

SUMMER-17 EXAMINATION

Subject Title: Quality control and Inspection

Subject Code:

17555

Important Instructions to examiners:

1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme.

2) The model answer and the answer written by candidate may vary but the examiner may try to assess the understanding level of the candidate.

3) The language errors such as grammatical, spelling errors should not be given more importance. (Not applicable for subject English and Communication Skills)

4) While assessing figures, examiner may give credit for principal components indicated in the figure. The figures drawn by candidate and model answer may vary. The examiner may give credit for any equivalent figure drawn.

5) Credits may be given step wise for numerical problems. In some cases, the assumed constant values may vary and there may be some difference in the candidate's answers and model answer.

6) In case of some questions credit may be given by judgment on part of examiner of relevant answer based on candidate's understanding.

7) For programming language papers, credit may be given to any other program based on equivalent concept.

Q.		MODEL ANSV	VER	MARKS
No.				
1	Attempt any five			5 x 4
1.a	Parameters	Line standard	End standard	1mark per point
	Accuracy of	Limited to +- 0.2mm	Highly accurate for	
	measurement	for high accuracy,	measurement of close	4 mark
		scale have to be used	tolerances upto +-0.001	
		in conjunction with	mm.	
		microscope		
	Time	Quick and easy	Time consuming	
	measurement			
	Effect of use	Scale marking not	Measuring faces get worn	
		subjected to wear but	out. To take care of this	
		end of the scale is	end piece can be	
		worn.Thus,it may be	hardened. And of	
		difficult to assume	protecting type.	
		zero of scale as atum		
	Other errors	Parallax error can	Improper wringing of step	
		occur	gauges may introduce	
			error change in	
			lab.temperature may lead	
			to some error.	
	Manufacture	Simple and low	Complex process and high	
	and cost of			

SUMMER-17 EXAMINATION

Subject Title: Quality control and Inspection

Subject Code:

	t				
	equipment				
	Example	Meter and yard,etc	SlipGauges, Microometer,		
			etc		
1.b	Requirement of g	good comparator.		1mark-1 point	
	1) The comparat	cors must be of robust (design and construction so as to	(any four point)	
	withstand the ef	ffect of ordinary usage	without impairing its measuring		
	accuracy.				
	2) The indicating	devices are such that r	eadings are obtained in the least		
	possible time.	possible time.			
	3) Provision is ma	ide for maximum comper	nsation for temperature effects.		
	4) The scale is line	ear and having straight li	ne characteristic.		
	5) Measuring pre	ssure is low and constant			
1.c	SELECTIVE ASSEM	1BLY		selective assembly-3m	
	•In selective ass	sembly, the parts of ar	nyone type are categorized into	adv -1m	
	several groups ac	cording to size. The mat	ing parts are also categorized into		
	same number o	of groups, so that th	e corresponding groups, when		
	assembled will g	give the desired fit at a	ssembly with little or no further		
	machining.	the sector of th			
	• In this process, the parts are manufactured to rather wider tolerances and				
	then separated into number of groups according to their actual sizes.				
	Assembly is then	made from the selected	groups.		
	• Selective assem	ibly results in reduced co	ist of production without affecting		
	the quality of the				
	Advantage:				
	Application:				
	<u>Application:</u>				
1 d	All Craft, automo	different factors on whi	and roller bearing industries.	01 mark for each	
1.0	Following are the	allerent factors on which	ch quality of a product depends.	OI mark for each	
	1) The mate	erials		Tactor.	
	2) Parts	.			
	3) Assemble				
	4) Process a	ind processing conditions			
1.0	Products includin	g packing and packaging		1mark 1 point	
I.e	(1)Interpretation	of chocification		(any four point)	
	(1) Interpretation	of product		(any rour point)	
	(2) Comparison w	ith standards			
	(3)Comparison w	rmity			
	(+)Juuging como	וווונא ים			
	(5) Necoluling dat	a product			
1 f		mma radiography:		ady 2m	
1.1	1 A normanent r	record of defects in a well	ded object is obtained	(any four point)	
	1. A permanent r	record of defects in a wel	ded object is obtained.	(any four point)	

SUMMER-17 EXAMINATION

Subject Title: Quality control and Inspection

Subject Code:

	2. Reference standards for defects are available.	
	3. Low initial cost.	dis adv-2m
	4. This is a very good method for testing at the site.	(any four point)
	Disadvantages of gamma radiography:	
	1. Trained operator is required.	
	2. The method involves radiation hazards.	
	3. Y-ray source loses strength continuously.	
	4. Y-ray radiography possesses lower sensitivity and definition than X-ray	
	radiograph	
1.g	Leak (or tightness) test by gas.	3mark-Explain
	Concept:	·
	(1)Leak refers to an actual discontinuity or passage through which a fluid	APP-1M
	flows or permeates.	
	(2)Leak testing is the determination of the rate at which a gas will penetrate	
	from inside a tight component or assembly to the outside as a result of	
	pressure differential between the two regions.	
	Purpose:	
	To test welded pressure vessels, tanks and pipelines to determine if leaks	
	are present. Absolute tightness of all the welded joints can be tested this	
	way	
	Procedure:	
	The welded vessel, after closing all its outlets; is subjected to internal	
	pressure using gas (e.g. CO2)	
	Hydraulic pressure, using gas, is the usual medium employed in this test. Air	
	will leak out more readily than water and gas (e.g. Hydrogen) will escape	
	where air will not.	
	When using air/gas, failure of vessel can cause injuries to persons around.	
	Application:	
	Find out leakage from pipe, pressure vessels, boilers, heat exchangers.	
2	Attempt any two	2 x 8
2.a	note:	Working priccipal-4m
	Electrical comparator or LVDT COMPARATOR can be considering for	advantages-4m
	electronic comparator.	(4point)
	LVDT ELECTRO- MECHANICAL COMPARATOR:	
	Electrical comparator has the highest magnification amongst all the	
	comparator. LVDT is the most commonly used inductive transducer to	
	translate linear motion into electrical signal (displacement).	
	Here, L = Linear motion (displacement)	
	V = Variable inductance	
	D = Differential, which means output is difference of	
	two secondary outputs	

MODEL ANSWER

SUMMER- 17 EXAMINATION

Subject Title: Quality control and Inspection

Subject Code: 1

T = Transformer,	because it functions as the former of	
primary and seco	ondary windings	
Working Principl	e:	
The position of	iron core (magnetic core or armature) is responsible for	
varying the diff	erential voltage two secondary winding of transformer,	
which is measure	e of linear displacement.	
Construction:		
• It consists of	an insulating hollow cylinder made up of Bakelite or any	
insulating materi	al.	
On the circum	ference of this insulting cylinder, one primary winding (P)	
and two seconda	ry windings (S1 and S2) are wound	
• The primary w	inding is wound at the center of insulating cylinder and on	
either side of it	two secondary windings S1 and S2are exactly opposite to	
entrier side of it,	two secondary windings S1 and S2are exactly opposite to	
• The directions	of S1 and S2 are everthy enperite to each other	
• The unections	or si anu se are exactly opposite to each other.	
Inside the hold	ow insulating cylinder, magnetic or armature core is placed,	
which is free to r	nove back and forth.	
Ihe displace	ment to be measured is attached to the soft iron	
core/magnetic co	ore.	
• The magnetic	core is made up of nickel iron, which gives high sensitivity	
and low null vo	Itage. This core is slotted longitudinally to reduce eddy	
current losses.		
 The whole asse 	mbly is placed in stainless steel housing	
	winding, S, winding, P winding, S,	
	Former	
Arm	Politier	
Reduction and the		
	Soft iron core	
Displacement		
	sources of the second se	
Working:		
 When A.C. sup 	pply is given to the primary winding, it produces magnetic	
flux, which comp	letes its path through 51 and 52.	
While complet	ing the path, the flux produced by the primary winding is	
linked to the nur	nber of conductors of secondary windings.	
• Therefore acc	ording to Faraday's law of electromagnetic induction, an	
e.m.f. is produce	d in the secondary winding.	
• As shown in Fig	g., the output voltage of S1 is ES1 and that of S2 is ES2	

MODEL ANSWER

SUMMER-17 EXAMINATION

Subject Title: Quality control and Inspection

Subject Code: 1

MODEL ANSWER

SUMMER-17 EXAMINATION

Subject Title: Quality control and Inspection

Subject Code: 17555

have two or more magnifications. Thus, wide range is available. 3. The mechanism carrying pointer is very light and not sensitive to vibrations. 4. As these instruments are usually operated on A.C. supply, the cycle vibration substantially reduces errors due to sliding friction. 5. The measuring unit can be made very small and it is not necessary that the indicating instrument be close to the measuring unit, rather it can be remote also. 2.b • Taylor's principle states that, GO gauges should be of full form, such that, 8mark 'GO' gauge should check all possible elements of dimension at a time (such as roundness, taper, location etc.), whereas 'NO GO' should check only one dimension at a time. Taylor's principle is applied in designing GO and NO GO gauges for checking maximum and minimum limits as i) GO limit: This designation is applied to that limit of the two limits of size which corresponds to maximum material limit consideration, i.e. the upper limit of a shaft and lower limit of a hole. The form of the GO gauge should be such that it checks one feature of the component in one pass. ii) NO GO limit: This designation is applied to that limit of the two limits of size which corresponds to minimum material limit condition, i.e. the lower limit of a shaft and higher limit of a hole. "NO GO" gauges should check only one part or feature of the component at a time. NO GO GO Lower Linit NO GO Saap gauge GO Saap gauge For designing of plug gauge and ring gauges following point are applied. •'GO' plug gauge is the size of minimum limit of the hole. 'NO GO' plug gauge is the size of the maximum limit of the hole. 'GO' for snap gauge corresponds to maximum limit of the shaft and 'NO GO' to minimum limit of the shaft.

• As GO gauge assembles with mating component, it should check number of dimensions, including errors of form such as straightness, roundness,

MODEL ANSWER

SUMMER-17 EXAMINATION

Subject Title: Quality control and Inspection

Subject Code: 1

MODEL ANSWER

SUMMER-17 EXAMINATION

Subject Title: Quality control and Inspection

Subject Code: 1

	3. Poster displays in work area [These can be of a general nature of showing	
	"Why to do it better" or "How to do it better".]	
	4. Quality slogans and	
	5. Increased suggestion awards for quality improvement	
2	suggestions,	2 4 0
3	Attempt any two	
3.a	inspection planning	Necessity -4IVI
	1.Selection of type for different stages in production flow	(any two)
	2. Planning inspection operations in details.	
	3. Designing the station and inspection to take place.	
	4. Providing inspectors with the inspection specification , gauages,	
	tools, test equipment and other information necessary for inspection.	
	It is performed by considering following points:	
	it is performed by considering following points.	
	What is inspect	
	1. Dimension governing fits should be checked in piece part prior to assembly. Inspection planning includes determining how a certain dimension is to be gauged so that proper gauges can be ordered and procedure ,prior to stat of manufacture	
	2. Where raw materials, compomnents, sub assembly are purchased at least an idenficating the type of inspections is made by the receiving inspector.	
	3. Where appropriate, electrical characteristics of such components as resistors, condensers and vacuum tube should be determine as to acceptability prior to assembly.	
	when to inspect	
	1. Purchase parts and raw material should be inspected when received, prior to being ware house stocked out send directly to assembly.	
	2. While a job is running it is advisable to make occasional check by means of part inspection or operator inspection.	
	3.Ehen a die ,mold or tool is being setup first part should be inspected and OK run should be given when the first parts are proved to meat requirement	
	4. Dies, tools or mold going into storage should be tagged with their status.	

SUMMER-17 EXAMINATION

Subject Title: Quality control and Inspection

Subject Code: 17555

 <u>Where to inspect</u>	
1.Receiving inspection should be located at the receiving when in such a manner that the part must pass through a receiving and inspection room before being moved in storage	
2. Patrol inspection by its nature requires the inspector ty to call periodically at the machine for the parts to be checked.	
3. Precisions measurement is located in air condition rooms.	
4. Proper factory layouts permits area should be located so that work entering finished parts stores will have to pass through the acceptance inspection area	
• <u>how much to inspection</u>	
1. The amount of inspection needed to decide the acceptability of a lt.go for the either 100% inspection or as per sampling plan.	
2. The actual amount of inspection needed is governed mainly by the amount of prior knolled avainable as to the quality and specially as to the homogeneity of the lot	
3. In some case 100% inspection of each of the items may be necessary to attained the control desired.	
In 100% inspection all of the items are checked for the characteietsic being measured .In sampling inspection, on the other hand does not involve a check of each item.	
• <u>How to inspect;</u>	
1. Inspection is carried out by means of suitable inspection device capable of measuring the characteristics desired .These surface finish, ductility, Colour, shrinkage, viscosity, operating characterizes and many others.	
2.mnay of the inspection device are referred to as gauges .these may be used for checking the actual dimension against the standard .These are the fixed gauges(GO- NOO10 guages,ring gauges, plug gauges)and the indicating gauges(Micrometer, Dial indicators, Vernier calipers)	
3. The surface analysis and priilmometer are two instruments widely used for measuring surface smoothness.	
4. Industrial radiography, Ultrasonic magnetic particle inspection all are	

MODEL ANSWER

SUMMER-17 EXAMINATION

Subject Title: Quality control and Inspection

Subject Code: 1

	recent development that have found extensive application in the inspection of defects in the interior or surface of metals.	
3.b	CLASSIFICATION OF LEAKS:	2 m-Classification
	(1) REAL LEAK: It is an essentially localized leak that is a discrete passage through which fluid make flow.	
	(2) Virtual leak: it is leak that involves gradual distortion from surface or components within a vacuum system.	
	Leak test under fluid pressure:	Procedure-4M
	Procedure:	Importance-2m
	 Leak refers to an actual discontinuity or passage through which a fluid flows or permeates. The welded vessel, after closing all its outlets; is subjected to internal pressure using water, oil, air or gas (e.g. CO2), Hydraulic pressure, using water as the fluid, is the usual medium employed in this test. Oil if it is thin/hot will penetrate leaks that do not show up with water under equal pressure. Air will leak out more readily than water and gas (e.g. Hydrogen) will escape where air will not. Where feasible, it is better to use water or oil because there will be very less tendency for the parts to be violently thrown out in case of a sudden release of pressure. When using air/gas, failure of vessel can cause injuries to persons around. 	
	 Importance Leak testing is the determination of the rate at which a liquid or gas will penetrate from inside a tight component or assembly to the outside as a result of pressure differential between the two regions. To test welded pressure vessels, tanks and pipelines to determine if leaks are present. Absolute tightness of all the welded joints can be tested this way. 	
3.c	(i) Principle of Operation:	3 mark-principal
	Converts electrical energy to mechanical energy. A quartz crystal is used for	

MODEL ANSWER

SUMMER-17 EXAMINATION

Subject Title: Quality control and Inspection

Subject Code:

the purpose.	procedure: 3m
- When a high frequency alternating electric current (of about 1 million	
cycles per second) is impressed across tile faces of the quartz crystal, the	adv-1m
crystal will expand during the first half of the cycle and contract when the	disady-1m
Electric field is reversed. In this manner the mechanical vibrations (sound	
waves) arc produced in the crystal.	
- The surface of job to be inspected by ultrasonic is made fairly smooth	
either by machining or otherwise so that ultrasonic waves can be efficiently	
transmitted from the probe into the job and even small defects can be	
detected properly.	
- Ultrasonic inspection employs separate probes (or search units), one for	
transmitting the waves and other to receive them after passage through the	
welded jobs alternatively, since the ultrasonic waves are transmitted as a	
series of intermittent pulses, the same crystals may be employed both as	
the transmitter and receiver (Fig.)	
(ii) testing standard and procedure:	
- Before transmitting ultrasonic waves, an oil film is provided between the	
probe and the job surface	
- For operation, ultrasonic wave is introduced into the metal and the time	
interval between transmission of the outgoing-and reception of the	
incoming signals is measured with a cathode ray oscilloscope (CRO).	
- The time base of CRO is so adjusted that the full width of the trace	
represents the section being examined.	
- To start with, as the wave is sent from the transmitter probe, it strikes the	
upper surface of the job and makes a sharp (peak) or pip (echo) at the left	
hand side of the CRO screen (Fig.). If the job is sound, this wave will strike	
the bottom surface of the same (Fig.), get reflected and indicated by a pip	
towards the right-hand end of CRO screen.	

MODEL ANSWER

SUMMER-17 EXAMINATION

Subject Title: Quality control and Inspection

Subject Code: 17555

MODEL ANSWER

SUMMER-17 EXAMINATION

Subject Title: Quality control and Inspection

Subject Code:

	configurations.	
4	Attempt any two	2 x 8
4.a	EDDY CURRENT TESTING Principle of Operation An A.C. coil is brought up close to the weldment to be tested. The A.c. Coil induces eddy currents in the welded object. These eddy currents produce their own magnetic field which opposes the field of the A.C. coil. The result is an increase in the impedance (resistance) of the A.c. Coil. Coil impedance can be measured. If there is a flaw in the weldment, as soon as the coil passes over the flow, there is a change in the coil impedance which can be wired to give a warning light or sound and thus the flaw and its location can be determined. Flaws Indicated Flaws at or close to the surface such as cracks, weld porosity, poor fusion or any linear discontinuity can be detected.	4mark-principle 4mark application. (any four point) 1mark-1 point
	Coil Test piece Crack Eddy-current flow	
	 (A) Probe-type coil APPLICATION: 1. It can be applied to round, flat and irregularity shaped object. 2. Eddy current testing can be conducted successfully employed for online 	
	 testing wires, rodes and tubes. 3. It can be useful setting material mesurement and control of dimension of tube, sheet an rods. 4. Different varible like conductivity, hardness strenght, dimension and heat treatment variable discontinuties, coating thickness can be removed by eddy current testing. 	

MODEL ANSWER

SUMMER-17 EXAMINATION

Subject Title: Quality control and Inspection

Subject Code:

Purpose of bend test:		purpose-2m
Bend tests may be used to find a number o	f weld properties such as	free bend test -3m
(i) Ductility of the welded zone		guided bend test -3m
(ii) Weld penetration		
(iii) Fusion		
(iv) Crystalline structure (of the fractured st	urface)	
(v) Strength.		
-The bend test assists in determining the s	oundness of the weld met	al, the
weld junction and the heat -affected zone.		
- The test shows the quality of the welded i	oint.	
-Any cracking of the metal will indic	ate false fusion or def	ective
penetration.		
Free Bend Test		
- Free bend test determines the ductility of	weld metal.	
- Free bend test may be conducted on a t	tensile testing machine or	a vise
capable of exerting a sufficiently large com	pressive force.	
- For bend test, the test pieces are cut fro	m the plate so as to inclu	de the
weld as shown in Fig. The top of the weld i	ς	
ground or machined so that it becomes flus	sh with the base metal' surf	ace
The second s	CIT 1 PERSONNER PROVIDENT	
GRINDING OR MACHIN- ING MARKS SHOULD RUN ACROSS THE WELD Preparation of Free Bend Specimen	3min R=01 WW-15T 2 3min 2 REINFORCEMENT TO ACHINED FLUSH WITH E METAL	Γmα x
riepuration of free bena specimen.		
DIMENSIONS OF TEST SPECIMEN (m	welded joint. Any crack	ada
DIMENSIONS OF TEST SPECIMEN (m T 10 20	m) 25 40	50
DIMENSIONS OF TEST SPECIMEN (m T 10 20 W 15 30	m) 25 40 38 60	50 75
DIMENSIONS OF TEST SPECIMEN (m T 10 20 W 15 30 L, Min 200 275	m) 25 40 38 60 300 375	50 75 450

MODEL ANSWER

SUMMER-17 EXAMINATION

Subject Title: Quality control and Inspection

Subject Code: 17

MODEL ANSWER

SUMMER-17 EXAMINATION

Subject Title: Quality control and Inspection

Subject Code: 17

SUMMER-17 EXAMINATION

Subject Title: Quality control and Inspection

Subject Code:

penetrate from inside a tight component or assembly to the outside as a result of pressure differential between the two regions	
Purpose:	
To test welded pressure vessels, tanks and pipelines to determine if leaks are present. Absolute tightness of all the welded joints can be tested this	
way	
Procedure:	
The welded vessel, after closing all its outlets; is subjected to internal	
pressure using water, oil, air or gas (e.g. CO2),	
Hydraulic pressure, using water as the fluid, is the usual medium employed in this test.	
Oil if it is thin/hot will penetrate leaks that do not show up with water under equal pressure.	
Air will leak out more readily than water and gas (e.g. Hydrogen) will escape where air will not	
Where feasible, it is better to use water or oil because there will be very	
less tendency for the parts to be violently thrown out in case of a sudden	
release of pressure. When using air/gas, failure of vessel can cause injuries	
to persons around	
Major provisions made in ASME CODES.	
······································	
Division 1 provides requirements applicable to the design, fabrication, inspection, testing, and certification of pressure vessels operating at either internal or external pressures exceeding 15 psig. Specific requirements apply to several classes of material used in pressure vessel construction, and also to fabrication methods such as welding, forging and brazing.	
Division 1 contains mandatory and non-mandatory appendices detailing supplementary design criteria, nondestructive examination and inspection acceptance standards. Rules pertaining to the use of the single ASME certification mark with the U, UM and UV designators are also included.	
Division 2 requirements on materials, design, and nondestructive	
design stress intensify values are permitted. Pules pertaining to the	
use of the single ASME certification mark with the U2 and UV	
designators are also included	
Division 3 requirements are applicable to pressure vessels operating at	
either internal or external pressures generally above 10 000 psi Rules	
pertaining to the use of the single ASME certification mark with the	
pertaining to the use of the single ASML certification mark with the	

SUMMER- 17 EXAMINATION

Subject Title: Quality control and Inspection

Subject Code: 17555

os, o vs und obs designator are a	nso monucu.	
ASME codes & standards for pressure	vessels.	
Division 1:		
 5 Standards from the B1 Serie 	es on screw threads	
 13 Standards from the B16 Se 	ries on pipe flanges and fittings	
 9 Standards from the B18 Seri 	ies on hex bolts	
 B36.10M — Welded and Sean 	nless Wrought Steel Pipe	
 B36.19M — Stainless Steel Pip 	be	
 NQA-1 — Quality Assurance Facilities 	e Program Requirements for Nuclear	
 PCC-1 — Guidelines for Pre Assembly 	essure Boundary Bolted Flange Joint	
• PCC-2 — Repair of Pressure Ed	quipment and Piping	
• PTC 25 — Pressure Relief Dev	ices	
• QAI-1 — Qualifications for Au	thorized Inspection	
Division 2:		
API 579-1/ASME FFS-1 — Fitn	ess-For-Service	
• 3 Standards from the B1 Serie	es on screw threads	
 9 Standards from the B16 Seri 	ies on pipe flanges and fittings	
• 4 Standards from the B18 Seri	ies on hex bolts	
 B36.10M — Welded and Sean 	nless Wrought Steel Pipe	
 B36.19M — Stainless Steel Pip 	be	
 NQA-1 — Quality Assurance Facilities 	e Program Requirements for Nuclear	
PCC-1 — Guidelines for Pre	essure Boundary Bolted Flange Joint	
Assembly		
PTC 25 — Pressure Relief Dev	ices	
 QAI-1 — Qualifications for Au 	thorized Inspection	
Division 3:		
API 579-1/ASME FFS-1 — Fitn	ess-For-Service	
• 3 Standards from the B1 Serie	s on screw threads	
• 4 Standards from the B16 Seri	ies on pipe flanges and fittings	
• 7 Standards from the B18 Seri	ies on hex bolts	
 B36.10M — Welded and Sean 	nless Wrought Steel Pipe	
• B46.1 — Surface Texture (Surf	face Roughness, Waviness and Lay)	
PTC 25 — Pressure Relief	Devices	
NOTE:		
Any other provisions rather than this a	are acceptable.	
Attompt any two		2 2 0

SUMMER-17 EXAMINATION

Subject Title: Quality control and Inspection

Subject Code:

5.a	DIN: Deutsches Institute for Normung	DIN -4m
		IBR-4M
	DIN stands for "Deutsches Institut für Normung", meaning "German	
	institute for standardisation". DIN standards that begin with "DIN V"	
	("Vornorm", meaning "pre-issue") are the result of standardization work,	
	but because of certain reservations on the content or because of the	
	divergent compared to a standard installation procedure of DIN, they are	
	not yet published standards.	
	DIN: 86041-1:1996 Welding flanges-part-1.tanks& sea boxes,nominal	
	pressure 10& 16.	
	 DIN 2615-2:1992 	
	Steel butt-welding pipe fittings; tees for use at full service	
	pressure	
	• DIN 2616-1:1991	
	reduced pressure factor	
	 DIN 2616-2:1991 	
	Steel butt-welding pipe fittings; reducers for use at full service	
	pressure	
	DIN 2017:1991 Steel butt-welding nine fittings: caps	
	 DIN 2618:1968 	
	Butt welding steel fittings; welding saddles, nominal pressure	
	DIN 2619:1968	
	16	
	• DIN 2826:1994	
	Hose fittings with clamp unit for steam and hot water, DN 15	
	up to DN 50, up to 18 bar	
	 DIN 2848:2002 Flanged steel pipes and flanged steel or cast iron fittings with 	
	lining - PN 10, PN 25 and PN 40	
	• DIN 2856:1986	
	Capillary solder fittings; assembly dimensions and testing	
	DIN 2873:2002 Elanged fitting pipes and flanged steel glass lined - PN 10 and	
	PN 25	
	• DIN 2874:2002	
	Steel flanged pipes and steel and cast iron flanged fittings	

(ISO/IEC - 27001 - 2005 Certified)

MODEL ANSWER

SUMMER-17 EXAMINATION

Subject Title: Quality control and Inspection

Subject Code: 17555

lined with PTFE or PF **IBR : INDIAN BOILER REGULATION** REG 1 – Regulation 1 is set for short title, extents ,application and commencement REG 8 - set for use of welding \geq REG 7 - Boiler shells not in accordance with standard condition \geq REG 15 – Tensile test \geq Note: Other regulations are also considered. 5.b Concept-4m WELD BEAD compare -4m 10mm 10 mm MIN POLISHED AND ETCHED FACE Specimen for Etch test. THE ETCH TEST - An etch test involves inspecting the welded test specimen after polishing and etching the same with a chemical reagent e.g., a dilute acid. Types of - There are two types of etch tests, namely (i) Macro-etch examination, (ii) Micro-etch examination. Concept and Purpose (i) Macro-etch examination: After preparing the specimen by polishing and etching, it is examined either by the naked eye or by low power magnification up to X15. - Macro-examination gives a broad picture of the specimen by studying relatively large sectioned areas. - Macro-examination reveals in welded specimen (i) Cracks, (ii) Slag inclusion, (iii) Blowholes, (iv) Shrinkage porosity, (v) Penetration of the weld, (vi) The boundary between the weld metal and the base metal, etc. (ii) Micro-etch examination: After preparing the specimen by polishing and etching, it is examined under a microscope at magnifications from X20 to X2000. Micro-etch examination involves areas much smaller than those

SUMMER-17 EXAMINATION

Subject Title: Quality control and Inspection

Subject Code:

	considered in macro-etch examination	n and brings out information that can	
	never be revealed by macro-examinat	ion.	
	- Micro-examination determines in a	welded specimen	
	(i) Cracks and inclusions of microscop	ic size.	
	(ii) Grain boundaries and solidification	ition structures of weld metal, heat	
	affected zone and the base metal.		
	(iii) Distribution of micro-constituents	in the weld metal.	
	(iv) The quality of heat-treatment, etc	2.	
	Macro Etch test	Micro Etch Test	
	1. It is examined either by naked	1. It is examined under a	
	eye or by low power magnification	microscope at magnifications from	
	up to X15	magnification up to X20 to X2000	
	2. Macro-examination gives a	2. Micro-etch examination	
	broad picture of the specimen by	involves areas much smaller than	
	studying relatively large sectioned	those considered in macro-etch	
	areas	examination and brings out	
		information that can never be	
		revealed by macro-examination.	
	3. Macro-examination reveals in	3. Micro-examination determines	
	welded specimen: Cracks, Slag	in a welded specimen Cracks and	
	inclusion, Blowholes, Shrinkage	inclusions of microscopic size.	
	porosity, Penetration of the weld,	Grain boundaries and	
	The boundary between the weld	solidification structures of weld	
	metal and the base metal, etc.	metal, heat affected zone and the	
		base metal Distribution of	
		microconstituents	
		in the weld metal.	
		The quality of heat-treatment,	
		etc.	
5.c i	MPT is used for testing material which	can be easily magnetized	
	MPT required equipment is cheap and	d robust and can easily be handled by	PRINCIPAL-2M
	semiskilled personnel without requir	ing elaborate protection such as that	Flaws detected-2m
	needed for radiography.	scop –limitation-2m	
	(i) Principle:	sensitivity-2m	
	 When a specimen is magnet 	ized the magnetic lines of force are	
	periodically inside ferrous mag	gnetic material.	
	• The lines of magnetic flux	get intersection by a discontinuity	
	magnetic poles are induced ei	ther side of discontinuity.	
	When a magnetic particles a	re sprinkled unto the specimen these	
	particles are attendee by mag	netic poles to create visual indication	
	approximating the size and sh	ape of flux.	
	• The discontinuity causes an a	brupt change in the path of magnetic	

MODEL ANSWER

SUMMER-17 EXAMINATION

Subject Title: Quality control and Inspection

Subject Code: 17555

(ISO/IEC - 27001 - 2005 Certified)

MODEL ANSWER

SUMMER-17 EXAMINATION

Subject Title: Quality control and Inspection

Subject Code: 17555

Disadvantages of the Magnetic Particle method of Non-Destructive Examination are: • It is restricted to ferromagnetic materials - usually iron and steel, and cannot be used on austenitic stainless steel It is messy Most methods need a supply of electricity • It is sometimes unclear whether the magnetic field is sufficiently strong to give good indications • The method cannot be used if a thick paint coating is present • Spurious, or non-relevant indications, are probable, and thus interpretation is a skilled task • Some of the paints and particle suspension fluids can give a fume or fire problem, particularly in a confined space Books on the subject are: (iv) sensitivity: Maximum sensitivity of indication is obtained when the discontinuity lies in a direction normal to the applied magnetic field and when the strength of magnetic field is just enough to saturate the section being inspected 6 2 x 8 6.a principal-2m WELDMENT (i) safety -2m LEAD SHIELD application-2m TARGET FILM ELECTRON LEAD X-RAY HIGH FLOW disadvantages-2m BACKING ILAMENT lees AC LINE FILAMENT HEATING RHEOSTA TRANSFORMER Fig. 38 25. X-ray radiography. (I) Working principal: X rays are produced in X ray tube where cathode produce electron which move towards the anode. A part of K.E.is converted to energy of radiation

SUMMER-17 EXAMINATION

Subject Title: Quality control and Inspection

Subject Code:

		r
	on X rays.	
	1. The portion of weld metal where defects are to be suspected is exposed to X rays emitted from the tube.	
	2. X-rays are produced in X-ray tube were a cathode produced electrons which move towards anode. A part of K.E is converted to energy of rotation of x-rays	
	 A cassetle containing X ray film is place behind and in contact with weldment perpendicular to the rays 	
	 During expose X rays penetrated the welded object and thus affect welded X- ray film. 	
	5. The X- Ray photograph shows the existence of flaw, internal crack.Leak or any deformity with their exact location.	
	(ii) Safety precautions to be taken in X ray testing equipment:	
	Investigators shall ensure that there is a one-to-one correlation between stock vials or sources and	
	 Use appropriate personal protective clothing and equipment including gloves, gowns or lab coats, and eye protection. Use appropriate dosimeters 	
	 Practice contamination control at the point of administration, in CCM and in laboratories. Radiation Safety Handbook 	
	- Survey administration areas to identify contamination and promptly clean it up	
	 Handle sharps safely. Prevent puncture wounds from contaminated needles by recapping 	
	(iii) Applications	
	1. Pressure vessels and bollers.	
	3. Aircraft and ship structures.	
	(iv) Disadvantages of Radiography 1. Trained operator is required	
	2. The method involves radiation hazards.	
	3. Skilled worker is required.	
	4. Many safety precautions for the use of high intensity radiation.	
	5. Access to both sides of sample required.	
	6. Orientation of equipment and flaw can be critical.	
	7. Determining flaw depth is impossible without additional angled	
	exposures.	
	8. Expensive initial equipment cost	
6.b	THE TENSILE TEST	

MODEL ANSWER

SUMMER-17 EXAMINATION

Subject Title: Quality control and Inspection

Subject Code:

Preparation of Tes	t Specime	n						tensile test -4r
1. Transverse 7	Tensile To	est - U	Jsin	g Reduce	ed S	pecimen	boul seq-	all weld metal tes
		-I	Jsin	g Radius	Re	duced Sp	pecimen	
All-weld Metal Ter	nsile Test							
- A transverse Ten	sile Test s	pecimen	is cu	ut from a w	velde	ed butt joi	nt (at right	
angle to the weld	direction	Fig.) and	d is u	used to det	erm	ine its tra	nsverse	
tensile strength.								
-WE	D BEAD		-	ther bus (L -	W	-	
	+ 35	1968	-			T		
THROW AWAY	50mm	E	1	1		<u>e</u> <u>e</u>	E	
TENSILE TEST	T		4	NI	Lo-	-1-		
NICK BREAK	<			DAT LUS	Lo-	-		
FREE BEND	100					ACTUDE		
TENSILE		in A		-	1	RACTURE		
IMPACT TEST		11-4-5		H	1.1			
GUIDED BEND) +	1			6	•	PARE	
THROW AWAY	50 mm			1.		1	6.T	
- and a mark	4	V		F Lf				
Reduced transvers to give the tensile specimens (Fig.) c	se test spe strength o lo occasio mensions (m	cimens (of the we nally m) for Red	refe eldm uced	r Fig. and etal, but R 	Tabl adiu	e) are no s reduced	t intended	
Width	firinam -	Gauge	Ship	Minimum	109.00	Minimum	Total	
		Length		Parallel	00	Radius at	Length	
		2.5		Length		Shoulder		
		Lo		L_P		r	L	
b			118		1126.1		- Second	
b	terres fran	1111					and the second se	
b Plate thickness but		50		60		25	200	
b Plate thickness but not less than 25	10201010 50 31	50 100		60 110		25 25	200 300	

MODEL ANSWER

SUMMER-17 EXAMINATION

Subject Title: Quality control and Inspection

Subject Code: 1

MODEL ANSWER

SUMMER-17 EXAMINATION

Subject Title: Quality control and Inspection

Subject Code: 1

MODEL ANSWER

SUMMER-17 EXAMINATION

Subject Title: Quality control and Inspection

Subject Code: 1

SUMMER-17 EXAMINATION

Subject Title: Quality control and Inspection

Subject Code:

