
MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION 
(Autonomous) 

(ISO/IEC - 27001 - 2005 Certified) 

MODEL ANSWER 
SUMMER– 17 EXAMINATION 

               Subject Title:  SOFTWARE TESTING                                                          Subject Code: 

 

Page | 1  

 

 

17624 

Important Instructions to examiners: 
1) The answers should be examined by key words and not as word-to-word as given in the model answer 

scheme. 
2) The model answer and the answer written by candidate may vary but the examiner may try to assess the 

understanding level of the candidate. 
3) The language errors such as grammatical, spelling errors should not be given more Importance (Not 

applicable for subject English and Communication Skills. 
4) While assessing figures, examiner may give credit for principal components indicated in the figure. The 

figures drawn by candidate and model answer may vary. The examiner may give credit for any equivalent 
figure drawn. 

5) Credits may be given step wise for numerical problems. In some cases, the assumed constant values 
may vary and there may be some difference in the candidate’s answers and model answer. 

6) In case of some questions credit may be given by judgement on part of examiner of relevant answer 
based on candidate’s understanding. 

7) For programming language papers, credit may be given to any other program based on equivalent 
concept. 

 
Q. 

No

. 

Sub 

Q. N. 

Answer Marking 

Scheme 

1. (A) Attempt any THREE of the following : 12 Marks 

 (a) Define software testing. List all skills of software tester. 4M 

 Ans: Software Testing is the process of executing a program with the intent of finding errors. A 

successful test is one that uncovers an as-yet-undiscovered error. Testing can show the 

presence of bugs but never their absence. Testing is a support function that helps developers 

look good by finding their mistakes before anyone else does. Execution of a work product 

with intent to find a defect. Prevents defects. 

Different Skills of software tester : 

 Communication skills  

 Domain knowledge 

 Desire to learn 

 Technical skills 

 Analytical skills 

 Planning  

 Integrity  

 Curiosity 

 Think from users perspective 

 Be a good judge for product 

 

(Definition: 

2 marks, 

List of 

Skills of 

Software 

tester: 2 

marks ) 

 (b) Describe Inspection under static testing. 4M 

 Ans: Under Static testing is to review the code without executing it. Inspection is the most 

formal method in static testing. This method can detect all faults, violations and other side 

effects.  

                                                              

(Explanatio

n: 4 marks) 



MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION 
(Autonomous) 

(ISO/IEC - 27001 - 2005 Certified) 

MODEL ANSWER 
SUMMER– 17 EXAMINATION 

               Subject Title:  SOFTWARE TESTING                                                          Subject Code: 

 

Page | 2  

 

 

17624 

                                                                      OR  

Inspection is formal review where people external to the testing team may be involved as 

inspectors. They are subject matter experts who review the work product.  

In this: 

1. Thorough preparation is required before an inspection/review 

2. Enlisting multiple diverse views. 

3. Assigning specific roles to the multiple participants 

4. Going sequentially through the code in a structured manner. 

There are four roles in inspection: 

1. Author of the code: the person who had written the code 

2. Moderator: who is expected to formally run the inspection according to the process? 

3. Inspectors: are the people who actually provide review comments for the code. 

4. Scribe: who takes detail notes during the inspection meeting and circulates them to 

the inspection team after the meeting. 

The author or moderator selects review team. The inspection team assembles at the agreed 

time for inspection meeting. The moderator takes the team sequentially through the program 

code. If any defect is found they will classify it as minor or major. A scribe documents the 

defects. For major defects the review team meets again to check whether the bugs are 

resolved or not. 

 (c) Describe Top-Down integration testing with labelled diagram. 4M 

 Ans: The strategy in top-down integration is look at the design hierarchy from top to bottom. 

Start with the high - level modules and move downward through the design hierarchy. 

Modules subordinate to the top modules are integrated in the following two ways: 

1. Depth first Integration: In this type, all modules on major control path of the design 

hierarchy are integrated first. In this example shown in fig. modules 1, 2, 6, 7/8 will be 

integrated first. Next, modules 1, 3, 4/5 will be integrated. 

2. Breadth first Integration: In this type, all modules directly subordinate at each level, 

moving across the design hierarchy horizontally, are integrated first. In the example 

shown in figure modules 2 and 3 will be integrated first. Next, modules 6,4 and 5 will 

be integrated . Modules 7 and 8 will be integrated last. 

Procedure: 
The procedure for Top-Down integration process is discussed in the following steps: 

1. Start with the top or initial module in the software.  Substitute the stubs for all the 

subordinate of the top module. Test the top module. 

2. After testing the top module, stubs are replaced one at a time with the actual modules 

for integration. 

3. Perform testing on this recent integrated environment. 

4. Regression testing may be conducted to ensure that new errors have not appeared. 

5. Repeat steps 2-4 for whole design hierarchy. 

 
 
 
 

(Descriptio

n: 2 

marks, 

Labelled 

Diagram: 

2 marks) 



MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION 
(Autonomous) 

(ISO/IEC - 27001 - 2005 Certified) 

MODEL ANSWER 
SUMMER– 17 EXAMINATION 

               Subject Title:  SOFTWARE TESTING                                                          Subject Code: 

 

Page | 3  

 

 

17624 

 
 (d) What is test plan? Write its two advantage. 4M 

 Ans: Test planning is the first activity of test team. If a tester does not plan for testing then it 

leads to failure. Test plans are defined in framework created by test strategy and 

established by test policy Like any project, the testing also should be driven by a plan. 

The test plan acts as the anchor for the execution, tracking and reporting of the entire 

testing project.  The test plan acts as the anchor for the execution, tracking and 

reporting of the entire testing project and covers. 

1. Preparing test plan: 

i. What needs to be tested – the scope of testing, including clear identification of what 

will be the tested & what will not be tested. 

ii. How the testing is going to be performed – breaking down the testing into small and 

manageable tasks and identifying the strategies to be used for carrying out the tasks. 

iii. What resources are needed for testing- computer as well as human resources. 

iv. The time lines by which the testing activities will be performed. 

v. Risks  that  may  be  faced  in  all  of  the  above,  with  appropriate  mitigation  and 

contingency plans. 

2. Scope management: It entails: 

i. Understanding what constitutes a release of product. 

ii. Breaking down the release into features. 

iii. Prioritizing the feature of testing. 

iv. Deciding which features will be tested & which will not be 

 

(Definition/

Concept: 2 

marks, 

Advantage: 

1 mark 

each) 

 



MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION 
(Autonomous) 

(ISO/IEC - 27001 - 2005 Certified) 

MODEL ANSWER 
SUMMER– 17 EXAMINATION 

               Subject Title:  SOFTWARE TESTING                                                          Subject Code: 

 

Page | 4  

 

 

17624 

3. Deciding Test approach/ strategy: This includes identifying. 

i. What type of testing would use for testing functionality? 

ii. What are the configurations for testing features? 

iii. What integration testing would you do to ensure these features work together? 

iv. What “non-functional” tests would you need to do? 

4. Setting up criteria for testing: Some of the typical suspension criteria include: 

i. Encountering more than a certain numbers of defects, causing frequent stoppage of 

testing activity. 

ii. Hitting show stoppers that prevent further progress of testing. 

5 .  Identifying responsibilities, staffing & Training needs:   
The next aspect of planning is who part of it. Identifying responsibilities, staffing & 

training needs addresses this aspect. 

6. Identifying Resource Requirement:  

As a part of planning for a testing project, the project manager should provide 

estimate for the various h/w & s/w resources required. 

7. Identifying Test Deliverables: 

 It includes : test plan itself, test case design specification, test cases , test logs & test   

summary report 

8.Testing task:  

Size and Effort estimation: This gives estimation in terms of size, effort & schedule 

of testing project. 

Advantages of test planning: 

 Work involved in test planning and setup pays in the long term. It gives insight testing 

activity completely. One knows scope and deliverables of test plan execution.  

 Test plan describes the way in which testing team will show whether software work 

correctly as per requirements and the acceptance criterial as defined b customer or 

development team with customer. It defines various objectives for testing to measure its 

performance and coverage offered. 

 Test plan addresses various levels of testing such as unit testing module testing, System 

testing, integration testing, black box  testing as well as white box testing. Some time 

there may be single master test plan with several child test plan at each level for a 

number of a small plans or one monolithic test plan covering every aspect of testing. 

 Test plan explain who does testing. Why test are performed how test are conducted and 

when tests are scheduled (calendar date and milestone). It defines various criteria such as 

entry criteria, exit criteria, suspension criteria and resumption criteria at various stages of 

testing. 

 Test plan must contain procedures, environment and tools necessary to implement an 

orderly, controlled process for test execution, defect tracking, coordination of rework and 

configuration, and change control.  

 

OR 

It is strategic document describes how to perform a task in as effective, efficient and 

optimized manner. It also specifies, the scope and objectives for testing 



MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION 
(Autonomous) 

(ISO/IEC - 27001 - 2005 Certified) 

MODEL ANSWER 
SUMMER– 17 EXAMINATION 

               Subject Title:  SOFTWARE TESTING                                                          Subject Code: 

 

Page | 5  

 

 

17624 

Primary tasks in testing are :.( Explanation of followings related to):  

1. Scope of testing 

2. Set objectives of test planning 

3. Methodology for testing  

4. Requirement,  

5. Entry and exit criteria 

6. Develop Test matrix 

7. Test estimation and administrative component 

8. Write and execute test cases. 

9. Deciding Criteria for test-to-pass, test-to-fail,  

10. Schedule of testing  

11. The main purpose of test planning is to show whether software is correct as per 

requirement. 

 

 (B) Attempt any ONE of the following : 06 Marks 

 (a) Prepare six test cases for home page of marketing site www.flipkart.com. 6M 

 Ans: Test Cases for Home page of marketing site www.flipkart.com. 

Sr. 

No. 

Test 

Case

-ID 

Test 

case 

Objec

tive 

Prereq

uisite 
Steps 

Inp

ut 

data 

Expect

ed 

Result 

Act

ual 

Resu

lt 

Re

ma

rks/

Sta

tus 

1 
TC-

1 

To 

check 

interes

t 

Whethe

r 

internet 

is 

availabl

e or not? 

Test 

interne

t 

connec

tion 

ww

w.fli

pkart

.com 

Site 

home 

page 

display 

should 

display 

on 

screen 

Hom

e 

page 

displ

ayed 

Tes

t to 

fail 

2 
TC-2 

User 

name 

correct 

and 

valid  

user 

name 

should 

be 

registere

d on 

flipkart 

Ty

pe 

cor

rect 

and 

vali

d  

use

r 

na

me 

User 

nam

e 

give

n by 

flipk

art 

Should 

enter 

valid 

the 

user 

name 

Goes 

to 

next 

page 

if 

user  

id 

and 

pass

word 

verifi

ed 

and 

valid

Tes

t to 

pas

s 

(Proper 

test cases 

in 

prescribed 

format or 

similar 

Contents: 

1 mark 

Each, 

Minimum 

six test 

cases for 

given web 

site or any 

other 

relevant 

test cases)  

 



MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION 
(Autonomous) 

(ISO/IEC - 27001 - 2005 Certified) 

MODEL ANSWER 
SUMMER– 17 EXAMINATION 

               Subject Title:  SOFTWARE TESTING                                                          Subject Code: 

 

Page | 6  

 

 

17624 

ated 

3 TC-3 
Passwo

rd 

correct 

and 

valid  

passwor

d should 

be 

validate 

and 

verified 

on 

flipkart 

site 

Ty

pe 

cor

rect 

and 

vali

d  

pas

sw

ord 

Pass

wor

d 

selec

ted 

by 

user  

and 

valid

ated 

by 

flipk

art 

Should 

enter 

valid 

passw

ord 

Goes 

to 

next 

page 

if 

user  

id 

and 

pass

word

verifi

ed 

and 

valid

ated 

Tes

t to 

pas

s 

4 
TC-

4 

To 

check 

wheth

er site 

home 

page 

opens 

or not 

To 

displa

y 

flipkar

t home 

page  

websit

e on 

screen  

Type 

site 

proper 

addres

s as 

www.f

lipkart

.com  

ww

w.fli

pkart

.com 

Site 

home 

page 

display 

should 

display 

on 

screen 

Hom

e 

page 

displ

ayed 

Tes

t to 

fail 

5 
TC-

5 

To 

search  

the 

produc

t  

Search 

the 

product  

Click 

on 

produc

t link 

Mou

se 

rollo

ver 

and 

click 

Shall 

display  

availab

lity of 

product    

Sho

w 

avail

ablit

y of 

prod

uct 

Tes

t to 

pas

s 

6 
TC-

6 

Produ

ct 

details 

Product 

shall be 

availabl

e on site 

Click 

on 

produc

t link 

Mou

se 

rollo

ver 

and 

click 

Shall 

display  

product 

details     

displ

ays  

prod

uct 

detai

ls  of 

other 

prod

uct   

Tes

t to 

fail 

7 
TC-

7 

Produ

ct 

details 

Product 

shall be 

availabl

e on site 

Click 

on 

produc

t link 

Mou

se 

rollo

ver 

and 

click 

Shall 

display  

product 

details     

displ

ays  

prod

uct 

detai

ls  of  

prod

Tes

t to 

pas

s 



MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION 
(Autonomous) 

(ISO/IEC - 27001 - 2005 Certified) 

MODEL ANSWER 
SUMMER– 17 EXAMINATION 

               Subject Title:  SOFTWARE TESTING                                                          Subject Code: 

 

Page | 7  

 

 

17624 

uct   

8 
TC-

8 

Search 

for 

offers 

Offer 

should 

be valid 

for that 

day 

Click 

on 

Offer 

link 

Sele

ct 

Offer 

icon  

and 

click 

Shall 

display  

offer 

details     

displ

ays  

offer

detai

ls  of 

selec

ted  

prod

uct   

Tes

t to 

pas

s 

 

Note: Similar test cases relevant to filpkart shall be considered as answer or evidence return 

as test cases 

 

 (b) Enlist any six attributes of defect. Describe them with suitable example. 6M 

 Ans: Defect has following attributes: 

Any six of the following attributes shall be considered 

1) Defect ID: Identifies defect as there are many defects might identified in system. 

a. i.e. D1, D2, etc. 

2) Defect Name: Name of defect which explains the defect in brief. 

a. It must be short but descriptive. i.e. Login error. 

3) Project Name: Indicates project name in which defect is found 

4) Module /Sub-module name: for which the defect is found. 

5) Phase introduced: Phase of life cycle to which the defect belongs to. 

6) Phase found: Phase of project when the defect is found is added here. It is used to find 

defect leakage or stage.  

7) Defect type: Defines defect type. i.e. security defect, functional defect, GUI defect etc. 

8) Severity: Declared in test plan, i.e. high medium or low.  

9) Priority: defines on the basis of how the project decides a schedule to take the defects   

for fixing.  

10) Summary: Describes short about the defect. 

11) Description: Describes it in detail. 

12) Status: dynamic field, open, assigned, resolved, closed, hold, deferred, or reopened, etc.  

13) Reported by/ Reported on: Who found defect, and on what date. 

14) Assigned to: The tester is being assigned to some testing team member.     

OR 

 

ID Unique identifier given to the defect. (Usually Automated) 

Project Project name. 

Product Product name. 

(List of 

attributes of 

defects: 2 

marks, 

Explanation 

of attribute 

minimum 4 

defects: 1 

mark each.)  

 



MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION 
(Autonomous) 

(ISO/IEC - 27001 - 2005 Certified) 

MODEL ANSWER 
SUMMER– 17 EXAMINATION 

               Subject Title:  SOFTWARE TESTING                                                          Subject Code: 

 

Page | 8  

 

 

17624 

Release Version Release version of the product. (e.g. 1.2.3) 

Module Specific module of the product where the defect was 

detected. 
Detected Build 

Version 

 

Build version of the product where the defect was detected 

(e.g. 1.2.3.5) Summary Summary of the defect. Keep this clear and concise. 

Description 
Detailed description of the defect. Describe as much as 

possible but without repeating anything or using 

complex words. Keep it simple but comprehensive. 

Steps to Replicate 
Step by step description of the way to reproduce the defect. 

Number the steps. 

Actual Result The actual result you received when you followed the steps. 

Expected Results The expected results. 

 

2.  Attempt any FOUR of the following : 16 Marks 

 (a) Describe equivalence partitioning with example. 4M 

 Ans: Equivalence partitioning is a software technique that involves identifying a small set 

of representative input values that produce as much different output condition as 

possible. This reduces the number of permutation & combination of input, output values 

used for testing, thereby increasing the coverage and reducing the effort involved in 

testing. The set of input values that generate one single expected output is called a 

partition. When the behavior of the software is the same for a set of values, then the set is 

termed as equivalence class or partition. 

Example: An insurance company that has the following premium rates based on the age 

group. A life insurance company has base premium of Rs. 500 for all ages. Based on the 

age group, an additional monthly premium has to pay that is as listed in the table below. 

For example , a person aged 34 has to pay a premium=Rs. 500 + Rs. 1000=Rs. 1500 

 

Age group Extra Premium 

Under 35 Rs.1500 

35-59 Rs. 2500 

60+ Rs. 4000 

Based on the equivalence portioning technique, the equivalence partitions that are 

based on age are given below: 

 Below 35 years of age (valid input) 

 Between 35 and 59 years of age (valid input)  

 Above 6 years of age (valid input) 

 Negative age (invalid input)  

(Explanatio

n: 3 marks,  

Example:1 

mark) 



MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION 
(Autonomous) 

(ISO/IEC - 27001 - 2005 Certified) 

MODEL ANSWER 
SUMMER– 17 EXAMINATION 

               Subject Title:  SOFTWARE TESTING                                                          Subject Code: 

 

Page | 9  

 

 

17624 

 Age as 0(invalid input) 

 Age as any three-digit number(valid input) 

 

 (b) State & explain any four benefits of automation in testing. 4M 

 Ans: Benefits of automation testing: 

1. Speed: Think about how long it would take you to manually try a few thousand test 

cases for the windows Calculator. You might average a test case every five seconds or 

so. Automation might be able to run 10, 100 even 1000 times that fast. 

2. Efficiency: While you are busy running test cases, you can’t be doing anything else. If 

you have a test tool that reduces the time it takes for you to run your tests, you have more 

time for test planning and thinking up new tests. 

3. Accuracy and Precision: After trying a few hundred cases, your attention may reduce 

and you will start to make mistakes .A test tool will perform the same test and check the 

result perfectly, each and every time. 

4. Resource Reduction:   Sometimes it can be physically impossible to perform a 

certain test case. The number of people or the amount of equipment required to create the 

test condition could be prohibitive. A test tool can used to simulate the real world and 

greatly reduce the physical resources necessary to perform the testing. 

5. Simulation and Emulation: Test tools are used to replace hardware or software that 

would normally interface to your product. This “face” device or application can then be 

used to drive or respond to your software in ways that you choose-and ways that might 

otherwise be difficult to achieve. 

6. Relentlessness: Test tool and automation never tire or give up. It will continuously test 

the software. 

OR 

Benefits of Automation Testing are:  

1. Save Time /Speed: Due to advanced computing facilities, automation test tools 

prevail in speed of processing the tests. Automation saves time as software can 

execute test cases faster than human. 

2. Reduces the tester’s involvement in executing tests: It relieves the testers to do 

some other work. 

3.   Repeatability/Consistency: The same tests can be re-run in exactly the same 

manner eliminating the risk of human errors such as testers forgetting their exact 

actions, intentionally omitting steps from the test scripts, missing out steps from 

the test script, all of which can result in either defects not being identified or the 

reporting of invalid bugs (which can again, be time consuming for both developers 

and testers to reproduce) 

4.  Simulated Testing: Automated tools can create many concurrent virtual users/data 

and effectively test the project in the test environment before releasing the product. 

5.   Test case design: Automated tools can be used to design test cases also. 

Through automation, better coverage can be guaranteed than if done manually. 

6.   Reusable: The automated tests can be reused on different versions of the 

(State: 1 

mark, 

Explanati

on : 3 

marks) 

 



MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION 
(Autonomous) 

(ISO/IEC - 27001 - 2005 Certified) 

MODEL ANSWER 
SUMMER– 17 EXAMINATION 

               Subject Title:  SOFTWARE TESTING                                                          Subject Code: 

 

Page | 10  

 

 

17624 

software, even if the interface changes. 

7. Avoids human mistakes: Manually executing the test cases may incorporate errors. 

But this can be avoided in automation testing. 

8. Internal Testing: Testing may require testing for memory leakage or checking 

the coverage of testing. Automation can done this easily. 

9.   Cost Reduction: If testing time increases cost of the software also increases. Due to 

testing tools time and therefore cost is reduced. 

 (c) How to perform security testing?  State elements of security testing. 4M 

 Ans: Security Testing: Testers must use a risk-based approach, By identifying risks and potential 

loss associated with those risks in the system and creating tests driven by those risks, the 

testers can properly focus on areas of code in which an attack is likely to succeed. Therefore 

risk analysis at the design level can help to identify potential security problems and their 

impacts. Once identified ranked, software risks can help guide software security. It is a type 

of non-functional testing. Security testing is basically a type of software testing that’s done 

to check whether the application or the product is secured or not.  It checks to see if the 

application is vulnerable to attacks, if anyone hack the system or login to the application 

without any authorization. It is a process to determine that an information system protects 

data and maintains functionality as intended. The security testing is performed to check 

whether there is any information leakage in the sense by encrypting the application or 

using wide range of software’s and hardware’s and firewall etc. 

Software security is about making software behave in the presence of a malicious attack. 

The  six  basic  security  concepts / elements   that  need  to  be  covered  by  

security  testing  are:  

 confidentiality,  

 integrity,  

 authentication,  

 availability,  

 authorization and  

 Non-repudiation. 

 

(Perform 

security 

Testing: 2 

marks, List 

of elements 

of Security 

Testing: 2 

marks)  

 (d) What is the difference between static & dynamic testing tool? 4M 

 Ans:  

Static testing tool Dynamic testing tool 

These tools are used by developers 

as part of the development and 

component testing process 

These tools require the code to be in a 

“running state”   

code is not executed or run but tool 

itself  is executed 

They analyse rather than testing 

It is extension of compiler 

technology  

They also help to understand 

background processes 

(Four 

points of 

difference: 

1 mark 

each) 

 

 



MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION 
(Autonomous) 

(ISO/IEC - 27001 - 2005 Certified) 

MODEL ANSWER 
SUMMER– 17 EXAMINATION 

               Subject Title:  SOFTWARE TESTING                                                          Subject Code: 

 

Page | 11  

 

 

17624 

It also perform static analysis of 

requirement or analysis of website  

These tool used by developed in 

component integration testing,,  

middle ware , testing robustness and 

security. 

Helps to understand the structure of 

the code and can also be useful to 

enforce coding standards. 

Also performs web site testing to 

check whether each link does actually 

link to something else, it can find 

dead links . 

Features /characteristics of static 

testing tools are: 

 Checks cyclomatic  

complexity 

 Enforces coding standards 

  Analyse structures and 

dependencies  

 Helpful in understanding 

coding 

 Identify defects in code. 

Features/characteristics of static 

testing tools are: 

 Detect memory leak 

 Identify pointer arithmetic 

errors , null pointer 

 Identify time dependence. 

Examples. Flow analyzer, path tests, 

coverage analyzers, Interface 

analyzers  

Examples. Test driver, Test beds, 

Emulators, Mutation analyzers 

 

 (e) Describe positive testing & negative testing. Also write test cases for them. 4M 

 Ans: Software testing is process of Verification and Validation to check whether software 

application under test is working as expected. To test the application we need to give some 

input and check if getting result as per mentioned in the requirements or not. This testing 

activity is carried out to find the defects in the code & improve the quality of software 

application. Testing of application can be carried out in two different ways, Positive testing 

and Negative testing. 

Positive Testing: Positive Testing is testing process where the system validated against the 

valid input data. In this testing tester always check for only valid set of values and check if a 

application behaves as expected with its expected inputs. The main intention of this testing is 

to check whether software application not showing error when not supposed to & showing 

error when supposed to. Such testing is to be carried out keeping positive point of view & 

only execute the positive scenario. Positive Testing always tries to prove that a given product 

and project always meets the requirements and specifications. Under Positive testing is test 

the normal day to day life scenarios and check the expected behavior of application. 

Negative Testing: Negative Testing is testing process where the system validated against the 

invalid input data. A negative test checks if a application behaves as expected with its 

negative inputs. The main intention of this testing is to check whether software application 

not showing error when supposed to & showing error when not supposed to. Such testing is 

to be carried out keeping negative point of view & only execute the test cases for only 

invalid set of input data. Negative testing is a testing process to identify the inputs where 

(Descriptio

n of 

positive 

and 

negative 

testing: 2 

marks, Test 

cases/exam

ple-2marks 

or any 

other 

relevant 

example) 



MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION 
(Autonomous) 

(ISO/IEC - 27001 - 2005 Certified) 

MODEL ANSWER 
SUMMER– 17 EXAMINATION 

               Subject Title:  SOFTWARE TESTING                                                          Subject Code: 

 

Page | 12  

 

 

17624 

system is not designed or un-handled inputs by providing different invalid. The main reason 

behind Negative testing is to check the stability of the software application against the 

influences of different variety of incorrect validation data set. 

Test case for text box which accepts input values from user: 

Sr. 

No. 

Test 

Case-

ID 

Test 

case 

Objecti

ve 

Prereq

uisite 
Steps 

Inpu

t 

data 

Expe

cted 

Result 

Actual 

Result  

Remar

k 

1 TC-1.1 

Posit

ive 

Testi

ng 

Text 

box 

should 

be 

presen

t and it 

should 

accept 

numeri

c 

values 

only 

Enter 

numb

ers/di

gits in 

text 

box 

i.e. 

123 

enter

ed 

0 , 1 

to 9 

or 

com

binat

ion 

of 

thes

e 

num

bers 

Able 

to 

take 

input 

as 

numb

ers 

Text 

box 

accept

s 

numer

ic 

values

.  

Test 

to 

pass 

2 
TC2

.1 

Neg

ative 

Testi

ng 

Text 

box 

should 

be 

presen

t and it 

should 

accept 

numeri

c 

values 

only 

Enter 

numb

ers/di

gits in 

text 

box 

i.e. 

abc 

enter

ed 

0 , 1 

to 9 

or 

com

binat

ion 

of 

thes

e 

num

bers 

Able 

to 

take 

input 

as 

omly 

nume

ric 

value

s 

Text 

box 

accept

s all 

charac

ters..  

Test 

to fail 

Some more scenarios for testing: 

Positive Test Scenarios: 
 Password textbox should accept 6 characters 

 Password textbox should up to 20 characters 

 Password textbox should accept any value in between 6-20 char’s length. 

 Password textbox should accept all numeric & alphabets values. 

Negative Test scenarios: 

 Password textbox should not accept less than 6 characters 

 Password textbox should not exceeds more than 20 characters 

 Password textbox should not accept special characters. 

 

 

 

 

 



MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION 
(Autonomous) 

(ISO/IEC - 27001 - 2005 Certified) 

MODEL ANSWER 
SUMMER– 17 EXAMINATION 

               Subject Title:  SOFTWARE TESTING                                                          Subject Code: 

 

Page | 13  

 

 

17624 

 (f) Describe defect life cycle with neat diagram. 4M 

 Ans: 

 
OR   

                                                                                           
The different states of bug life cycle are as shown in the above diagram: 

 New: When the bug is posted for the first time, its state will be “NEW”. This means 

that the bug is not yet approved. 

(Descriptio

n of defect 

life cycle 

Stages: 2 

marks,  

Proper 

Labelled 

Diagram: 2 

marks) 

 



MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION 
(Autonomous) 

(ISO/IEC - 27001 - 2005 Certified) 

MODEL ANSWER 
SUMMER– 17 EXAMINATION 

               Subject Title:  SOFTWARE TESTING                                                          Subject Code: 

 

Page | 14  

 

 

17624 

 Open: After a tester has posted a bug, the lead of the tester approves that the bug is 

genuine and he changes the state as “OPEN”. 

 Assign: Once the lead changes the state as “OPEN”, he assigns the bug to corresponding 

developer or developer team. The state of the bug now is changed to “ASSIGN”. 

 Test/Retest: Once the developer fixes the bug, he has to assign the bug to the testing 

team for next round of testing. Before he releases the software with bug fixed, he 

changes the state of bug to “TEST”. It specifies that the bug has been fixed and is 

released to testing team.// At  this  stage  the  tester  do  the  retesting  of  the  

changed  code  which developer has given to him to check whether the defect got fixed 

or not. 

 Deferred: The bug, changed to deferred state means the bug is expected to be fixed in 

next releases. The reasons for changing the bug to this state have many factors. Some of 

them are priority of the bug may be low, lack of time for the release or the bug may not 

have major effect on the software. 

 Rejected: If the developer feels that the bug is not genuine, he rejects the bug. Then the 

state of the bug is changed to “REJECTED”. 

 Verified: Once the bug is fixed and the status is changed to “TEST”, the 

tester tests the bug. If the bug is not present in the software, he approves 

that the bug is fixed and changes the status to “VERIFIED”. 

 Reopened: If the bug still exists even after the bug is fixed by the developer, the tester 

changes the status to “REOPENED”. The bug traverses the life cycle once again. 

 Closed: Once the bug is fixed, it is tested by the tester. If the tester feels that the bug no 

longer exists in the software, he changes the status of the bug to “CLOSED”. This state 

means that the bug is fixed, tested and approved. 

 Fixed: When developer makes necessary code changes and verifies the changes then 

he/she can make bug status as „Fixed‟ and the bug is passed to testing team. 

 Pending retest: After fixing the defect the developer has given that particular code for 

retesting to the tester. Here the testing is pending on the testers end.       Hence its status 

is pending retest. 

Optional : 

 Duplicate: If the bug is repeated twice or the two bugs mention the same concept of the 

bug, then one bug status is changed to “duplicate“. 

 Not a bug: The state given as “Not a bug” if there is no change in the functionality of 

the application. For an example: If customer asks for some change in the look and field 

of the application like change of color of some text then it is not a bug but just some 

change in the looks of the application. 

 

 

 



MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION 
(Autonomous) 

(ISO/IEC - 27001 - 2005 Certified) 

MODEL ANSWER 
SUMMER– 17 EXAMINATION 

               Subject Title:  SOFTWARE TESTING                                                          Subject Code: 

 

Page | 15  

 

 

17624 

3.  Attempt any FOUR of the following : 16 Marks 

 (a) Illustrate process of graph-based testing with suitable example. 4M 

 Ans: i. Black-box methods based on the nature of the relationships (links) among the program 

objects (nodes), test cases are designed to traverse the entire graph 

ii. Transaction flow testing – nodes represent steps in some transaction and links represent 

logical connections between steps that need to be validated 

iii. Finite state modeling – nodes represent user observable states of the software and links 

represent transitions between states 

iv. Data flow modeling – nodes are data objects and links are transformations from one data 

object to another 

v. Timing modeling – nodes are program objects and links are sequential connections 

between these objects, link weights are required execution times. 

Steps in graph testing: 

i. Build a graph model. 

ii. Identify the test requirements. 

iii. Select test paths to cover those requirements. 

Derive test data so that those test paths can be executed. 

 

(Explainat

ion:2 

marks, 

Example: 

2marks, 

Any other 

relevant  

example 

shall be 

considered

) 

 (b) Describe any two special tests in testing process.  4M 

 Ans: 1. Smoke Testing: is a testing technique that is inspired from hardware testing, which 

checks for the smoke from the hardware components once the hardware's power is 

switched on. ii. In Software testing context, smoke testing refers to testing the basic 

functionality of the build. iii. If the Test fails, build is declared as unstable and it is NOT 

tested anymore until the smoke test of the build passes.  

Smoke Testing - Features:  

i. Identifying the business critical functionalities that a product must satisfy.  

ii. Designing and executing the basic functionalities of the application. 

(Any two 

special 

tests:2 

marks 

each) 

 



MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION 
(Autonomous) 

(ISO/IEC - 27001 - 2005 Certified) 

MODEL ANSWER 
SUMMER– 17 EXAMINATION 

               Subject Title:  SOFTWARE TESTING                                                          Subject Code: 

 

Page | 16  

 

 

17624 

iii. Ensuring that the smoke test passes each and every build in order to proceed with the 

testing.  

iv. Smoke Tests enables uncovering obvious errors which saves time and effort of test team.  

v. Smoke Tests can be manual or automated. 

2. Sanity testing,:  A software testing technique performed by the test team for some basic 

tests. The aim of basic test is to be conducted whenever a new build is received for testing. 

The terminologies such as Smoke Test or Build Verification Test or Basic Acceptance Test 

or Sanity Test are interchangeably used, however, each one of them is used under a slightly 

different scenario. ii. Sanity test is usually unscripted, helps to identify the dependent 

missing functionalities. It is used to determine if the section of the application is still 

working after a minor change. iii. Sanity testing can be narrow and deep. Sanity test is a 

narrow regression test that focuses on one or a few areas of functionality. 

3. Regression Testing:  Regression testing a black box testing technique that consists of re-

executing those tests that are impacted by the code changes. ii. These tests should be 

executed as often as possible throughout the software development life cycle. Types of 

Regression Tests: i. Final Regression Tests: - A "final regression testing" is performed to 

validate the build that hasn't changed for a period of time. This build is deployed or shipped 

to customers. ii. Regression Tests: - A normal regression testing is performed to verify if the 

build has NOT broken any other parts of the application by the recent code changes for 

defect fixing or for enhancement. 

4. Usability Testing. i.Usability testing, a non-functional testing technique that is a measure 

of how easily the system can be used by end users. ii. It is difficult to evaluate and measure 

but can be evaluated based on the below parameters: iii. Level of Skill required to learn/use 

the software. It should maintain the balance for both novice and expert user. iv. Time 

required to get used to in using the software. v. The measure of increase in user productivity 

if any. vi. Assessment of a user's attitude towards using the software. 

5. GUI Testing. i. GUI testing is a testing technique in which the application's user interface 

is tested whether the application performs as expected with respect to user interface 

behavior. ii. GUI Testing includes the application behavior towards keyboard and mouse 

movements and how different GUI objects such as toolbars, buttons, menu bars, dialog 

boxes, edit fields, lists, behavior to the user input. 

 GUI Testing Guidelines: i.Check Screen Validations ii. Verify All Navigations iii. Check 

usability Conditions iv. Verify Data Integrity v. Verify the object states vi. Verify the date 

Field and Numeric Field Formats. 

6. Object Oriented Application Testing. i. The Full-Lifecycle Object-Oriented Testing 



MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION 
(Autonomous) 

(ISO/IEC - 27001 - 2005 Certified) 

MODEL ANSWER 
SUMMER– 17 EXAMINATION 

               Subject Title:  SOFTWARE TESTING                                                          Subject Code: 

 

Page | 17  

 

 

17624 

(FLOOT) methodology is a collection of testing techniques to verify and validate object-

oriented software. ii. The FLOOT lifecycle is depicted in Figure 9, indicating a wide variety 

of techniques (described in Table 9 are available to you throughout all aspects of software 

development. iii. The list of techniques is not meant to be complete: instead the goal is to 

make it explicit that you have a wide range of options available to you. iv. It is important to 

understand that although the FLOOT method is presented as a collection of serial phases it 

does not need to be so: the techniques of FLOOT can be applied with evolutionary/agile 

processes as well. v. The reason why I present the FLOOT in a "traditional" manner is to 

make it explicit that you can in fact test throughout all aspects of software development, not 

just during coding. 

7. Client Server Testing. i. This type of testing usually done for 2 tier applications (usually 

developed for LAN) Here we will be having front-end and backend. ii. The application 

launched on front-end will be having forms and reports which will be monitoring and 

manipulating data.E.g: applications developed in VB, VC++, Core Java, C, C++, D2K, 

PowerBuilder etc., iii. The backend for these applications would be MS Access, SQL Server, 

Oracle, Sybase, Mysql, Quadbase. iv. The tests performed on these types of applications 

would be– User interface testing Manual support testing– Functionality testing– 

Compatibility testing & configuration testing – Intersystem testing. 

8. Web Based Testing. i. Web application testing, a software testing technique exclusively 

adopted to test the applications that are hosted on web in which the application interfaces and 

other functionalities are tested. 

Web Application Testing Techniques:  

1. Functionality Testing  

2. Usability testing  

 3. Interface testing  

4. Compatibility testing 

5. Performance testing  

6. Security testing 

 (c) How to identify resource requirement of test plan? 4M 

 Ans: Resource requirement is a detailed summary of all types of resources required to complete 

project task. Resource could be human, equipment and materials needed to complete a 

project. The resource requirement and planning is important factor of the test planning 

because helps in determining the number of resources (employee, equipment…) to be used 

for the project. Therefore, the Test Manager can make the correct schedule & estimation for 

the project. 

 Some of the following factors need to be considered: 

 Machine configuration (RAM,processor,disk)needed to run the product under test. 

(Any 4 

resources:

4 marks, 

Any other 

relevant 

answer) 



MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION 
(Autonomous) 

(ISO/IEC - 27001 - 2005 Certified) 

MODEL ANSWER 
SUMMER– 17 EXAMINATION 

               Subject Title:  SOFTWARE TESTING                                                          Subject Code: 

 

Page | 18  

 

 

17624 

 Overheads required by test automation tools, if any 

 Supporting tools such as compilers, test data generators, configuration management 

tools. 

 The different configurations of the supporting software(e.g. OS)that must be present 

No. Member Tasks 

1.      Test Manager Manage the whole project 

Define project directions 

Acquire appropriate resources 

2.      Tester Identifying and describing appropriate test 

techniques/tools/automation architecture 

Verify and assess the Test Approach 

Execute the tests, Log results, Report the defects. 

Tester could be in-sourced or out-sourced members, 

base on the project budget 

For the task which required low skill, I recommend 

you choose outsourced members to save project 

cost. 

3.      Developer in Test Implement the test cases, test program, test suite 

etc. 

4.      Test Administrator Builds up and ensures test environment and assets 

are managed and maintained 

Support Tester to use the test environment for test 

execution 



MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION 
(Autonomous) 

(ISO/IEC - 27001 - 2005 Certified) 

MODEL ANSWER 
SUMMER– 17 EXAMINATION 

               Subject Title:  SOFTWARE TESTING                                                          Subject Code: 

 

Page | 19  

 

 

17624 

5.      SQA members Take in charge of quality assurance 

Check  to confirm whether the testing process is 

meeting specified requirements 

 Special requirements for running machine-intensive tests such as load tests and 

performance tests. 

 Appropriate number of licenses of all the software 

                                      OR 

Human Resource: 

The following table represents various members in your project team 

 

System Resource: 

For testing, a web application, you should plan the resources as following tables: 

 

No. Resources Descriptions 

1.      Server Install the web application under test 

This includes a separate web server, database server, and application server 

if applicable 

2.      Test tool The testing tool is to automate the testing, simulate the user operation, 

generate the test results 

There are tons of test tools you can use for this project such as Selenium, 

QTP…etc. 

3.      Network You need a Network include LAN and Internet to simulate the real 

business and user environment 

4.      Computer The PC which users often use to connect the web server 

 



MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION 
(Autonomous) 

(ISO/IEC - 27001 - 2005 Certified) 

MODEL ANSWER 
SUMMER– 17 EXAMINATION 

               Subject Title:  SOFTWARE TESTING                                                          Subject Code: 

 

Page | 20  

 

 

17624 

 

 (d) Illustrate process of bi-directional integration testing. State its two advantages & 

disadvantages. 

4M 

 Ans: 1. Bi-directional Integration, is a kind of integration testing process that combines top-down 

and bottom-up testing.  

2. With an experience in delivering Bi-directional testing projects custom software 

development services provide the best quality of the deliverables right from the 

development of software process. 

3. Bi-directional Integration testing is a vertical incremental testing strategy that tests the 

bottom layers and top layers and tests the integrated system in the computer software 

development process. 

4. Using stubs, it tests the user interface in isolation as well as tests the very lowest level 

functions using drivers.  

5. Bi-directional Integration testing combines bottom-up and top-down testing. 

6. Bottom-up testing is a process where lower level modules are integrated and then tested. 

7. This process is repeated until the component of the top of the hierarchy is analyzed. It 

helps custom software development services find bugs easily without any problems.  

8. Top down testing is a process where the top integrated modules are tested and the 

procedure is continued till the end of the related module. 

9. Top down testing helps developers find the missing branch link easily. 

 

OR 

 

Process of Bidirectional testing: 

1. Bottom up testing starts from middle layer and goes upward to the top layer. For a very 

big system, bottom up approach starts at a subsystem level and goes upwards. 

2. Top down testing starts from the middle layer and goes downward. For a very big 

system, top down approach, starts at subsystem level and goes downwards. 

3. Big band approach is followed for middle layer. From this layer, bottom up approach 

goes upwards and top down approach goes downwards. 

 

Advantages: 

1. This approach is useful is useful for very large projects having several projects. When 

development follows a spiral model and module itself is as large as a system. 

2. Both top down and bottom up approach starts at the start of the schedule. 

3. It needs more resources and big teams for performing both, methods of testing at a time 

or one after the other. 

Disadvantages: 

1. It represents very high cost of testing as lot of testing is done. 

2. It cannot be used for smaller systems with huge interdependence between different 

modules. 

3. Different skill tests are required for testers at different level as modules are separate 

systems handling separate domains. 

 

 

 

(Explanati

on: 2 

marks, 

Advantage

s: 1 mark, 

Disadvant

ages: 1 

mark) 

 



MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION 
(Autonomous) 

(ISO/IEC - 27001 - 2005 Certified) 

MODEL ANSWER 
SUMMER– 17 EXAMINATION 

               Subject Title:  SOFTWARE TESTING                                                          Subject Code: 

 

Page | 21  

 

 

17624 

 (e) Differentiate between manual testing & automation testing. 4M 

 Ans: Automated Testing Manual Testing 

• If you have to run a set of tests 

repeatedly automation is a huge 

gain 

• If Test Cases have to be run a small number of times it's 

more likely to perform manual testing 

• Helps performing "compatibility 

testing" - testing the software on 

different configurations 

• It allows the tester to perform more ad-hoc (random 

testing) 

• It gives you the ability to run 

automation scenarios to perform 

regressions in a shorter time 

• Short term costs are reduced 

• It gives you the ability to run 

regressions on a code that is 

continuously changing 

• The more time tester spends testing a module the grater 

the odds to find real user bugs 

• It's more expensive to automate. 

Initial investments are bigger than 

manual testing 

• Manual tests can be very time consuming 

• You cannot automate 

everything, some tests still have to 

be done manually 

• For every release you must rerun the same set of tests 

which can be tiresome 
 

(Any 4 

Points: 1 

mark 

Each) 

 

4. (A) Attempt any THREE of the following : 12 Marks 

 (a) Define software metrics. Describe product Vs process & objective Vs subjective 

metrics. 

4M 

 Ans: Metrics are necessary to provide measurements of such qualities. Metrics can also be used to 

gauge the size and complexity of software and hence are employed in project management 

and cost estimation. 

 Process quality: Activities related to the production of software, tasks or milestones. 

1. Process metrics are collected across all projects and over long periods of time. 

2.  They are used for making strategic decisions. 

3.  The intent is to provide a set of process indicators that lead to long-term software process 

improvement. 

4.  The only way to know how/where to improve any process is to: 

 Measure specific attributes of the process. 

 Develop a set of meaningful metrics based on these attributes. 

 Use the metrics to provide indicators that will lead to a strategy for improvement. 

 

 Product quality: Explicit result of the software development activity, deliverables, 

products. 

1. Product metrics help software engineers to better understand the attributes of models and 

assess the quality of the software. 

2. They help software engineers to gain insight into the design and construction of the 

(Definition

:1 mark, 

Product 

Vs 

Process:1 

½  marks, 

Objective 

Vs 

Subjective

:1 ½ 

marks) 



MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION 
(Autonomous) 

(ISO/IEC - 27001 - 2005 Certified) 

MODEL ANSWER 
SUMMER– 17 EXAMINATION 

               Subject Title:  SOFTWARE TESTING                                                          Subject Code: 

 

Page | 22  

 

 

17624 

software. 

3. Focus on specific attributes of software engineering work products resulting from 

analysis, design, coding, and testing. 

4. Provide a systematic way to assess quality based on a set of clearly defined rules. 

5. Provide an “on-the-spot” rather than “after-the-fact” insight into the software 

development. 

Objective Metrics: 

1. They are non-negotiable – that is the way they are defined doesn’t change with respect to 

the niche or the type of endeavor they are being applied to. 

2. Actual cost or AC is always the total cost actually incurred in accomplishing a certain 

activity or a sequence of activities. 

 

Subjective Metrics: 

1. These metrics are a relatively new precept and are more flexible than the rigid 

framework of the objective metrics. Subjective metrics do deal with performance but the 

approach is more tailored. For some enterprises the niche in which they function forces 

project management to change in order to adapt to the demands of the workplace. 

 

 (b) How to prepare test plan? 4M 

 Ans: Steps to prepare test plan: 

Like any project, the testing also should be driven by a plan. The test plan acts as the anchor 

for the execution, tracking and reporting of the entire testing project. Activities of test plan: 

1. Scope Management: Deciding what features to be tested and not to be tested.  

2. Deciding Test approach /strategy: Which type of testing shall be done like configuration, 

integration, localization etc. 

3. Setting up criteria for testing: There must be clear entry and exit criteria for different 

phases of testing. The test strategies for the various features and combinations determined 

how these features and combinations would be tested.  

4. Identifying responsibilities, staffing and training needs. 

5. Identifying resource requirements 

6. Identifying test deliverables. 

7. Testing tasks: size and effort estimation. 

OR 

 

1. Test Plan is a document that is the point of reference based on which testing is carried 

out within the QA team. 

2. Test plan is not static and is updated on an on demand basis. 

3. The more detailed and comprehensive the Test plan, the more successful the testing 

activity. 

4. The test plan keeps track of possible tests that will be run on the system after coding. 

5. The test plan is a document that develops as the project is being developed. 

(Steps :4 

marks or 

any other 

relevant 

answer 

shall be 

considere

d) 

 



MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION 
(Autonomous) 

(ISO/IEC - 27001 - 2005 Certified) 

MODEL ANSWER 
SUMMER– 17 EXAMINATION 

               Subject Title:  SOFTWARE TESTING                                                          Subject Code: 

 

Page | 23  

 

 

17624 

6. Record tests as they come up 

7. Test error prone parts of software development. 

8. The initial test plan is abstract and the final test plan is concrete. 

9. The initial test plan contains high level ideas about testing the system without getting 

into the details of exact test cases. 

10. The most important test cases come from the requirements of the system. 

11. When the system is in the design stage, the initial tests can be refined a little. 

12. During the detailed design or coding phase, exact test cases start to materialize. 

13. After coding, the test points are all identified and the entire test plan is exercised on the 

software. 

 

 (c) Describe techniques for finding defects. 4M 

 Ans: Static Techniques: Static techniques of quality control define checking the software product 

and related artifacts without executing them. It is also termed desk checking/verification 

/white box testing‘. It may include reviews, walkthroughs, inspection, and audits Here; the 

work product is reviewed by the reviewer with the help of a checklist, standards, any other 

artifact, knowledge and experience, in order to locate the defect with respect to the 

established criteria. Static technique is so named because it involves no execution of code, 

product, documentation, etc. This technique helps in establishing conformance to 

requirements view. 

 Dynamic Testing: Dynamic testing is a validation technique which includes dummy or 

actual execution of work products to evaluate it with expected behavior. It includes black 

box testing methodology such as system testing and unit testing. The testing methods 

evaluate the product with respect to requirements defined, designs created and mark it as 

pass or fail‘. This technique establishes fitness for use‘view. 

 Operational techniques: Operational techniques typically include auditing work products 

and projects to understand whether the processes defined for development /testing are being 

followed correctly o not, and also whether they are effective or not. It also includes revisiting 

the defects before and after fixing and analysis. Operational technique may include smoke 

testing and sanity testing of a work product.  

 

OR 

a)Quick Attacks: 

i. Strengths: 

 The quick-attacks technique allows you to perform a cursory analysis of a system in a 

very compressed timeframe.  

 Even without a specification, you know a little bit about the software, so the time spent is 

also time invested in developing expertise. 

 The skill is relatively easy to learn, and once you've attained some mastery your quick-

attack session will probably produce a few bugs.  

(Any 2 

technique

s: 2 mark 

Each) 

 



MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION 
(Autonomous) 

(ISO/IEC - 27001 - 2005 Certified) 

MODEL ANSWER 
SUMMER– 17 EXAMINATION 

               Subject Title:  SOFTWARE TESTING                                                          Subject Code: 

 

Page | 24  

 

 

17624 

 Finally, quick attacks are quick.  

 They can help you to make a rapid assessment. You may not know the requirements, but 

if your attacks yielded a lot of bugs, the programmers probably aren't thinking about 

exceptional conditions, and it's also likely that they made mistakes in the main 

functionality. 

 If your attacks don't yield any defects, you may have some confidence in the general, 

happy-path functionality. 

ii. Weaknesses: 

 Quick attacks are often criticized for finding "bugs that don't matter"—especially for 

internal applications. 

 While easy mastery of this skill is a strength, it creates the risk that quick attacks are "all 

there is" to testing; thus, anyone who takes a two-day course can do the work. 

a) Equivalence and Boundary Conditions: 

i. Strengths: 

 Boundaries and equivalence classes give us a technique to reduce an infinite test set into 

something manageable.  

 They also provide a mechanism for us to show that the requirements are "covered". 

ii. Weaknesses: 

 The "classes" in the table in Figure 1 are correct only in the mind of the person who 

chose them. 

 We have no idea whether other, "hidden" classes exist—for example, if a numeric 

number that represents time is compared to another time as a set of characters, or a 

"string," it will work just fine for most numbers.  

b) Common Failure Modes: 

i. Strengths: 

 The heart of this method is to figure out what failures are common for the platform, the 

project, or the team; then try that test again on this build. 

 If your team is new, or you haven't previously tracked bugs, you can still write down 

defects that "feel" recurring as they occur—and start checking for them. 

ii. Weaknesses: 

 In addition to losing its potency over time, this technique also entirely fails to find "black 

swans"—defects that exist outside the team's recent experience. 

 The more your team stretches itself (using a new database, new programming language, 

new team members, etc.), the riskier the project will be—and, at the same time, the less 

valuable this technique will be. 



MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION 
(Autonomous) 

(ISO/IEC - 27001 - 2005 Certified) 

MODEL ANSWER 
SUMMER– 17 EXAMINATION 

               Subject Title:  SOFTWARE TESTING                                                          Subject Code: 

 

Page | 25  

 

 

17624 

 

c) State-Transition Diagrams: 

 

Figure 4: State Transition Map 

i. Strengths: 

 Mapping out the application provides a list of immediate, powerful test ideas.  

 Model can be improved by collaborating with the whole team to find "hidden" states—

transitions that might be known only by the original programmer or specification author. 

 Once you have the map, you can have other people draw their own diagrams, and then 

compare theirs to yours.  

 The differences in those maps can indicate gaps in the requirements, defects in the 

software, or at least different expectations among team members. 

ii. Weaknesses: 

 The map you draw doesn't actually reflect how the software will operate; in other words, 

"the map is not the territory." 

 Drawing a diagram won't find these differences, and it might even give the team the 

illusion of certainty. 

 Like just about every other technique on this list, a state-transition diagram can be 

helpful, but it's not sufficient by itself to test an entire application. 

d) Use Cases and Soap Opera Tests: 

 Use cases and scenarios focus on software in its role to enable a human being to do 

something.  

i. Strengths: 

 Use cases and scenarios tend to resonate with business customers, and if done as part of 

the requirement process, they sort of magically generate test cases from the requirements.  



MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION 
(Autonomous) 

(ISO/IEC - 27001 - 2005 Certified) 

MODEL ANSWER 
SUMMER– 17 EXAMINATION 

               Subject Title:  SOFTWARE TESTING                                                          Subject Code: 

 

Page | 26  

 

 

17624 

 They make sense and can provide a straightforward set of confirmatory tests. Soap opera 

tests offer more power, and they can combine many test types into one execution. 

Weaknesses: 

  Soap opera tests have the opposite problem; they're so complex that if something goes 

wrong, it may take a fair bit of troubleshooting to find exactly where the error came 

from! 

e) Code-Based Coverage Models: Imagine that you have a black-box recorder that writes 
down every single line of code as it executes.  

i. Strengths: 

 Programmers love code coverage. It allows them to attach a number—an actual, hard, real 

number, such as 75%—to the performance of their unit tests, and they can challenge 

themselves to improve the score.  

 Meanwhile, looking at the code that isn't covered also can yield opportunities for 

improvement and bugs! 

ii. Weaknesses: 

 Customer-level coverage tools are expensive, programmer-level tools that tend to assume 

the team is doing automated unit testing and has a continuous-integration server and a 

fair bit of discipline. 

 After installing the tool, most people tend to focus on statement coverage—the least 

powerful of the measures. 

 Even decision coverage doesn't deal with situations where the decision contains defects, 

or when there are other, hidden equivalence classes; say, in the third-party library that 

isn't measured in the same way as your compiled source code is. 

 Having code-coverage numbers can be helpful, but using them as a form of process 

control can actually encourage wrong behaviours. In my experience, it's often best to 

leave these measures to the programmers, to measure optionally for personal 

improvement (and to find dead spots), not as a proxy for actual quality. 

f) Regression and High-Volume Test Techniques: 

 People spend a lot of money on regression testing, taking the old test ideas described 

above and rerunning them over and over. 

 This is generally done with either expensive users or very expensive programmers 

spending a lot of time writing and later maintaining those automated tests. 

i. Strengths: 



MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION 
(Autonomous) 

(ISO/IEC - 27001 - 2005 Certified) 

MODEL ANSWER 
SUMMER– 17 EXAMINATION 

               Subject Title:  SOFTWARE TESTING                                                          Subject Code: 

 

Page | 27  

 

 

17624 

 For the right kind of problem, say an IT shop processing files through a database, this 

kind of technique can be extremely powerful. 

 Likewise, if the software deliverable is a report written in SQL, you can hand the 

problem to other people in plain English, have them write their own SQL statements, and 

compare the results. 

 Unlike state-transition diagrams, this method shines at finding the hidden state in 

devices. For a pacemaker or a missile-launch device, finding those issues can be pretty 

important. 

ii. Weaknesses: 

 Building a record/playback/capture rig for a GUI can be extremely expensive, and it 

might be difficult to tell whether the application hasn't broken, but has changed in a 

minor way. 

 For the most part, these techniques seem to have found a niche in IT/database work, at 

large companies like Microsoft and AT&T, which can have programming testers doing 

this work in addition to traditional testing, or finding large errors such as crashes without 

having to understand the details of the business logic. 

 While some software projects seem ready-made for this approach, others...aren't. 

 You could waste a fair bit of money and time trying to figure out where your project 

falls. 

 

 (d) Describe test case specification of test process. 4M 

 Ans: Test case specification: 

1. The purpose of the test. 

2. Items being tested, along with their version/release numbers as appropriate. 

3. Environment that need to be set up for running the test case. 

4. Input data to be used for the test case. 

5. Steps to be followed to execute the test. 

6. The expected result that are considered to be “correct result” 

7. A steps to compare the actual results produced with the expected results. 

8. Any relationship between this test and other tests. 

 

 

OR 

Testing is a process rather than a single activity. 

i. This process starts from test planning then designing test cases, preparing for execution 

and evaluating status till the test closure. 

ii. Divide the activities within the fundamental test process into the following basic steps: 

 

1. Planning and Control 

Test planning has following major tasks: 

(Explanati

on: 4 

marks) 

 



MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION 
(Autonomous) 

(ISO/IEC - 27001 - 2005 Certified) 

MODEL ANSWER 
SUMMER– 17 EXAMINATION 

               Subject Title:  SOFTWARE TESTING                                                          Subject Code: 

 

Page | 28  

 

 

17624 

i. To determine the scope and risks and identify the objectives of testing. 

ii. To determine the test approach. 

iii. To implement the test policy and/or the test strategy. (Test strategy is an outline that 

describes the testing portion of the software development cycle. It is created to inform 

PM, testers and developers about some key issues of the testing process. This includes 

the testing objectives, method of testing, total time and resources required for the project 

and the testing environments.). 

iv. To determine the required test resources like people, test environments, PCs, etc. 

v. To schedule test analysis and design tasks, test implementation, execution and 

evaluation. 

vi. To determine the Exit criteria we need to set criteria such as Coverage criteria. 

(Coverage criteria are the percentage of statements in the software that must be executed 

during testing. This will help us track whether we are completing test activities 

correctly. They will show us which tasks and checks we must complete for a particular   

level of testing before we can say that testing is finished.) 

Test control has the following major tasks: 

i. To measure and analyze the results of reviews and testing. 

ii. To monitor and document progress, test coverage and exit criteria. 

iii. To provide information on testing. 

iv. To initiate corrective actions. 

v. To make decisions. 

 

2. Analysis and Design 

Test analysis and Test Design has the following major tasks: 

i. To review the test basis. (The test basis is the information we need in order to start the 

test analysis and   create our own test cases. Basically it’s a documentation on which test 

cases are based, such as requirements, design specifications, product risk analysis, 

architecture and interfaces. We can use the test basis documents to understand what the 

system should do once built.) 

ii. To identify test conditions. 

iii. To design the tests. 

iv. To evaluate testability of the requirements and system. 

v. To design the test environment set-up and identify and required infrastructure and tools. 

 



MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION 
(Autonomous) 

(ISO/IEC - 27001 - 2005 Certified) 

MODEL ANSWER 
SUMMER– 17 EXAMINATION 

               Subject Title:  SOFTWARE TESTING                                                          Subject Code: 

 

Page | 29  

 

 

17624 

3. Implementation and Execution 

i. During test implementation and execution, take the test conditions into test cases and 

procedures and other test ware such as scripts for automation, the test environment 

and any other test infrastructure. 

ii. (Test cases is a set of conditions under which a tester will determine whether an 

application is working correctly or not.) 

iii. (Test ware is a term for all utilities that serve in combination for testing a software 

like scripts, the test environment and any other test infrastructure for later reuse.) 

 

Test implementation has the following major task: 

i. To develop and prioritize our test cases by using techniques and create test data for 

those tests. 

ii. (In order to test a software application you need to enter some data for testing most of 

the features. 

iii. Any such specifically identified data which is used in tests is known as test data.) 

iv. We also write some instructions for carrying out the tests which is known as test 

procedures. 

v. We may also need to automate some tests using test harness and automated tests 

scripts. 

vi. (A test harness is a collection of software and test data for testing a program unit by 

running it under different conditions and monitoring its behavior and outputs.) 

vii. To create test suites from the test cases for efficient test execution. 

viii. (Test suite is a collection of test cases that are used to test a software program to show 

that it has some specified set of behaviors. 

ix. A test suite often contains detailed instructions and information for each collection of 

test cases on the system configuration to be used during testing. 

x. Test suites are used to group similar test cases together.) 

xi. To implement and verify the environment. 

Test execution has the following major task: 

i. To execute test suites and individual test cases following the test procedures. 

ii. To re-execute the tests that previously failed in order to confirm a fix. This is known as 

confirmation testing or re-testing. 

iii. To log the outcome of the test execution and record the identities and versions of the 

software under tests. 

iv. The test log is used for the audit trial. 

v. (A test log is nothing but, what are the test cases that we executed, in what order we 

executed, who executed that test cases and what is the status of the test case (pass/fail). 

vi. These descriptions are documented and called as test log.). 

vii. To compare actual results with expected results. 

viii. Where there are differences between actual and expected results, it report discrepancies 

as Incidents. 



MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION 
(Autonomous) 

(ISO/IEC - 27001 - 2005 Certified) 

MODEL ANSWER 
SUMMER– 17 EXAMINATION 

               Subject Title:  SOFTWARE TESTING                                                          Subject Code: 

 

Page | 30  

 

 

17624 

4. Evaluating Exit criteria and Reporting 

i. Based on the risk assessment of the project we will set the criteria for each test level 

against which we will measure the “enough testing”. These criteria vary from project to 

project and are known as exit criteria.  

ii. Exit criteria come into picture, when: 

1. Maximum test cases are executed with certain pass percentage. 

2. Bug rate falls below certain level. 

3. When achieved the deadlines. 

iii. Evaluating exit criteria has the following major tasks 

1. To check the test logs against the exit criteria specified in test planning. 

2. To assess if more test are needed or if the exit criteria specified should be changed. 

3. To write a test summary report for stakeholders. 

5. Test Closure activities: 

Test closure activities are done when software is delivered. The testing can be closed for the 

other reasons also like: 

1. When all the information has been gathered which are needed for the testing. 

2. When a project is cancelled. 

3. When some target is achieved. 

4. When a maintenance release or update is done. 

Test closure activities have the following major tasks: 

1. To check which planned deliverables are actually delivered and to ensure that all incident 

reports have been resolved. 

2. To finalize and archive test ware such as scripts, test environments, etc. for later reuse. 

3. To handover the test ware to the maintenance organization. They will give support to the 

software. 

1. To evaluate how the testing went and learn lessons for future releases and projects. 

 

 

 (B) Attempt any ONE of the following : 06 Marks 

 (a) Describe V-model with labelled diagram. 6M 

 Ans: Verification: 

1. It makes sure that the product is designed to deliver all functionality to the customer. 

2. Verification is done at the starting of the development process. It includes reviews and 

meetings, walkthroughs, inspection, etc. to evaluate documents, plans, code, 

requirements and specifications. 

3. It answers the questions like: Am I building the product right? 

4. Am I accessing the data right (in the right place; in the right way). 

5. It is a Low level activity 

6. Performed during development on key art facts, like walkthroughs, reviews and 

(Diagram:2 

marks, 

Explanatio

n:4 marks) 



MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION 
(Autonomous) 

(ISO/IEC - 27001 - 2005 Certified) 

MODEL ANSWER 
SUMMER– 17 EXAMINATION 

               Subject Title:  SOFTWARE TESTING                                                          Subject Code: 

 

Page | 31  

 

 

17624 

inspections, mentor feedback, training, checklists and standards. 

7. Demonstration of consistency, completeness, and correctness of the software at each 

stage and between each stage of the development life cycle. 

 

Validation: 

1. Determining if the system complies with the requirements and performs functions for 

which it is intended and meets the organization’s goals and user needs. 

2. Validation is done at the end of the development process and takes place after verifications 

are completed. 

3. It answers the question like: Am I building the right product? 

4. Am I accessing the right data (in terms of the data required to satisfy the requirement). 

5. It is a High level activity. 

6. Performed after a work product is produced against established criteria ensuring that the 

product integrates correctly into the environment. 

7. Determination of correctness of the final software product by a development project with 

respect to the user needs and requirements. 

 

                                                                      OR 

Verification Phase: 

1. Overall Business Requirement: In this first phase of the development cycle , the product 

requirements are understood from customer perspective. This phase involves detailed 

communication with the customer to understand his expectations and exact requirements. 

The acceptance test design planning is done at this stage as business requirements can be 

used as an input for acceptance testing. 

2. Software Requirement: Once the product requirements are clearly known, the system 

can be designed. The system design comprises of understanding & detailing the complete 

hardware , software & communication set up for the product under development. System test 

plan is designed based on system design. Doing this at 

earlier stage leaves more time for actual test execution later. 

3. High level design: High level specification are understood & designed in this phase. 

Usually more than one technical approach is proposed & based on the technical & financial 

feasibility, the final decision is taken. System design is broken down further 

into modules taking up different functionality. 

4. Low level design: In this phase the detailed integral design for all the system modules is 

specified. It is important that the design is compatible with the other modules in the system 

& other external system. Components tests can be designed at this stage based on the internal 

module design, 

5. Coding: The actual coding of the system modules designed in the design phase is taken 

up in the coding phase. The base suitable programming language is decided base on 

requirements. Coding is done based on the coding guidelines & standards. 

Validation Phase: 

1. Unit Testing: Unit testing designed in coding are executed on the code during this 

validation phase. This helps to eliminate bugs at an early stage. 



MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION 
(Autonomous) 

(ISO/IEC - 27001 - 2005 Certified) 

MODEL ANSWER 
SUMMER– 17 EXAMINATION 

               Subject Title:  SOFTWARE TESTING                                                          Subject Code: 

 

Page | 32  

 

 

17624 

2. Components testing: This is associated with module design helps to eliminate defects in 

individual modules. 

3. Integration Testing: It is associated with high level design phase & it is performed to test 

the coexistence & communication of the internal modules within the system  

4. System Testing: It is associated with system design phase. It checks the entire system 

functionality & the communication of the system under development with external systems. 

Most of the software & hardware compatibility issues can be 

uncovered using system test execution. 

5.Acceptance Testing: It is associated with overall & involves testing the product in user 

Environment. These tests uncover the compatibility issues with the other systems available 

in the user environment. It also uncovers the non-functional issues such as load & 

performance defects in the actual user environment. 

 

 

 

 (b) What is the use of code complexity testing? Also compute code complexity with the help 

of suitable example.  

6M 

 Ans: 1. Program Statements and Line Coverage (Code Complexity Testing) 

i. The most straightforward form of code coverage is called statement coverage or line 

coverage. 

ii. If you’re monitoring statement coverage while you test your software, your goal is to 

make sure that you execute every statement in the program at least once. 

iii. With line coverage the tester tests the code line by line giving the relevant output. 

For example 

1. #include<stdio.h> 

2. void main() 

(Explanat

ion:2 

marks,Ex

ample:2 

marks) 

 



MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION 
(Autonomous) 

(ISO/IEC - 27001 - 2005 Certified) 

MODEL ANSWER 
SUMMER– 17 EXAMINATION 

               Subject Title:  SOFTWARE TESTING                                                          Subject Code: 

 

Page | 33  

 

 

17624 

3. { 

4. int i , fact= 1, n; 

5. printf(“enter the number “); 

6. scanf(“%d”, &n); 

7. for(i =1 ;i <=n; i++) 

8. fact = fact * i; 

9. printf (“the factorial of a number is ”%d”, fact); 

10. } 

2. Branch Coverage (Code Complexity Testing) 

i. Attempting to cover all the paths in the software is called path testing. 

ii. The simplest form of path testing is called branch coverage testing. 

iii. To check all the possibilities of the boundary and the sub boundary conditions and it’s 

branching on those values. 

iv. Test coverage criteria requires enough test cases such that each condition in a decision 

takes on all possible outcomes at least once, and each point of entry to a program 

or subroutine is invoked at least once.  

v. Every branch (decision) taken each way, true and false. 

vi. It helps in validating all the branches in the code making sure that no branch leads to 

abnormal behavior of the application. 

3. Condition Coverage (Code Complexity Testing) 

i. Just when you thought you had it all figured out, there’s yet another complication to path 

testing. 

ii. Condition coverage testing takes the extra conditions on the branch statements into 

account. 

4. Code Complexity:  Cyclomatic complexity is metric that quantifies the complexity of a program 

and provides answers to the questions such as 

 

 

 

 



MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION 
(Autonomous) 

(ISO/IEC - 27001 - 2005 Certified) 

MODEL ANSWER 
SUMMER– 17 EXAMINATION 

               Subject Title:  SOFTWARE TESTING                                                          Subject Code: 

 

Page | 34  

 

 

17624 

 

• 1. Which of the paths are independent? If two paths are not independent then we may be 

able to minimize the number of tests. 

• 2. Is there an upper bound on the number of tests that must be run to ensure that all the 

statements have been executed at least once? 

• In this a program is represented as flow graph. A flow graph consists of nodes and edges. 

• Cyclo-matic complexity=Number of predicate nodes(P)+1 

                                                  

Or 

• Cyclo-matic complexity=Edges(E)-Nodes(N)+2  

 
In the above flow graph: No. of independent path=2, No. of edges E=4 , No. of nodes 

N=4 

Cyclomatic complexity=E-N+2=4-4+2=2 or 

Cyclomatic complexity=P+1=1+1=2  

 

 

 

 

 

 

 

 

 

 

 



MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION 
(Autonomous) 

(ISO/IEC - 27001 - 2005 Certified) 

MODEL ANSWER 
SUMMER– 17 EXAMINATION 

               Subject Title:  SOFTWARE TESTING                                                          Subject Code: 

 

Page | 35  

 

 

17624 

5.  Attempt any TWO  of the following : 16 Marks 

 (a) Describe Test Management Process and give details of following internal standards for 

process and method : 

(i) Naming and storage contention. 

(ii) Documentation standard. 

8M 

 Ans: a) Test Management Process: 

Test Management:  It concerned with both test resource and test environment management. 

It is the role of test management to ensure that new or modified service products meet 

business requirements for which they have been developed or enhanced. 

Test Management Process:  

1. Test Plan: Test plan served as an initial sketch to carry out the testing. Testing is being 

tracked and monitored as per the test plan. It gives a prior picture of test challenge and 

aspect that will be carried out for the software. 

2. Test design affords how to implement the testing. Typically creating test cases is with 

inputs and expected output of the system and choosing which test cases are necessary for 

the execution of the test.  

3. Test Execution : Manner of executing and test the actual system result against the 

expected result is test execution. Test execution can be done manually and by using 

automation suit. During the execution tester needs to make sure, that the user’s need of 

the software is occupied in the software. 

4. Exit criteria determines when to stop the test execution. Exit criteria is defined during 

the test plan phase and used in the test execution phase as a mile stone. Tester needs to 

set the exit criteria at the beginning, exit criteria may change during the project run as 

well. 

5. Test reporting gives the picture of test process and result for the particular testing cycle. 

To define the element in the test reporting the first thing that needs to be considered is 

whom the audiences of the test report are. For an example a project manager will like to 

see the high level picture of the testing, intermediate people will wish to view more detail 

and the client will expect the test reporting in the criteria such as requirement basis, 

feature basis.  

 

(Test 

Managem

ent 

Process:2 

marks, 

Naming 

Standard

s:3marks,

Documen

tation 

Standard

s:3marks) 

 



MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION 
(Autonomous) 

(ISO/IEC - 27001 - 2005 Certified) 

MODEL ANSWER 
SUMMER– 17 EXAMINATION 

               Subject Title:  SOFTWARE TESTING                                                          Subject Code: 

 

Page | 36  

 

 

17624 

 
 

1. Naming and storage conventions for test artifacts: Every test artifacts(test specification, 

test case, test results and so on)have to be named appropriately and meaningfully. It enables  

a) Easy identification of the product functionality.  

b) Reverse mapping to identify the functionality corresponding to a given set of tests.  

e.g. modules shall be M01,M02.Files types can be .sh, .SQL.  

 In addition to file naming conventions, the standards may also stipulate the conventions for 

directory structures for tests. These directory structures are mapped into configuration 

management repository. 

2. Documentation standards: Documentation standards specify how to capture information 

about the tests within the test scripts themselves. It should include: 

a. Appropriate header level comments at the beginning of a file that outlines the functions to 

be served by the test.  

b. Sufficient inline comments, spread throughout the file  

c. Up-to-Date change history information, reading all the changes made to the test file.  

 

 

 (b) What is boundary value analysis? Explain with suitable example. 8M 

 Ans: Most of the defects in software products have around conditions and boundaries. By 

boundaries, we mean “limits” of values of the various variables. This is one of the software 

testing technique in which the test cases are designed to include values at the boundary. If 

the input data is used within the boundary value limits, then it is said to be Positive Testing. 

If the input data is picked outside the boundary value limits, then it is said to be Negative 

Testing. Boundary value analysis is another black box test design technique and it is used to 

find the errors at boundaries of input domain rather than finding those errors in the center of 

input.  Each boundary has a valid boundary value and an invalid boundary value. Test cases 

are designed based on the both valid and invalid boundary values. Typically, we choose one 

test case from each boundary. Boundary value analysis help identify the test cases that are 

most likely to uncover defects. 

(Explanatio

n:5marks,

Example:3 

marks or 

any other 

relevant 

example) 

 



MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION 
(Autonomous) 

(ISO/IEC - 27001 - 2005 Certified) 

MODEL ANSWER 
SUMMER– 17 EXAMINATION 

               Subject Title:  SOFTWARE TESTING                                                          Subject Code: 

 

Page | 37  

 

 

17624 

 

Some examples of Boundary value analysis concept are: If   the can accept he numbers 

between 1 to 100.Then 

One test case for exact boundary values of input domains each means 1 and 100. 

One test case for just below boundary value of input domains each means 0 and 99. 

One test case for just above boundary values of input domains each means 2 and 101. 

Under this technique, boundary values 0,1, 2, 99,100,101can be tested. 

Out of which 1,2,99,100 are valid values and 0,101 are invalid values. 

 

 

 (c) Write a short note on : 

(i) Load testing 

(ii) Stress testing  

(iii)Recovery testing 

(iv) Usability testing 

 

8M 

 Ans: (i) Load testing: Load is testing the software under customer expected load. In order to 

perform load testing on the software you feed it all that it can handle. Operate the software 

with largest possible data files. If the software operates on peripherals such as printer, or 

communication ports, connect as many as you can. If you are testing an internet server that 

can handle thousands of simultaneous connections, do it. With most software it is important 

for it to run over long periods. Some software‘s should be able to run forever without being 

restarted. So Time acts as a important variable.  

 

ii) Stress testing: Stress testing is testing the software under less than ideal conditions. So 

subject your software to low memory, low disk space, slow cpus, and slow modems and so 

on. Look at your software and determine what external resources and dependencies it has. 

Stress testing is simply limiting them to bare minimum. With stress testing you starve the 

software. For e.g. Word processor software running on your computer with all available 

memory and disk space, it works fine. But if the system runs low on resources you had a 

greater potential to expect a bug. Setting the values to zero or near zero will make the 

software execute different path as it attempt to handle the tight constraint. Ideally the 

software would run without crashing or losing data.  

 

iii) Recovery testing: Recovery testing is a type of non-functional testing. Recovery 

testing is done in order to check how fast and better the application can recover after it has 

gone through any type of crash or hardware failure etc. 

 Recovery testing is the forced failure of the software in a variety of ways to verify that 

recovery is properly performed. 

 Determining the feasibility of the recovery process. 

 Verification of the backup facilities. 

 Ensuring proper steps are documented to verify the compatibility of backup facilities. 

 Providing Training within the team. 

  (Load  

testing:2 

marks, 

Stress 

Testing:2 

marks, 

Recovery 

Testing:2 

marks, 

Usability 

Testing:2 

marks) 

 

http://istqbexamcertification.com/what-is-non-functional-testing-testing-of-software-product-characteristics/
http://istqbexamcertification.com/what-is-a-failure-in-software-testing/


MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION 
(Autonomous) 

(ISO/IEC - 27001 - 2005 Certified) 

MODEL ANSWER 
SUMMER– 17 EXAMINATION 

               Subject Title:  SOFTWARE TESTING                                                          Subject Code: 

 

Page | 38  

 

 

17624 

 Demonstrating the ability of the organization to recover from all critical failures. 

 Maintaining and updating the recovery plan at regular intervals. 

 

(iv)Usability testing: Usability testing, a non-functional testing technique that is a measure of 

how easily the system can be used by end users.It is difficult to evaluate and measure but can 

be evaluated based on the below parameters: 

 Levels of Skill required learn/use the software. It should maintain the balance for both 

novice and expert user. 

 Time required to get used to in using the software. 

 The measure of increase in user productivity if any. 

 Assessment of a user's attitude towards using the software. 

 Usability testing, a non-functional testing technique that is a measure of how easily the 

system can be used by end users. 

 It is difficult to evaluate and measure but can be evaluated based on the below parameters: 

 Levels of Skill required learn/use the software. It should maintain the balance for both 

novice and expert user. 

 Time required to get used to in using the software. 

 The measure of increase in user productivity if any. 

 

6.  Attempt any FOUR of the following : 16 Marks 

 (a) Describe quality assurance and quality control. 4M 

 Ans:  Quality Assurance:  

i. It is Process oriented activities. 

ii. A part of quality management focused on providing confidence that quality 

requirements will be fulfilled.  

iii. All the planned and systematic activities implemented within the quality system that can 

be demonstrated to provide confidence that a product or service will fulfill requirements 

for quality  

iv. Quality Assurance is fundamentally focused on planning and documenting those 

processes to assure quality including things such as quality plans and inspection and test 

plans.  

v. Quality Assurance is a system for evaluating performance, service, of the quality of a 

product against a system, standard or specified requirement for customers.  

vi. Quality Assurance is a complete system to assure the quality of products or services. It 

is not only a process, but a complete system including also control. It is a way of 

management.  

 

 

 

(Quality 

assurance: 

2 marks, 

Quality 

Control:2 

marks) 

 



MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION 
(Autonomous) 

(ISO/IEC - 27001 - 2005 Certified) 

MODEL ANSWER 
SUMMER– 17 EXAMINATION 

               Subject Title:  SOFTWARE TESTING                                                          Subject Code: 

 

Page | 39  

 

 

17624 

Quality Control: 

i. It is Product oriented activities. 

ii. A part of quality management focused on fulfilling quality requirements.  

iii. The operational techniques and activities used to fulfill requirements for quality.  

iv. Quality Control on the other hand is the physical verification that the product conforms 

to these planned arrangements by inspection, measurement etc.  

v. Quality Control is the process involved within the system to ensure job management, 

competence and performance during the manufacturing of the product or service to 

ensure it meets the quality plan as designed.  

vi. Quality Control just measures and determines the quality level of products or services.  

 

 (b) Describe alpha testing with its entry & exit criteria. 4M 

 Ans: Alpha testing is done by the customers in controlled environment in front of the development 

team. It has less probability of finding errors. It is done during implementation phase of 

software. 

When to Start and Stop Testing of Software (Entry and Exit Criteria) 

Process model is a way to represent any given phase of software development that prevent 

and minimize the delay between defect injection and defect detection/correction. 

 Entry criteria, specifies when that phase can be started also included the inputs for the 

phase. 

 Tasks or steps that need to be carried out in that phase, along with measurements that 

characterize the tasks. 

 Verification, which specifies methods of checking that tasks have been carried out 

correctly. 

 Clear entry criteria make sure that a given phase does not start prematurely. 

 The verification for each phase helps to prevent defects. At least defects can be 

minimized. 

 

Exit criteria, which stipulate the conditions under which one can consider the phases as 

done and included are the outputs for the phase. 

a. Exit criteria may include: 

1. All test plans have been run 

2. All requirements coverage has been achieved. 

3. All severe bugs are resolved. 

 

OR 

Entry Criteria for Alpha testing: 

 Software requirements document or Business requirements specification 

 Test Cases for all the requirements 

 Testing Team with good knowledge about the software application 

(Alpha 

testing:2

marks, 

Entry & 

exit 

Criteria:2 

marks) 

 



MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION 
(Autonomous) 

(ISO/IEC - 27001 - 2005 Certified) 

MODEL ANSWER 
SUMMER– 17 EXAMINATION 

               Subject Title:  SOFTWARE TESTING                                                          Subject Code: 

 

Page | 40  

 

 

17624 

 Test Lab environment setup 

 QA Build ready for execution 

 Test Management tool for uploading test cases and logging defects 

 Traceability Matrix to ensure that each design requirement has atleast one test case that 

verifies it 

 

Exit Criteria for Alpha testing: 

 All the test cases have been executed and passed. 

 All severity issues need to be fixed and closed 

 Delivery of Test summary report 

 Make sure that no more additional features can be included 

 Sign off on Alpha testing 

 

 (c) What are types of test report? Write contents of test summary report. 4M 

 Ans: Test reporting is a means of achieving communication through the testing cycle. There are 3 

types of test reporting.  

1. Test incident report:  A test incident report is communication that happens through the 

testing cycle as and when Defects are encountered .A test incident report is an entry made in 

the defect repository each defect has a unique id to identify incident .The high impact test 

incident are Highlighted in the test summary report.  

 

2. Test cycle report:  A test cycle entails planning and running certain test in cycle, each 

cycle using a different build of the product .As the product progresses through the various 

cycles it is expected to stabilize. 

Test cycle report gives : 
1. A summary of the activities carried out during that cycle.  

2. Defects that are uncovered during that cycle based on severity and impact  

3. Progress from the previous cycle to the current cycle in terms of defect fixed  

4. Outstanding defects that not yet to be fixed in cycle  

5. Any variation observed in effort or schedule  

 

3. Test summary report:  The final step in a test cycle is to recommend the suitability of a 

product for release. A report that summarizes the result of a test cycle is the test summary 

report. There are two types of test summary report:  

1. Phase wise test summary ,which is produced at the end of every phase  

2. Final test summary report.  

A Summary report should content: 

1. Test Summary report Identifier  

2. Description : Identify the test items being reported in this report with test id  

3. Variances: Mention any deviation from test plans, test procedures, if any.  

4. Summary of results: All the results are mentioned here with the resolved incidents and 

their solutions.  

5. Comprehensive assessment and recommendation for release should include Fit for release 

assessment and recommendation of release  

(Types of 

test 

Report:2 

marks, 

Content 

of test 

Summary 

Report:2 

marks) 

 



MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION 
(Autonomous) 

(ISO/IEC - 27001 - 2005 Certified) 

MODEL ANSWER 
SUMMER– 17 EXAMINATION 

               Subject Title:  SOFTWARE TESTING                                                          Subject Code: 

 

Page | 41  

 

 

17624 

 (d) List all defect classification. Also describe any one defect in brief. 4M 

 Ans: List of  Defect Classification:  

1. Requirements and specification defect 

2. Design Defects 

3. Coding Defects 

4. Testing Defect 

Requirements and specification defect: Requirement related defects arise in a product 

when one fails to understand what is required by the customer. These defects may be due to 

customer gap, where the customer is unable to define his requirements, or producer gap, 

where developing team is not able to make a product as per requirements. Defects injected in 

early phases can persist and be very difficult to remove in later phases. Since any 

requirements documents are written using natural language representation, there are very 

often occurrences of ambiguous, contradictory, unclear, redundant and imprecise 

requirements. Specifications are also developed using natural language representations.  

Design Defects: Design defects occur when system components, interactions between 

system components, interactions between the outside software/hardware, or users are 

incorrectly designed. This covers in the design of algorithms, control, logic/ data elements, 

module interface descriptions and external software/hardware/user interface descriptions. 

Design defects generally refer to the way of design creation or its usage while creating a 

product. The customer may or may not be in a position to understand these defects, if 

structures are not correct. They may be due to problems with design creation and 

implementation during software development life cycle.  

Coding Defects: Coding defects may arise when designs are implemented wrongly. If there 

is absence of development/coding standards or if they are wrong, it may lead to coding 

defects. Coding defects are derived from errors in implementing the code. Coding defect 

classes are closely related to design defect classes especially if pseudo code has been used 

for detailed design. Some coding defects come from a failure to understand programming 

language constructs, and miscommunication with the designers. Others may have 

transcription or omission origins. At times it may be difficult to classify a defect as a design 

or as a coding detect.  

Testing Defect: Testing defect are defects introduced in an application due to wrong testing, 

or defects in the test artifact leading to wrong testing. Defects which cannot be reproduced , 

or are not supported by requirement or are duplicate may represent a false call .In this defects 

includes  

1. Test-design defect: test-design defect refers to defects in test artifacts. There can be 

defects in test plans, test scenarios, test cases and test data definition which can lead to defect 

in software.  

2. Test-environment defect: this defect may arise when test environment is not set properly. 

Test environment may be comprised of hardware, software, simulator and people doing 

(List of 

Classifica

tion:2 

marks, 

Descriptio

n of any 

One:2 

marks) 



MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION 
(Autonomous) 

(ISO/IEC - 27001 - 2005 Certified) 

MODEL ANSWER 
SUMMER– 17 EXAMINATION 

               Subject Title:  SOFTWARE TESTING                                                          Subject Code: 

 

Page | 42  

 

 

17624 

testing.  

3. Test-tool defects: any defects introduced by a test tool may be very difficult to find and 

resolve, as one may have to find the defect using manual test as against automated tools. 

                                                     OR 

    Software Defects/ Bugs are normally classified as per: 

•Severity / Impact  

•Probability / Visibility  

•Priority / Urgency                                         

•Related Dimension of Quality  

•Related Module / Component 

•Phase Detected 

•Phase Injected 

 

 (e) List & explain techniques of finding bugs. 4M 

 Ans: List of techniques:   
   1.Static testing 

2.Dynamic testing 

3.Operational testing 

Static Techniques: Static techniques of quality control define checking the software product 

and related artifacts without executing them. It is also termed desk checking/verification 

/white box testing‘. It may include reviews, walkthroughs, inspection, and audits Here; the 

work product is reviewed by the reviewer with the help of a checklist, standards, any other 

artifact, knowledge and experience, in order to locate the defect with respect to the 

established criteria. Static technique is so named because it involves no execution of code, 

product, documentation, etc. This technique helps in establishing conformance to 

requirements view. 

 Dynamic Testing: Dynamic testing is a validation technique which includes dummy or 

actual execution of work products to evaluate it with expected behavior. It includes black 

box testing methodology such as system testing and unit testing. The testing methods 

evaluate the product with respect to requirements defined, designs created and mark it as 

pass or fail‘. This technique establishes fitness for use‘view. 

 Operational techniques: Operational techniques typically include auditing work products 

and projects to understand whether the processes defined for development /testing are being 

followed correctly o not, and also whether they are effective or not. It also includes revisiting 

the defects before and after fixing and analysis. Operational technique may include smoke 

testing and sanity testing of a work product.  

 

OR 

Techniques to find defects are: 

a) Quick Attacks:  The quick-attacks technique allows you to perform a cursory analysis of 

a system in a very compressed timeframe. Even without a specification, you know a little bit 

about the software, so the time spent is also time invested in developing expertise. The skill 

is relatively easy to learn, and once you've attained some mastery your quick-attack session 

(Listing:1 

mark, 

Explanati

on:3 

marks) 

 

 

 



MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION 
(Autonomous) 

(ISO/IEC - 27001 - 2005 Certified) 

MODEL ANSWER 
SUMMER– 17 EXAMINATION 

               Subject Title:  SOFTWARE TESTING                                                          Subject Code: 

 

Page | 43  

 

 

17624 

  

  

will probably produce a few bugs. Finally, quick attacks are quick. They can help you to 

make a rapid assessment. You may not know the requirements, but if your attacks yielded a 

lot of bugs, the programmers probably aren't thinking about exceptional conditions, and it's 

also likely that they made mistakes in the main functionality.  If your attacks don't yield any 

defects, you may have some confidence in the general, happy-path functionality 

 b) Equivalence and Boundary Conditions: Boundaries and equivalence classes give us a 

technique to reduce an infinite test set into something manageable.  They also provide a 

mechanism for us to show that the requirements are "covered".  

c) Common Failure Modes: The heart of this method is to figure out what failures are 

common for the platform, the project, or the team; then try that test again on this build.  If 

your team is new, or you haven't previously tracked bugs, you can still write down defects 

that "feel" recurring as they occur and start checking for them.  

d) State-Transition Diagrams: Mapping out the application provides a list of immediate, 

powerful test ideas.  Model can be improved by collaborating with the whole team to find 

"hidden" states transitions that might be known only by the original programmer or 

specification author.  Once you have the map, you can have other people draw their own 

diagrams, and then compare theirs to yours.  The differences in those maps can indicate gaps 

in the requirements, defects in the software, or at least different expectations among team 

members. e) Use Cases and Soap Opera Tests: Use cases and scenarios focus on software in 

its role to enable a human being to do something. Use cases and scenarios tend to resonate 

with business customers, and if done as part of the requirement process, they sort of 

magically generate test cases from the requirements. They make sense and can provide a 

straightforward set of confirmatory tests. Soap opera tests offer more power, and they can 

combine many test types into one execution. 

f) Code-Based Coverage Models: Imagine that you have a black-box recorder that writes 

down every single line of code as it executes. Programmers love code coverage. It allows 

them to attach a number an actual, hard, real number, such as 75% to the performance of 

their unit tests, and they can challenge themselves to improve the score.   Meanwhile, 

looking at the code that isn't covered also can yield opportunities for improvement and bugs. 

g) Regression and High-Volume Test Techniques: People spend a lot of money on 

regression testing, taking the old test ideas described above and rerunning them over and 

over. This is generally done with either expensive users or very expensive programmers 

spending a lot of time writing and later maintaining those automated tests. 

 


