq+1, ……., al,x)

Algorithm

BINARY_SEARCH(A, lower_bound, upper_bound, VAL)

Step 1: Initialize

SET BEG = lower_bound

END = upper_bound, POS = - 1

Step 2: Repeat Steps 3 and 4 while BEG <= END

Step 3: SET MID = (BEG + END)/2

Step 4: IF A[MID] = VAL

SET POS = MID

PRINT POS

Go to Step 6

ELSE IF A[MID] > VAL

SET END = MID - 1

(Explanation

with

Algorithm: 6

Marks, and

Example:2

Marks)

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION
(Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

MODEL ANSWER
SUMMER– 17 EXAMINATION

Subject Title: DESIGN AND ANALYSIS OF ALGORITHMS Subject Code:

Page | 37

17636

ELSE

SET BEG = MID + 1

[END OF IF]

[END OF LOOP]

Step 5: IF POS = -1

PRINT “VALUE IS NOT PRESENT IN THE ARRAY”

[END OF IF]

Step 6: EXIT

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION
(Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

MODEL ANSWER
SUMMER– 17 EXAMINATION

Subject Title: DESIGN AND ANALYSIS OF ALGORITHMS Subject Code:

Page | 38

17636

