
MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION 
(Autonomous) 

(ISO/IEC - 27001 - 2005 Certified) 

MODEL ANSWER 
SUMMER– 17 EXAMINATION 

        Subject Title:  System Programming                                                              Subject Code: 

 

1 | P a g e  

 

 

17634 

Important Instructions to examiners: 
1) The answers should be examined by key words and not as word-to-word as given in the model answer 

scheme. 
2) The model answer and the answer written by candidate may vary but the examiner may try to assess the 

understanding level of the candidate. 
3) The language errors such as grammatical, spelling errors should not be given more Importance (Not 

applicable for subject English and Communication Skills. 
4) While assessing figures, examiner may give credit for principal components indicated in the figure. The 

figures drawn by candidate and model answer may vary. The examiner may give credit for any equivalent 
figure drawn. 

5) Credits may be given step wise for numerical problems. In some cases, the assumed constant values 
may vary and there may be some difference in the candidate’s answers and model answer. 

6) In case of some questions credit may be given by judgement on part of examiner of relevant answer 
based on candidate’s understanding. 

7) For programming language papers, credit may be given to any other program based on equivalent 
concept. 

Q. 
No. 

Sub 
Q. N. 

Answer Marking 
Scheme 

1.  Solve any FIVE: 20Marks 

 (1) List the four components of system programming. 4M 

 Ans: Assembler: The program known as assembler is written to automate the translation of 

assembly language to machine language. Input to the language is called as source 

program and output of assembler is machine language translation called as object 

program.  

ALP → ASSEMBLER → Machine Language equivalent + Information required 

by the loader 

Loader: Loader is a system program which places program into the memory and 

prepares for execution. Loading a program involves reading the contents of the 

executable file containing the program instructions into memory, and then carrying out 

other required preparatory tasks to prepare the executable for running. Once loading is 

complete, the operating system starts the program by passing control to the loaded 

program code. E.g. Boot Strap loader. 

 

Macro: A macro is a rule or pattern that specifies how a certain input sequence (often 

a sequence of characters) should be mapped to a replacement output sequence (also 

often a sequence of characters) according to a defined procedure. The mappings 

process that instantiates (transforms) a macro use into a specific sequence is known as 

macro expansion. A facility for writing macros may be provided as part of a software 

application or as a part of a programming language. In the former case, macros are 

used to make tasks using the application less repetitive. In the latter case, they are a 

tool that allows a programmer to enable code reuse or even to design domain-specific 

languages.  

( Each 

Component: 

1 mark, any 

four 

Components) 

 



MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION 
(Autonomous) 

(ISO/IEC - 27001 - 2005 Certified) 

MODEL ANSWER 
SUMMER– 17 EXAMINATION 

        Subject Title:  System Programming                                                              Subject Code: 

 

2 | P a g e  

 

 

17634 

MACRO MACRO_NAME  

…  

…  

…  

MEND 

Compiler: A compiler is a computer program (or set of programs) that transforms 

source code written in a programming language (the source language) into another 

computer language (the target language, often having a binary form known as object 

code).The most common reason for converting a source code is to create an executable 

program. E.g. Javac, TurboC, CC (used in Unix/Linux). 

Linker: A linker which is also called binder or link editor is a program that combines 

object modules together to form a program that can be executed. Modules are parts of 

a program. 

 (2) What are the goals of system software? 4M 

 Ans: Goal of System software  

1) To achieve efficient use of available resources.  

2) To achieve efficient performance of the system.  

3) To make effective execution of general user program.  

4) To make available new better facilities.  

5) User convenience - provide convenient methods of using a computer system.  

6) Non-interference - prevent interference in the activities of its user.  

(Each Goal: 1 

mark, any 

four goals) 

 (3) Compare binary search and linear search. 4M 

 Ans:  

 

 

 

 

 

 

 

 

 

 

SR. 

NO 

PARAMETERS BINARY SEARCH LINEAR 

SEARCH 

1 Time Complexity O (log2 N) O(N) 

2 Best case time O(1) Center 

Element 

O(1) First 

Element 

3 Prerequisite for an 

array 

Array must be in 

sorted order 

No prerequisite 

4 Can be 

implemented on 

Cannot be directly 

implemented on 

linked list 

Array and 

Linked list 

5 Algorithm type Divide and conquer 

in nature 

Iterative in 

nature 

6 Usefulness tricky algorithm Easy to use 

7 No of Comparison More number of 

comparisons are 

required  

Number of 

comparisons are 

less 

(Each 

Comparison 

Point: 1 mark, 

any four 

Comparison 

points) 

 



MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION 
(Autonomous) 

(ISO/IEC - 27001 - 2005 Certified) 

MODEL ANSWER 
SUMMER– 17 EXAMINATION 

        Subject Title:  System Programming                                                              Subject Code: 

 

3 | P a g e  

 

 

17634 

 (4) Define the terms:   

i. Allocation            ii. Relocation             iii. Linking              iv. Loading 

4M 

 Ans: i. Allocation: Allocate the space in the memory where the object programs can be 

loaded for execution. It allocates the space for program in the memory, by calculating 

the size of the program. This activity is called allocation. 

ii. Relocation: Adjust the address sensitive instructions to the allocated space. 

There are some address dependent locations in the program, such address constants 

must be adjusted according to allocated space, such activity done by loader is called 

relocation. 

iii. Linking: Resolving external symbol reference. It resolves the symbolic 

references (code/data) between the object modules by assigning all the user 

subroutine and library subroutine addresses. This activity is called linking. 

iv. Loading: Placing the object program in the memory in to the allocated space. 

Finally it places all the machine instructions and data of corresponding programs 

and subroutines into the memory. Thus program now becomes ready for execution, 

this activity is called loading. 

(Each term 

Definition: 1 

mark) 

 

 (5) Explain four basic operations of macroprocessor. 4M 

 Ans: The 4 basic task of Macro processor is as follows:-  

1) Recognize the macro definitions.  

2) Save the Macro definition.  

3) Recognize the Macro calls.  

4) Perform Macro Expansion.  

1) Recognize the Macro definitions: - A microprocessor must recognize macro 

definitions Identified by the MACRO and MEND pseudo-ops. When MACROS and 

MENDS are nested, the macro processor must recognize the nesting and correctly 

match the last or outer MEND with the first MACRO.  

2) Save the Macro definition: - The processor must store the macro instruction 

definitions which it will need for expanding macro calls.  

3) Recognize the Macro calls: - The processor must recognize macro call that 

appear as operation mnemonics. This suggests that macro names be handled as a type 

of opcode.  

4) Perform Macro Expansion: - The processor must substitute for macro 

definition arguments the corresponding arguments from a macro call, the resulting 

symbolic text is then substituted for the macro call.  

(Description 

of each 

Operation: 1 

mark) 

 

 (6) Describe the term overlay structure. 4M 

 Ans: The subroutines of a program are needed at different times. For e.g. Pass 1 and pass 2 

of an assembler are call other subroutine it is possible to produce an overlay structure 

that identifiers mutually exclusive subroutines. In order for the overlay structure to 

work it is necessary for the module loader to the various procedures as they are 

(Description: 

3 marks, 

Diagram:  1 



MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION 
(Autonomous) 

(ISO/IEC - 27001 - 2005 Certified) 

MODEL ANSWER 
SUMMER– 17 EXAMINATION 

        Subject Title:  System Programming                                                              Subject Code: 

 

4 | P a g e  

 

 

17634 

needed. The portion of the loader that actually intercepts the “calls” and loads the 

necessary procedure is collect the overlay supervision or simply the upper. 

 
Above program consisting of five subprogram (A, B, C, D & E) that require look bytes 

of core. The arrow indicate that subprogram A only calls B, D and E; subprogram B 

only calls C and E; subprogram D only calls E; and subprogram C and E do not call 

any other routine procedures B and D are never in use at the same time; neither are C 

and E. If are load only those procedures that are actually to be used at any particular 

time, the amount of core needed is equal to the longest path of the overlay structure. 

This happens to be 70k. Overlay reduces the memory requirement of a program. It also 

makes it possible to execute program where size exceeds the amount of memory which 

cane ne allocated to them. For the execution of overlay structured program, the root is 

loaded in memory and given control for the execution. Other overlays are loaded as 

and when headed. Loading of an overlay overwrite a previously loaded overlay with 

the same load origin. 

mark) 

 (7) Draw flow chart of pass-1 of assembler. 4M 

 Ans:  

 

 

 

 

 

 

 

 

 

(Correct 

flowchart:  4 

marks) 

 



MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION 
(Autonomous) 

(ISO/IEC - 27001 - 2005 Certified) 

MODEL ANSWER 
SUMMER– 17 EXAMINATION 

        Subject Title:  System Programming                                                              Subject Code: 

 

5 | P a g e  

 

 

17634 

2.  Solve any FOUR: 16Marks 

 (1) Describe the concept of compile & go loader. 4M 

 Ans: One method of performing the loader functions is to have the assembler run in one part 

of memory and place the assembled machine instructions and data, as they are 

assembled, directly into their assigned memory locations. As a usual practice one 

method of performing the loader functions is to have to assemble run in one part of 

memory and place the assembled machine instructions and data they are assembled, 

directly into their assigned memory locations. When the assembly is completed the 

assembler causes transfer to the instruction of the program. This is a simple solution, 

involving no extra procedures. It is used by the WATFOR FORTRAN compiler and 

several other language processors. Such a loading scheme is commonly called 

“compile-and-go” or “assembler – and –go”. It is relatively easy to implement. The 

assembler simply places the code into core, and the “loader” consists of one instruction 

that transfers to the starting instruction of the newly assembled program. 

Disadvantages:  

1. A portion of memory is wasted because the core occupied by the assembler is 

unavailable to the object program.  

2. It is necessary to retranslate (assemble) the user’s program code every time it is run.  

3. It is very different to handle multiple subroutines in assembly language and another 

subroutine in any programming language.  

This last disadvantage makes it very difficult to produce orderly modular programs in 

the design of assemblers. For example assembler is one of the type of compile and go 

loader which can be depicted in the following figure: 

 

 

 

 

 

 

 

 

 

 

(Description:3 

marks, 

Diagram: 1 

mark) 

 



MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION 
(Autonomous) 

(ISO/IEC - 27001 - 2005 Certified) 

MODEL ANSWER 
SUMMER– 17 EXAMINATION 

        Subject Title:  System Programming                                                              Subject Code: 

 

6 | P a g e  

 

 

17634 

 (2) Draw the foundation of system software. 4M 

 Ans:  

 

 

 

 

 

 

 

 

(Correct 

Diagram: 4 

marks) 

 (3) Explain bottom-up parsing technique. 4M 

 Ans: Bottom-up parsing starts from the leaf nodes of a tree and works in upward direction 

till it reaches the root node. Here, we start from a sentence and then apply production 

rules in reverse manner in order to reach the start symbol. The image given below 

depicts the bottom-up parsers available. 

 

 
 

Shift-Reduce Parsing: Shift-reduce parsing uses two unique steps for bottom-up 

parsing. These steps are known as shift-step and reduce-step. 

Shift step: The shift step refers to the advancement of the input pointer to the next 

input symbol, which is called the shifted symbol. This symbol is pushed onto the stack. 

The shifted symbol is treated as a single node of the parse tree. 

Reduce step: When the parser finds a complete grammar rule RHS and replaces it to 

LHS, it is known as reduce-step. This occurs when the top of the stack contains a 

handle. To reduce, a POP function is performed on the stack which pops off the handle 

and replaces it with LHS non-terminal symbol. 

(Description: 

2 Marks, 

Types: 2 

Marks) 



MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION 
(Autonomous) 

(ISO/IEC - 27001 - 2005 Certified) 

MODEL ANSWER 
SUMMER– 17 EXAMINATION 

        Subject Title:  System Programming                                                              Subject Code: 

 

7 | P a g e  

 

 

17634 

LR Parser: The LR parser is a non-recursive, shift-reduce, bottom-up parser. It uses a 

wide class of context free grammar which makes it the most efficient syntax analysis 

technique. LR parsers are also known as LR parsers, where L stands for left-to-right 

scanning of the input stream; R stands for the construction of right-most derivation in 

reverse, and k denotes the number of look ahead symbols to make decisions. 

There are three widely used algorithms available for constructing an LR parser: 

SLR1 – Simple LR Parser: 

 Works on smallest class of grammar 

 Few number of states, hence very small table 

 Simple and fast construction 

LR1 – LR Parser: 

 Works on complete set of LR1 Grammar 

 Generates large table and large number of states 

 Slow construction 

LALR1 – Look-Ahead LR Parser: 

 Works on intermediate size of grammar 

Number of states are same as in SLR1 

 (4)  Explain bucket sort with example. 4M 

 Ans: The sort involves examine the least significant digit of the keyword first, and the item 

is then assigned to a bucket uniquely depend on the value of the digit. After all items 

have been distributed the buckets items are merged in order and then the process is 

repeated until no more digits are left. A number system of base P requires P buckets. 

There are serious disadvantages to using it internally on a digital compiler 

1) It takes two separate processes, a separation and a merge 

2) It requires a lot of extra Storage for the buckets. 

The average time required for the sort is (* N *log P(K) ) where N is the table size, K 

is the maximum key size & P is the radix of the radix sort. The extra storage required 

is N *P. 

 

 
 

 

(Description:  

2 marks, 

Example:2 

marks) 



MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION 
(Autonomous) 

(ISO/IEC - 27001 - 2005 Certified) 

MODEL ANSWER 
SUMMER– 17 EXAMINATION 

        Subject Title:  System Programming                                                              Subject Code: 

 

8 | P a g e  

 

 

17634 

 (5) Explain the concept of subroutine linkages in loader. 4M 

 Ans: To understand the concept of subroutine linkages, first consider the following scenario: 

"In Program “A” call to subroutine B is made. The subroutine B is not written in the 

program segment of A, rather B is defined in some another program segment C" 

Nothing is wrong in it. But from assembler's point of view while generating the code 

for B, as B is not defined in the segment A, the assembler cannot find the value of this 

symbolic reference and hence it will declare it as an error. To overcome problem, there 

should be some mechanism by which the assembler should be explicitly informed that 

segment B is really defined in some other segment C. Therefore whenever segment B 

is used in segment A and if at all B is defined in C, then B must -be declared as an 

external routine in A. To declare such subroutine as external, we can use the assembler 

directive EXT. Thus the statement such as EXT B should be added at the beginning of 

the segment A. This actually helps to inform assembler that B is defined somewhere 

else. Similarly, if one subroutine or a variable is defined in the current segment and 

can be referred by other segments then those should be declared by using pseudo-ops 

INT. Thereby the assembler could inform loader that these are the subroutines or 

variables used by other segments. This overall process of establishing the relations 

between the subroutines can be conceptually called a_ subroutine linkage.  

For example 

MAIN START 

 EXT B 

 . 

 . 

 . 

 CALL B 

 . 

 . 

 END 

B START 

 . 

 . 

 RET 

 END 

At the beginning of the MAIN the subroutine B is declared as external. When a call to 

subroutine B is made, before making the unconditional jump, the current content of the 

program counter should be stored in the system stack maintained internally. Similarly 

while returning from the subroutine B (at RET) the pop is performed to restore the 

program counter of caller routine with the address of next instruction to be executed. 

 

(Description: 

4 marks, any 

relevant 

description 

shall be 

considered) 

 



MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION 
(Autonomous) 

(ISO/IEC - 27001 - 2005 Certified) 

MODEL ANSWER 
SUMMER– 17 EXAMINATION 

        Subject Title:  System Programming                                                              Subject Code: 

 

9 | P a g e  

 

 

17634 

 (6) Draw & explain passes of compiler. 4M 

 Ans:  

 
 

Passes is a logical execution of the compilation process.  
i. Pass 1 This pass is corresponds to lexical analysis phase. This pass scans the source 

code and creates an identifier, literal and uniform symbol table.  

ii. Pass 2 corresponds to syntactic and interpretation phase. It scans the uniform 

symbol table, produces the matrix and place information about identifier into the 

identifier table. 

iii. Passes 3 to N-3 corresponds to the optimization phase. Each separate type of 

optimization may require several passes over the matrix.  

iv. Pass N-2 corresponds to the storage assignment phase. This is a pass over the 

identifier and literal tables rather than program itself.  

v. Pass N-1 corresponds to the code generation phase. It scans the matrix and creates 

the first version of the object deck.  

vi. Pass N corresponds to the assembly phase. It resolves the symbolic addresses and 

creates information for the loader. 

(Diagram: 2 

marks, 

Description: 2 

marks) 

3.  Solve any FOUR: 16Marks 

 (1) Differentiate between searching and sorting. 4M 

 Ans: 
Searching Sorting Sr. 

no 

It is the process of finding a data 

element in the given data structure. 

It is a process of arranging 

collection of items in ascending 

order or in descending order. 

1 

To check existence of an element To arranging data in some logical 

order 

 

2 

(Each Point: 

1 mark) 

 

 



MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION 
(Autonomous) 

(ISO/IEC - 27001 - 2005 Certified) 

MODEL ANSWER 
SUMMER– 17 EXAMINATION 

        Subject Title:  System Programming                                                              Subject Code: 

 

10 | P a g e  

 

 

17634 

To determine position of a search 

element and  to determine number of 

occurrences of a search element. 

It is used to arrange the data items 

in some order i.e. in ascending or 

descending order in case of 

numerical data and in dictionary 

order in case of alphanumeric data. 

3 

Example:- Linear search and binary 

search 

Example:- Radix sort, Bubble sort, 

Radix interchange sort 
4 

 

 (2) What type of information is contained by ESD, RLD, TXT, END cards of direct 

linking loader? 

4M 

 Ans: There are four sections of the object deck for a direct linking loader. 

The ESD card the information necessary to build the external symbol. The external symbols are 

symbols that can be referred beyond the subroutine level. The normal labels in the source 

program are used only by the assembler. The ESD card contains the information necessary to 

build the external symbol. The external symbols are symbols that can be referred beyond the 

subroutine level. The normal labels in the source program are used only by the assembler. 

 

ESD card format: 

 
 

TXT card: 
The TXT card contains the blocks of data and the relative address at which data is to be placed. 

Once the loader has decided where to load the program, it adds the Program Load 

Address (PLA) to relative address. The data on the TXT card may be instruction, non-related 

data or initial values of address constants. 

 

 

 

 

 

 

 

 

 

 

(Each Card: 

1 mark  ) 

 



MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION 
(Autonomous) 

(ISO/IEC - 27001 - 2005 Certified) 

MODEL ANSWER 
SUMMER– 17 EXAMINATION 

        Subject Title:  System Programming                                                              Subject Code: 

 

11 | P a g e  

 

 

17634 

format 
 

 
 

RLD card 
The RLD cards contain the following information 1. The location and length of each address 

constant that needs to be changed for relocation or linking. 2. The external symbol by which the 

address constant should be modified. 3. The operation to be performed.  

 

RLD card format: 

 

 
 

END card 
The END card specifies the end of the object deck. 

 

END card format: 

 



MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION 
(Autonomous) 

(ISO/IEC - 27001 - 2005 Certified) 

MODEL ANSWER 
SUMMER– 17 EXAMINATION 

        Subject Title:  System Programming                                                              Subject Code: 

 

12 | P a g e  

 

 

17634 

 
 (3) State four functions of compiler. 4M 

 Ans: 1. Recognizing basic elements like variable, keyword, operators. 

2. Recognizing combination of elements as a syntactic unit and interpret their meaning 

3. Storage allocation for variables 

4. Generate the equivalent object code. 

( Four 

Functions: 4 

marks) 

 

 

 (4) Define the terms: 

(i)Binder (ii). Dynamic loader (iii). Linking editor (iv).  Overlays. 

4M 

 Ans: 1. Binders: A binder is a program that performs the same functions as the direct-

linking loader in “binding” subroutines together, but rather than placing the relocated 

and linked text directly into memory, it outputs the text as a file or card deck. This 

output file is in a format ready to be loaded and is typically called a load module. 

 

2) Dynamic Loader: The portion of the loader that actually intercepts the “calls” and 

loads the necessary procedure is called the overlay supervisor or simply the flipper. 

This overall scheme is called dynamic loading – on call (LOCAL). 

 

3) Linkage Editor:  A more sophisticated binder, called a linkage editor, can keep 

track of then relocation information so that the resulting load module, as an ensemble, 

can be further relocated and thereby loaded anywhere in core. 

 

4) Overlay:  An overlay is a part of a program (or software package) which has the 

same load origin as some other part(s) of the program. Overlays are used to reduce the 

main memory requirement of a program. 

(Each Term: 

1 mark) 

 

 (5) Write algorithm for syntax analysis phase of compiler. 4M 

 Ans: Syntax analysis Phase: Algorithm 

1. Reduction are checked repeatedly for match between the field which old top of stack  

and the actual top of stack , until match is found 

2. If match is found, action routines specified in the action field are executed. 

3. After syntax analyzer get control back to it, it modifies the top of stack with new top 

( Four 

Steps:  4 

marks ) 

 



MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION 
(Autonomous) 

(ISO/IEC - 27001 - 2005 Certified) 

MODEL ANSWER 
SUMMER– 17 EXAMINATION 

        Subject Title:  System Programming                                                              Subject Code: 

 

13 | P a g e  

 

 

17634 

of stack 

4. Step 1 is repeated starting with the reduction specified in the next reduction field. 

 

 (6) Explain the structure of Macro Definition Table (MDT) and Argument List Array 

(ALA) with example.  

4M 

 Ans: MDT: - MDT is used to save the macro definition along with MEND statement. Each 

parameter is replaced by the index notation. In pass 1 MDT is used to save the macro 

definition. In pass 2 MDT is used for performing macro expansion 

Structure of MDT: 

 

ALA:-It is used for simplifying the parameter replacement procedure. In pass 1 ALA is 

used to replace the formal parameter by three respective index notations In pass 1 ALA 

is used to replace the index notations by three actual parameters. 

Dummy arg in the macro definition are placed with positional indicators when stored in 

MDT 

Structure of ALA: 

 

# symbol is used as index marker ,ith dummy arg represented by #i 

 

ARGUMENT (8 BYTES PER 

ENTRY)   

INDEX 

  

  

Example:- 

 

MACRO DEFINITION TABLE 80 

BYTES/ENTRY 

INDEX  

  

  

(MDT with 

Example: 2 

marks,    

ALA with 

Example: 2 

marks) 

 



MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION 
(Autonomous) 

(ISO/IEC - 27001 - 2005 Certified) 

MODEL ANSWER 
SUMMER– 17 EXAMINATION 

        Subject Title:  System Programming                                                              Subject Code: 

 

14 | P a g e  

 

 

17634 

 

 
 

 
b denotes :- blank  

 

MDT: 

 

 

 

INDEX MACRO 

DEFINITION TABLE 80 

BYTES/ENTRY  

INDEX 

  

&LAB INCR &A1,&A2,&A3 15 

#0 A 1,#1 16 

A 1,#2 17 

A 1,#3 18 

MEND 19 

4.  Solve any FOUR: 16Marks 

 (1) Explain working of relocating loader.  4M 

 Ans: Loader avoids possible reassembling of all subroutines when a single subroutine is 

changed and perform the tasks of allocation and linking for the programmer. The BSS 

loader allows many procedure segments yet only one data segment. The assembler 

assembles each procedure segment independently and passes on to the loader the text 

and information as to relocation and inter segment references. The o/p of a relocating 

(Working: 4 

marks) 

 



MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION 
(Autonomous) 

(ISO/IEC - 27001 - 2005 Certified) 

MODEL ANSWER 
SUMMER– 17 EXAMINATION 

        Subject Title:  System Programming                                                              Subject Code: 

 

15 | P a g e  

 

 

17634 

assembler using a BSS scheme is the object program and information about all other 

program it references. For each source program the assembler o/p a text prefixed by a 

transfer vector that consist of addresses containing names of the subroutines referenced 

by the source program. The assembler would also provide the loader with additional 

information such as the length of the entire program and the length of the transfer 

vector position. After loading the text and the transfer vector into core, the loader 

would load each subroutine identified in the transfer vector. It would the place a 

transfer instruction to the corresponding subroutine in each entry in the transfer vector. 

The BSS loader scheme is other used on compiler with a fixed length direct address 

instruction format. 

The relocation bit solves the problem of relocation, the transfer vector is used to solve 

the problem of linking and the program length information solves the problem of 

allocation. 

 (2) Draw format of MOT, POT, ST, BT database of pass-1 of assembler. 4M 

 Ans: 1. Machine Op-code Table (MOT):- 

 

Reserved 3Bit Instruction 

Format 3 Bit 

Length 2 

Bit 

Binary Opcode 

1 Byte  

Mnemonic 

opcode 4 Bytes  

     

 

Pseudo-Opcode Table (POT):- 

Address of Function 3 Bytes 

=24 bit address 

Pseudo-Opcode 5 Bytes  

  

Symbol Table(ST) :- 

Relocation 1 Bytes Length 1 Bytes Value 4 Bytes  Symbol Table 8 Bytes  

    

 

Base Table (BT):- 

(Each 

Database 

format: 1 

mark) 

 



MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION 
(Autonomous) 

(ISO/IEC - 27001 - 2005 Certified) 

MODEL ANSWER 
SUMMER– 17 EXAMINATION 

        Subject Title:  System Programming                                                              Subject Code: 

 

16 | P a g e  

 

 

17634 

 
 (3) Draw macro instruction structure. 4M 

 Ans: 

 

(Structure: 

4 marks  ) 

 



MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION 
(Autonomous) 

(ISO/IEC - 27001 - 2005 Certified) 

MODEL ANSWER 
SUMMER– 17 EXAMINATION 

        Subject Title:  System Programming                                                              Subject Code: 

 

17 | P a g e  

 

 

17634 

 

 (4) Explain the structure of: 

i. Identifier Table     ii. Matrix Database of compiler. 

 

4M 

 Ans: IDENTIFIER TABLE: Created by lexical analysis to describe all identifiers used in 

the source program. There is one entry for each identifier. Lexical analysis creates the 

entry and places the name of the identifier into that entry. Since in many languages 

identifiers may be from 1 to 31 symbols long. The lexical phase may enter a pointer in 

the identifier table for efficiency of storage. The pointer points to the name in a table of 

names. Later phases will fill in the data attributes and address of each identifier. 
     

Name Data Attributes Address 

   

 

MATRIX: The compiler uses the matrix, which is the intermediate form of a linear 

representation of the past tree. Each matrix entry has one operator and two operands 

and intermediate result store in temporary variable. 

 

 

 

 

(Identifier 

Table : 2 

marks, Matrix 

Database 

table: 2 

marks)  



MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION 
(Autonomous) 

(ISO/IEC - 27001 - 2005 Certified) 

MODEL ANSWER 
SUMMER– 17 EXAMINATION 

        Subject Title:  System Programming                                                              Subject Code: 

 

18 | P a g e  

 

 

17634 

 

MATRIX 

LINE NO 

OPERATOR OPERAND 1 OPERAND 2 RESULT 

     

     

     
 

 (5) Explain Random Entry Searching.  4M 

 Ans: All Binary Search algorithms, which are fast, but can only operate on tables that are 

ordered and packed, i.e. tables that will have adjacent items ordered by keywords. Such 

search procedures may therefore have to be used in conjunction with a sort algorithm 

which both orders and packs the data. Actually, it is unnecessary for the table to be 

ordered and packed to achieve good speed in searching. This is also possible to do 

considerably better with an unpacked, unordered table, provided it is sparse, i.e. the 

number of storage spaces allocated to it exceeds the number of items to be stored. It is 

observed that the address calculation sort gives good results with a sparse table. 

However, having to put elements in order slows down the process. A considerable 

improvement can be achieved by inserting element in a random (or pseudo-random) 

way.  The random entry number K is generated from the key by methods similar to 

those used in address calculation. If the K the some other cell must be found for the 

insertion. The first problem is the generation of a random number from the key. It is to 

design a procedure that will generate pseudo-random, consistent table positions for 

keywords. One fairly good prospect for four character EBCDIC keywords is to simply 

divide the keyword by the table length N and use the remainder. This scheme works 

well as long as N and the key size (32 bits in case) have no common factors. For a 

given group of M keywords the remainders should be fairly evenly distributed over).... 

(N-1). 

(Explanation: 4 

marks) 

 

 (6) Explain Machine dependent optimization phase of compiler with example. 4M 

 Ans: Machine dependent optimization:  

●  If we optimize register usage in the matrix, it becomes machine – dependent 

optimization. 

●  Following figure depicts the matrix that we previously optimized by eliminating a 

common sub expression (M4).  

●  Next to each matrix entry is a code generated using the operators. 

● The third column is even better code in that it uses less storage and is faster due to a 

more appropriate mix of instructions. 

● This example of machine-dependent optimization has reduced both the memory space 

needed for the program and the execution time of the object program by a factor of 2.  

● Machine dependent optimization is typically done while generating code 

 

(Description:2 

marks, 

Example: 2 

marks)  

 



MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION 
(Autonomous) 

(ISO/IEC - 27001 - 2005 Certified) 

MODEL ANSWER 
SUMMER– 17 EXAMINATION 

        Subject Title:  System Programming                                                              Subject Code: 

 

19 | P a g e  

 

 

17634 

 
5.  Solve any FOUR: 16Marks 

 (1) Explain macro within macro. 4M 

 Ans: Macro calls are “abbreviations” of instruction sequences, it seems reasonable that such 

“abbreviations” should be available within other macro definitions. 

For example, 

MACRO  

ADD1 &ARG  

L 1, &ARG  

A 1, =F‟1‟ 

ST 1, &ARG  

MEND  

 

MACRO ADDS &ARG1, &ARG2, &ARG3  

ADD1 &ARG1  

ADD1 &ARG2  

(Explanation: 

4 marks) 



MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION 
(Autonomous) 

(ISO/IEC - 27001 - 2005 Certified) 

MODEL ANSWER 
SUMMER– 17 EXAMINATION 

        Subject Title:  System Programming                                                              Subject Code: 

 

20 | P a g e  

 

 

17634 

ADD1 &ARG3  

MEND 

 

Within the definition of the macro ‘ADDS’ are three separate calls to a previously 

defined macro ‘ADD1’. The use of the macro ‘ADD1’ has shortened the length of the 

definition of ‘ADDS’ and thus had made it more easily understood. Such uses of 

macros result in macro expansions on multiple ‘levels’. 

 (2) Draw flow chart & explain working of absolute loader. 4M 

 Ans:  

 

 

 

(Flowchart: 2 

marks, 

Working: 2 

marks) 

 



MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION 
(Autonomous) 

(ISO/IEC - 27001 - 2005 Certified) 

MODEL ANSWER 
SUMMER– 17 EXAMINATION 

        Subject Title:  System Programming                                                              Subject Code: 

 

21 | P a g e  

 

 

17634 

 

Working of absolute loader: With an absolute loading scheme, the programmer and 

assembler perform the task of allocation, relocation and linking.  Therefore, it is only 

necessary for the loader to read cards of the object deck and move the texts on the cards 

into the absolute locations specified by the assembler. There are two types of 

information that the object deck must communicate from the assembler to the loader.  

 First, it must convey the machine instructions that the assembler has created 

along with the assigned core locations, (called as text cards). 

  Second, it must convey the entry point of the program, which is where the 

loader is to transfer control when all instructions are loaded (called as transfer cards). 

 Algorithm:  

 The object deck for this loader consists of a series of text cards terminated by the 

transfer cards.  

 Therefore, the loader should read one card at a time, moving the text to the 

location specified on the card, until the transfer card is reached.  

 At this point the assembled instructions are in core, and it is only necessary to 

transfer to the entry point specified on the transfer card.  

 (3) Explain general model of a compiler. 4M 

 Ans: In analyzing the compilation of simple program there are seven distinct logical 

problems as follows and summarized in figure below. 

 

 

 

(Figure: 2 

marks 

,Working: 2 

marks) 

 



MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION 
(Autonomous) 

(ISO/IEC - 27001 - 2005 Certified) 

MODEL ANSWER 
SUMMER– 17 EXAMINATION 

        Subject Title:  System Programming                                                              Subject Code: 

 

22 | P a g e  

 

 

17634 

1. Lexical analysis – Recognition of basic elements of creation of uniform 

symbols.  

2. Syntax analysis – Recognition of basic syntactic constructs through reductions.  

3. Interpretation – Definition of exact meaning, creation of matrix and tables by 

action routines.  

4. Machine Independent Optimization – Creation of more optimal matrix.  

5. Storage Assignment – Modification of identifier and literal tables. If makes 

entries in the matrix that allow code generation to create code that allocates dynamic 

storage and that also allow the assembly phase to reserve the proper amounts of 

STATIC storage.  

6. Code Generation – Use of macro processor to produce more optimal assembly 

code. 

7. Assembly And Output – Resolving symbolic addresses and generating 

machine language.  

 (4) Mention four functions of storage assignment phase of compiler. 4M 

 Ans: The purpose of this phase is to:  
1. Assign storage to all variables referenced in the source program.  

2. Assign storage to all temporary locations that are necessary for intermediate 

result, e.g the results of matrix lines. These storage references were reserved by the 

interpretation phase and did not appear in the source code.  

3. Assign storage to literals.  

4. Ensure that the storage is allocated and appropriate locations are initialized 

(Literals and any variables with the initial attribute)  

 

The storage allocation phase first scans through the identifier table, assigning locations 

to the storage allocation phase first scans through the identifier table, assigning 

locations to each entry with a storage class of static. It uses a location counter, 

initialized at zero, to keep track of how much storage it has assigned.  

 

Whenever it finds a static variable in the scan, the storage allocation phase does 

the following four steps:  

1. Updates the location counter with any necessary boundary alignment.  

2. Assigns the current value of the location counter to the address field of the 

variable.  

3. Calculate the length of the storage needed by the variable (by examining its 

attributes).  

4. Updates the location counter by adding this length to it. Once it has assigned 

relative address to all identifiers requiring STATIC storage locations, this phase 

creates a matrix entry:  

 

5. This allows code generation to generate the proper amount of storage. For each 

(Explanation: 

4 marks) 



MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION 
(Autonomous) 

(ISO/IEC - 27001 - 2005 Certified) 

MODEL ANSWER 
SUMMER– 17 EXAMINATION 

        Subject Title:  System Programming                                                              Subject Code: 

 

23 | P a g e  

 

 

17634 

variable that requires initialization, the storage allocation phase generates a matrix 

entry: 

 

6. This tells code generation to put into the proper storage location the initial 

values that the action routines saved in the identifier table. A similar scan of the 

identifier table is made for automatic storage and controlled storage. The scan enters 

relative location for each entry. An “automatic” entry and a “controlled “entry are also 

made in the matrix. Code generation use the relative location entry to generate the 

address part of instructions. No storage is generated at compile time for automatic or 

controlled. However, the matrix entry automatic does cause code to be generated that 

allocates this storage at execution time, i.e., when the generated code is executed, it 

allocates automatic storage. 

 

7. The literal table is similarly scanned and location are assigned to each literal, 

and a matrix entry is made. Code generation generates storage for all literals in the 

static area and initializes the storage with the values of the literals. Temporary 

storage is handled differently since each source statement may reuse the temporary 

storage (intermediate matrix result area) of the previous source statement. A 

computation is made of the temporary storage that is required for each source 

statement. The statement required the greatest amount of temporary storage 

determines the amount that will be required for the entire program. A matrix entry is 

made of the form this enables the code generation phase to generate code to create 

the proper amount of storage.  

 
8. Temporary storage is automatic since it is only referenced by the source 

program and only needed while the source program is active. 

 (5) Explain single pass algorithm for macro processing. 4M 

 Ans: If we wanted to provide for macro definitions within macros. The basic problem here is 

that inner macro is defined only after the outer one has been called in order to provide 

for any use of the inner macro we would have to repeat both the macro-definition and 

the macro-call passes. However there is a simpler solution that has added advantages of 

reducing all macro processing to a single pass. There are two additional variables 

introduced in the one –pass design a macro definition input (MDI) indicator and a 

(Explanation: 

4 marks ) 

 



MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION 
(Autonomous) 

(ISO/IEC - 27001 - 2005 Certified) 

MODEL ANSWER 
SUMMER– 17 EXAMINATION 

        Subject Title:  System Programming                                                              Subject Code: 

 

24 | P a g e  

 

 

17634 

Macro Definition Level Counter (MDLC). The MDI and MDLC are switches 

(counters) used to keep track of macro calls and macro definitions. The MDI indicator 

has the value “ON” during expansion of a macro call and the value “OFF” at all other 

times. The actual expansion of macro calls is performed in the read box. READ tests 

the switch MDI. If it is “ON”, lines are read from the Macro Definition Table (MDT). 

The reading of a MEND line indicates the end of a macro and terminates expansion of 

call: MDI is reset to “OFF” and the next line is obtained from the regular input stream. 

Note that lines returned by READ may include macro definition’s; expanded macro 

code comes out of READ looking just like any other code and may therefore include 

macro definitions. The macro definition level counter is incremented by 1 when a 

MACRO pseudo-op is encountered and decremented by 1 when a MACRO pseudo-op 

occurs. The MDLC is used to insure that the entire macro definition, including 

MACROs and MENDs, gets stored in MDT. 

 

Working of Macro: 

1. Start 

2.  Initialize MDTC = 1 

     MNTC =1 

                             MDI = OFF 

                 MDLC = 0 

3. Read- perform read operation of macro. 

4. Search MNT for match found of operation code. 

5. Is macro name found ? macro call 

If yes MDI =‘ON’ 

MDTP = MDT Index from MNT entry 

Setup ALA 

Goto step 3 

If no go to step 6 

6. Is macro pseudo-op ?macro definition, 

If yes MDLC = MDLC + 1 

If no then read code again. 

7. Store macro name and current value of MDTC in MNT entry number in MNTC. 

8. Increment MNTC by 1 

Prepare ALA 

9. Store macro name card in MDT 

Increment MDTC by 1 

Increment MDLC by 1 

10. Read - perform read operation of macro. 

11. Substitute index notation for arguments in definition. 

Enter line is MDT 

Increment MDTC by 1 

12. Is MACRO pseudo-op 

If yes increment MDLC by 1 and goto step 10. 

If no 

Is MEND pseudo-op ? 

If yes 



MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION 
(Autonomous) 

(ISO/IEC - 27001 - 2005 Certified) 

MODEL ANSWER 
SUMMER– 17 EXAMINATION 

        Subject Title:  System Programming                                                              Subject Code: 

 

25 | P a g e  

 

 

17634 

Decrement MDLC by 1 

Goto step 13. 

If no, goto step 10 

13. If MDLC = 0 

If yes, goto step 3 

If no, goto step 10 

14. Write expanded code in source file card. 

15. Is END pseudo-op ? 

  If yes 

Supply expanded source file to assembler processing 

If no, goto step 3. 

 (6) Define parser. Draw the parse tree for string ‘abccd’ using top-down parser. 4M 

 Ans: Parser: A parser is a program that receives input in the form of sequential source 

program instructions, interactive online commands, markup tags, ets and breaks them 

up into parts such as mnemonics, symbols, objects, methods, etc that can then be 

managed by other phases of compiler. Parser is also called as “Syntax analyzer”. 

Parse tree for the string ‘abccd’ using top down parser.  
String is “abccd”  

Assume:  
S→ xyz | aBC  

B → b | bc  

C → dc | cd 

Steps  

  Assertion 1 : abccd matches S  

 Assertion 2: abccd matches xyz:  

 Assertion is false. Try another. 

 Assertion 2 : abccd matches aBC i.e bccd matches BC:  

 Assertion 3 : bccd matches cC i.e ccdd matches C:  

 Assertion 4 : ccd matches dc:  

 False.  

 Assertion 4 : ccd matches dc:  

 False.  

 Assertion 3 is false. Try another.  

 Assertion 3 : ccd matches bcC i.e cd matches C:  

 Assertion 4 : cd matches dc:  

 False.  

 Assertion 4 : cd matches cd:  

 Assertion 4 is true.  

(Definition: 1 

mark, Parse 

Tree: 3 

marks)  

 



MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION 
(Autonomous) 

(ISO/IEC - 27001 - 2005 Certified) 

MODEL ANSWER 
SUMMER– 17 EXAMINATION 

        Subject Title:  System Programming                                                              Subject Code: 

 

26 | P a g e  

 

 

17634 

 Assertion 3 is true.  

 Assertion 2 is true.  

 Assertion 1 is true. 

 

 

 

 

 

 

6.  Solve any FOUR: 16Marks 

 (1) Explain assembly phase of a compiler. 4M 

 Ans:  After code generation phase, next phase is assembly phase. The task of 

assembly phase depends on how much has been done in code generation.  

 If a lot of work has been done in code generation, then the assembly phase must 

resolve labels references in object program, format the object deck, and format 

the appropriate information for the loader.  

 If code generation has simply generated symbolic machine instructions and 

labels, the assembly phase must (1) resolve label references, (2) calculate 

addresses, (3) generate binary machine instructions, and (4) generate storage, 

convert literals. 

Databases: 

1. Identifier table: assembly phase uses this database to enter the value of all labels 

into identifier table.  

2. Literal table: places the literal on appropriate TXT cards 

3. Object code: the output of code generation. 

Algorithm: 

1. A simple assembly phase scans the object code, resolving all label references 

and producing the TXT cards. 

2. It then scans the identifier table to create the ESD cards. 

3. The RLD cards are created using the object code, the ESD cards and the 

identifier table 

 

 

 

 

 

(2 marks 

Explanation: 

2 marks 

Databases: , 1 

mark, 

Algorithm: 1 

mark) 



MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION 
(Autonomous) 

(ISO/IEC - 27001 - 2005 Certified) 

MODEL ANSWER 
SUMMER– 17 EXAMINATION 

        Subject Title:  System Programming                                                              Subject Code: 

 

27 | P a g e  

 

 

17634 

 (2) Sort following numbers in ascending order by bucket sort: 

78,354,51,278,63,89,312,12 

4M 

 Ans:  

 

 
 

Sorted list: 12, 51, 63, 78,89, 278, 3 

(4 marks ) 

 (3) Explain features of macro facility. 4M 

 Ans: Following are features of a MACRO facility:  

1. Macro instruction Arguments.  

2. Conditional Macro Expansion  

3. Macro calls within Macros  

4. Macro instruction Defining Macros  

 

1. Macro Instruction Arguments: The macro facility presented is capable of 

inserting block of instructions in place of macro calls. All of the calls to any given 

macro will be replace by identical blocks. This lacks flexibility: there is no way for a 

specific macro call to modify the coding that replaces it. An important extension of 

this facility consists of providing for arguments. An important extension of this facility 

consists of providing for arguments or parameters in macro calls. Corresponding 

macro dummy arguments will appear in macro definitions. 

. 

. 

. 

A  1,DATA1  

A  2,DATA1  

A  3,DATA1  

. 

. 

. 

A  1,DATA2  

A  2,DATA2  

A  3,DATA2  

(Each feature: 

1 mark) 

 



MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION 
(Autonomous) 

(ISO/IEC - 27001 - 2005 Certified) 

MODEL ANSWER 
SUMMER– 17 EXAMINATION 

        Subject Title:  System Programming                                                              Subject Code: 

 

28 | P a g e  

 

 

17634 

. 

. 

. 

DATA 

1 DC  

F‟5‟  

DATA 

2 DC  

F‟10‟  

  

 

 

MACRO  

Macro INCR has One 

Argument  

INCR  &ARG  

A  1,&ARG  

A  2,&ARG  

A  3,&ARG  

MEND  

.  

.  

.  

INCR  DATA1  Use DATA1 as 

operand  

.  

.  

.  

INCR  DATA2  Use DATA2 as 

operand  

.  

.  

.  

DATA1 DC  F‟5‟  

DATA2 DC  F‟10‟  

.  

.  

.  

In this case the instruction sequences are very similar but not identical. The first 

sequences performs an operation using DATA1 as operand; the second using DATA2. 

They can be considered to perform the same operation with a variable parameter, or 

argument. Such parameter is called a macro instruction argument or dummy 

arguments. It is specified on the macro name line and distinguished by the ampersand 

which is always its first character. 

2. Conditional Macro Expansion: Two important macro processor pseudo-ops, 

AIF and AGO, permit conditional reordering of the sequence of macro expansion. This 

allows conditional selection of the machine instructions that appear in expansions of 

macro call. AIF is conditional branch pseudo-o; it performs an arithmetic test and 



MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION 
(Autonomous) 

(ISO/IEC - 27001 - 2005 Certified) 

MODEL ANSWER 
SUMMER– 17 EXAMINATION 

        Subject Title:  System Programming                                                              Subject Code: 

 

29 | P a g e  

 

 

17634 

branches only if the tested condition is true. The AGO is an unconditional branch 

pseudo ops or ‘go to’ statement. It specifies a label appearing on some other statement 

in the macro instruction definition; the macro processor continues sequential 

processing of instruction with the indicated statement. These statements are directives 

to the macro processor and do not appear in macro expansion.  

3. Macro call within Macros: Since macro calls are “abbreviations” of 

instruction sequences, it seems reasonable that such abbreviations should be available 

within other macro definitions. Macro calls within macros can involve several levels. 

In fact, conditional macro facilities make it possible for a macro to call itself. So long 

as this does not cause an infinite loop so long as at some point the macro having been 

called for the nth time, decides not to call itself again perfectly.  

4. Macro Instructions Defining Macros Macros are generalized abbreviations 

for instruction sequences, nothing that it seems reasonable to permit any valid 

statements in the abbreviated sequence, including macro definitions. In this manner a 

single macro instruction might be used to simplify the process of defining a group of 

similar macros. 

 (4) List the steps for binary search algorithm. List the best, worst and average case 

complexity. 

4M 

 Ans: Binary Search Algorithm: A more systematic way of searching an ordered table. This 

technique uses following steps for searching a keywords from the table.  

1. Find the middle entry (N/2 or (N+1)/2)  

2. Start at the middle of the table and compare the middle entry with the keyword 

to be searched.  

3. The keyword may be equal to, greater than or smaller than the item checked.  

4. The next action taken for each of these outcomes is as follows  

If equal, the symbol is found  

If greater, use the top half of the given table as a new table search  

If smaller, use the bottom half of the table.  

 

Example:  

The given nos are: 1,3,7,11,15  

To search number 11 Indexing the numbers from list [0] upto list[5]  

Pass 1  

Low=0, High = 5, Mid= (0+5)/2 = 2 

So  

(Algorithm: 2 

marks 

Complexity:  

2 marks) 



MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION 
(Autonomous) 

(ISO/IEC - 27001 - 2005 Certified) 

MODEL ANSWER 
SUMMER– 17 EXAMINATION 

        Subject Title:  System Programming                                                              Subject Code: 

 

30 | P a g e  

 

 

17634 

list[2] = 3 is less than 7  

Pass 2  

Low= (Mid+1)/2 i.e (2+1)/2 = 1, High = 5, Mid= (1+5)/2 = 6/2 = 3  

So list [3] = 11  

and the number if found. 

List the best, worst and average case complexity: 

 Binary Search can be analyzed with the best, worst, and average case number of 

comparisons. These analyses are dependent upon the length of the array, so let N =|A| 

denote the length of the Array A.  

 The numbers of comparisons for the recursive and iterative versions of Binary 

Search are the same, if comparison counting is relaxed slightly. For Recursive Binary 

Search, count each pass through the if-then-else block as one comparison. For 

Iterative Binary Search, count each pass through the while block as one comparison.  

1. Best case - O (1) comparisons In the best case, the item X is the middle in the 

array A. A constant number of comparisons (actually just 1) are required.  

2. Worst case - O (log n) comparisons In the worst case, the item X does not 

exist in the array A at all. Through each recursion or iteration of Binary Search, the 

size of the admissible range is halved. This halving can be done ceiling (lg n ) times. 

Thus, ceiling (lg n ) comparisons are required.  

3. Average case - O (log n) comparisons To find the average case, take the sum 

over all elements of the product of number of comparisons required to find each 

element and the probability of searching for that element. To simplify the analysis, 

assume that no item which is not in A will be searched for, and that the probabilities of 

searching for each element are uniform.  

 (5) Describe the term token with respect to Lexical Analysis. 4M 

 Ans:  The first phase of compiler is lexical analysis. It works as a text scanner. This 

phase scans the source code as a stream of characters and converts it into meaningful 

lexemes. Lexical analyser represents these lexemes in the form of tokens as:  

<token-name, attribute-value>  

 Algorithm of Lexical Analysis phase of compiler is as follows  

o The first tasks of the lexical analysis algorithm are to the input character string 

into token.  

o The second is to make the appropriate entries in the tables.  

o A token is a substring of the input string that represents a basic element of the 

language. It may contain only simple characters and may not include another token. 

To the rest of the compiler, the token is the smallest unit of currency. Only lexical 

analysis and the output processor of the assembly phase concern themselves with such 

elements as characters. Uniform symbols are the terminal symbols for syntax analysis.  

(Explanation: 

4 marks) 

 



MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION 
(Autonomous) 

(ISO/IEC - 27001 - 2005 Certified) 

MODEL ANSWER 
SUMMER– 17 EXAMINATION 

        Subject Title:  System Programming                                                              Subject Code: 

 

31 | P a g e  

 

 

17634 

 

 Lexical analysis recognizes three types of token: Terminal symbols, possible 

identifiers, and literals.  

 It checks all tokens by first comparing them with the entries in the terminal 

table. Once a match is found, the token is classified as a terminal symbol and lexical 

analysis creates a uniform symbol of type „TRM., and inserts it in the uniform symbol 

table. If a token is not a terminal symbol, lexical analysis proceeds to classify it as a 

possible identifier or literal. Those tokens that satisfy the lexical rules for forming 

identifiers are classified as “possible identifiers”.  

 Example:  

Consider following program  
WCM: PROCEDURE(RATE,START,FINISH); 

DECLARE (COST,RATE,START,FINISH) FIXED BINARY (31)STATIC; 

COST = RATE * (START-FINISH) + 2*RATE*(START-FINISH-100); 

RETURN (COST); 

END; 

 

 (6) Explain Conditional Macro expansion.  4M 

 Ans:  Two important macro-processor pseudo-ops AIF and AGO permit conditional 

reordering of the sequence of macro expansion. This allows conditional selection of 

the machine instructions that appear in expansions of Macro call. Consider the 

following program. 

Loop 1 A1, DATA 1 

A2, DATA 2 

A3, DATA 3 

. 

 

Loop 2 A1, DATA 3 

A2, DATA 2 

. 

. 

Loop 3 A1, DATA1 

. 

. 

(Explanation: 

4 marks) 

 



MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION 
(Autonomous) 

(ISO/IEC - 27001 - 2005 Certified) 

MODEL ANSWER 
SUMMER– 17 EXAMINATION 

        Subject Title:  System Programming                                                              Subject Code: 

 

32 | P a g e  

 

 

17634 

DATA 1 DC F‘5’ 

DATA 2 DC F’10’ 

DATA 3 DC F’15’ 

 

 In the below example, the operands, labels and the number of instructions 

generated change in each sequence. The program can written as follows:- 

. 

. 

. 

MACRO 

&ARG0 VARY &COUNT,&ARG1,&ARG2,&ARG3 

&ARG0 A 1,&ARG1 

AIF (&COUNT EQ 1).FINI 

A 2,&ARG2 

AIF (&COUNT EQ 2).FINI 

A 3,&ARG3 

.FINI MEND EXPANDED SOURCE 

. . 

. . 

. . 

LOOP1 VARY 3,DATA1,DATA2,DATA3 LOOP1 A 1,DATA1 

. A 2,DATA2 

. A 3,DATA3 

. . 

LOOP2 VARY 2,DATA3,DATA2 LOOP2 A 1,DATA3 

. A 2,DATA2 

. . 

. . 

LOOP3 VARY 1,DATA1 LOOP3 A 1,DATA1 

. 

. 

DATA1 DC F’5’ 

DATA2 DC F’10’ 

                        DATA3 DC F’15’ 

 Labels starting with a period (.) such as .FINI are macro labels and do not 

appear in the output of the macro processor.  

 The statement AIF (& COUNT EQ1) .FINI direct the macro processor to skip to 

the statement. Labelled .FINI if the parameter corresponding to & COUNT is a1; 

otherwise the macro processor is to continue with the statement following the AIF 

pseudo-ops. AIF is conditional branch pseudo ops it performs an arithmetic test and 

branches only if the tested condition is true.  

 AGO is an unconditional branch pseudo-ops or ‘Go to’ statement. It specifies 

label appearing on some other statement. AIF & AGO controls the sequence in 

which the macro processor expands the statements in macro instructions. 

 


