

# SUMMER – 17 EXAMINATIONS

# Subject Code: 17553

#### Model Answer

Page No: / N

**Important Instructions to examiners:** 

1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme.

2) The model answer and the answer written by candidate may vary but the examiner may try to assess the understanding level of the candidate.

3) The language errors such as grammatical, spelling errors should not be given more importance. (Not applicable for subject English and Communication Skills)

4) While assessing figures, examiner may give credit for principal components indicated in the figure. The figures drawn by candidate and model answer may vary. The examiner may give credit for any equivalent figure drawn.

5) Credits may be given step wise for numerical problems. In some cases, the assumed constant values may vary and there may be some difference in the candidate's answers and model answer.

6) In case of some questions credit may be given by judgment on part of examiner of relevant answer based on candidate's understanding.

7) For programming language papers, credit may be given to any other program based on equivalent concept.



| Q.<br>NO. | MODEL ANSWER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | MARKS                                              | TOTAL<br>MARKS |
|-----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|----------------|
| 1         | Attempt any FIVE of the following:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                    | 5X4=20         |
| 1<br>a    | Attempt any FIVE of the following:The general procedure of machine design is as follows:1. Recognition of need: First of all, make a complete statement of the<br>problem, indicating the need, aim or purpose for which the machine<br>is to be designed.2. Synthesis (Mechanisms): Select the possible mechanism or group<br>of mechanisms which will give the desired motion.3. Analysis of forces: Find the forces acting on each member of the<br>machine and the energy transmitted by each member.4. Material selection: Select the material best suited for each member<br>of the machine.5. Design of elements (Size and Stresses):Find the size of each<br>member of the machine by considering the force acting on the<br>member and the permissible stresses for the material used. It should<br>be kept in mind that each member should not deflect or deform than<br>the permissible limit.6. Modification: Modify the size of the member to agree with the past<br> | 1/2<br>mark<br>each for<br>each<br>step<br>points. | 5X4=20<br>4M   |
| b         | Standard Sizes of Transmission ShaftsThe standard sizes of transmission shafts are :25 mm to 60 mm with 5 mm steps;60 mm to 110 mm with 10 mm steps;110 mm with 15 mm steps; and140 mm to 500 mm with 20 mm steps.The standard length of the shafts are 5 m, 6 m and 7 m]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 01 mark<br>each for<br>each<br>size any<br>4       | 04<br>marks    |
| с         | Following are the types:-<br>1)Butt joint<br>2) Corner joint<br>3)edge joint<br>4)Lap joint<br>5) tee joint                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2m<br>Any 2<br>name                                | 4m             |











| e | in the president in all the second is the second of the second of the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 04 m<br>Any 4 | 4m |
|---|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|----|
|   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |               |    |
|   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |               |    |
|   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |               |    |
|   | 15.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |    |
|   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |               |    |
|   | the state of the second of the property of the second |               |    |
|   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |               |    |
|   | HEAD (B) PAN (C) PAN HEAD WITH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |               |    |
|   | HAPERED NECK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |               |    |
|   | Tor Tr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |               |    |
|   | 150 150                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |               |    |
|   | 60°                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |    |
|   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |               |    |
|   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |               |    |
|   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |               |    |
|   | (D) ROUND COUNTER (E) COUNTER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |               |    |
|   | SUNK HEAD HEAD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |               |    |
|   | RIVET HEADS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |               |    |
| f | Perfect frame :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2m            | 4m |
|   | A pin-jointed frame which has got just sufficient number of members<br>to resist the loads without undergoing appreciable deformation in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |               |    |
|   | shape is called rigid or perfect frame. The perfect frame obeys the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |    |
|   | following condition viz.<br>n = 2 i = 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |               |    |
|   | where, $n = no.$ of links and $j = no.$ of joints                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |               |    |
|   | Ductility:-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2m            |    |
|   | this the property of material by virtue of which it can be drawn into<br>thin wires. Eg:- Alluminum, Copper etc.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |               |    |
| g | Factor of Safety                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2 marks       | 4m |
|   | It is defined, in general, as the ratio of the maximum stress to the working stress. Mathematically                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |    |
|   | sucss. manematically,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |               |    |
|   | Factor of safety = Maximum stress / Working or design stress<br>In case of ductile materials e.g. mild steel, where the yield point is                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |               |    |
|   | clearly defined, the factor of safety is based upon the yield point stress. In                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |               |    |
|   | such cases.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |               |    |









| b. |                                                                                                                                                                            | 4m     | 8m     |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|--------|
|    | Diagtic Prezion E E                                                                                                                                                        | Dia    |        |
|    | Plastic Region 1                                                                                                                                                           |        |        |
|    | B D                                                                                                                                                                        |        |        |
|    | Ultimate Stress                                                                                                                                                            |        |        |
|    | A Vield Point Fracture Point                                                                                                                                               |        |        |
|    |                                                                                                                                                                            |        |        |
|    | Stress                                                                                                                                                                     |        |        |
|    |                                                                                                                                                                            |        |        |
|    | Flastic Region                                                                                                                                                             |        |        |
|    | Linsue Region                                                                                                                                                              |        |        |
|    | V                                                                                                                                                                          |        |        |
|    | Strain>                                                                                                                                                                    |        |        |
|    |                                                                                                                                                                            |        |        |
|    | A. Proportional limit: Hooke's law holds good up to point A and it is known                                                                                                |        |        |
|    | as proportional limit. It is defined as that stress at which the stress-strain                                                                                             |        |        |
|    | Curve begins to deviate from the straight<br>P. Electic limit: The material has electic properties up to the point P. This                                                 | 4m     |        |
|    | <b>B.</b> Elastic limit. The material has elastic properties up to the point <b>B</b> . This point is known as elastic limit. It is defined as the stress developed in the |        |        |
|    | material without any permanent set                                                                                                                                         |        |        |
|    | C & D. Yeild Point: There are two yield points C and D. The points C and                                                                                                   |        |        |
|    | D are called the upper and lower yield points respectively.                                                                                                                |        |        |
|    | E. Ultimate stress: At E, the stress, which attains its maximum value is                                                                                                   |        |        |
|    | known as ultimate stress.                                                                                                                                                  |        |        |
|    | F. Breaking strength: Failure is complete                                                                                                                                  | 4      |        |
| с  | Advantages:-                                                                                                                                                               | 4m     | 08<br> |
|    | 1. The welded structures are usually lighter than riveted structures.                                                                                                      |        | тагкя  |
|    | This is due to the reason that in welding, gussets or other connecting                                                                                                     | (any4) |        |
|    | components are not used.                                                                                                                                                   |        |        |
|    | 2. The welded joints provide maximum efficiency (may be 100%)                                                                                                              |        |        |
|    | which is not possible in case of riveled joints.                                                                                                                           |        |        |
|    | 5. Alterations and additions can be easily made in the existing                                                                                                            |        |        |
|    | A As the welded structure is smooth in appearance, therefore it looks                                                                                                      |        |        |
|    | 4. As the welded structure is smooth in appearance, therefore it looks                                                                                                     |        |        |
|    | 5 In welded connections, the tension members are not weakened as                                                                                                           |        |        |
|    | in the case of riveted joints                                                                                                                                              |        |        |
|    | 6 A welded joint has a great strength Often a welded joint has the                                                                                                         |        |        |
|    | strength of the parent metal itself                                                                                                                                        |        |        |
|    | 7. Sometimes, the members are of such a shape (i.e. circular steel                                                                                                         |        |        |
|    | pipe) that they afford difficulty for riveting. But they can be easily                                                                                                     |        |        |
|    | welded.                                                                                                                                                                    |        |        |
|    | 8. The welding provides very rigid joints. This is in line with the                                                                                                        |        |        |
|    | modern trend of providing rigid frames.                                                                                                                                    |        |        |
|    | 9. It is possible to weld any part of a structure at any point. But                                                                                                        |        |        |



| <ul> <li>riveting requires enough clearance.</li> <li>10. The process of welding takes less time than the riveting.</li> <li><b>Disadvantages:</b>-</li> <li>1.Since there is an uneven heating and cooling during fabrication, therefore the member may get distorted or additional stresses may develop.</li> <li>2. It requires a highly skilled labour and supervision.</li> <li>3. Since no provision is kept for expansion and contraction in the frame, therefore there is a possibility of cracks developing in it.</li> <li>4. The inspection of welding work is more difficult than riveting work.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 4m<br>(any4)                                                 |        |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|--------|
| 3. Attempt any TWO of the following:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                              | 2X8=16 |
| a<br>a<br>b d deametry of the following:<br>a<br>b d deametry of the following:<br>c b c = c b e = k Abe = qs <sup>0</sup><br>I soluting Joint <<br>For thing Ch=0 Taking Ch=0<br>For total<br>Taking Ch=0 Taking Ch=0<br>For total<br>For total | 2m for<br>each<br>isolating<br>joint<br>and 2 m<br>for table | 08m    |



|    |                                                                                                                                                                                                                                                                        | n                        | n  |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|----|
| b  | The following procedure is adopted for the design of circumferential lap                                                                                                                                                                                               |                          | 8m |
|    | 1. Thickness of the shell and diameter of rivets: The thickness of the boiler                                                                                                                                                                                          | 01 mark                  |    |
|    | shell and the diameter of the river will be same as for longitudinal joint.                                                                                                                                                                                            | 01 11011                 |    |
|    | 2. Number of rivets:                                                                                                                                                                                                                                                   | 01 mark                  |    |
|    | T<br>Chrosendra jain darbe stream<br>lip jain (lip son)                                                                                                                                                                                                                | 01 mark<br>for<br>figure |    |
|    |                                                                                                                                                                                                                                                                        | 01 mark                  |    |
|    | Since it is a lap joint, therefore the rivets will be in single shear.<br>Shearing resistance of the rivets,<br>$P = n x \pi/4 x d^2 x T$ (i)                                                                                                                          | 01 mark                  |    |
|    | Where $n = Total$ number of rivets.                                                                                                                                                                                                                                    | 01 mark                  |    |
|    | Knowing the inner diameter of the boiler shell (D), and the pressure of steam (P) the total shearing load acting on the circumferential joint,<br>$W_s = \pi/4 \times D^2 \times P$ (ii)                                                                               |                          |    |
|    | From equations (1) and (11), we get<br>$\mathbf{n} \times \frac{\pi}{4} \times \frac{d^2}{4} \times T = \frac{\pi}{4} \times D^2 \times P$                                                                                                                             | 01 mort                  |    |
|    | $n = (D/d)^2 x (P/T)$                                                                                                                                                                                                                                                  | 01 mark                  |    |
|    | 3. Pitch of rivets: If the efficiency of the longitudinal joint is known, then the efficiency of the circumferential joint may be obtained. It is generally taken as 50% of tearing efficiency in longitudinal joint, but if more than                                 | 01 mark                  |    |
|    | one circumferential joint is used, then it is 62% for the intermediate joints.<br>Knowing the efficiency of the circumferential lap joint ( $\eta_c$ ),the pitch of the rivets for the lap joint ( $P_1$ ) may be obtained by using the relation:<br>$n = (P_1-d)/P_1$ | 01 mark                  |    |
|    | 5.Number of rows: The number of rows of rivets for the circumferential                                                                                                                                                                                                 |                          |    |
|    | joint may be obtained from the following relation:                                                                                                                                                                                                                     |                          |    |
|    | Number of rows = Total number of rivets/Number of rivets in one row                                                                                                                                                                                                    |                          |    |
|    | and the number of rivets in one row $=\pi(D + t)/P_1$                                                                                                                                                                                                                  |                          |    |
| Ci | where $D =$ inner diameter of shell.<br>Stress Concentration                                                                                                                                                                                                           | 2m                       |    |
|    | Whenever a machine component changes the shape of its cross-section.                                                                                                                                                                                                   | 2111                     |    |
|    | the simple stress distribution no longer holds good and the neighbourhood                                                                                                                                                                                              |                          |    |
|    | of the discontinuity is different. This irregularity in the stress distribution                                                                                                                                                                                        |                          |    |
|    | caused by abrupt changes of form is called stress concentration. It occurs                                                                                                                                                                                             |                          |    |
|    | tor all kinds of stresses in the presence of fillets, notches, holes, keyways,                                                                                                                                                                                         |                          |    |
|    | spines, surface roughness etc.                                                                                                                                                                                                                                         |                          |    |
|    | 1) By fillets undersutting & notshes                                                                                                                                                                                                                                   |                          |    |
|    | 1) By mices, undercutting & notches                                                                                                                                                                                                                                    |                          |    |







| 4. | Attempt any TWO of the following:                                      |    | 2X8=16 |
|----|------------------------------------------------------------------------|----|--------|
| а  | Method of section is preferred over method of joints when only         | 2m | 8m     |
|    | fewer member of the entire truss are required to be determined.        |    |        |
|    | The Method of Sections:-                                               |    |        |
|    | In the method of sections, a frame is divided into two parts by taking | 2  |        |
|    | an imaginary "cut" (shown here as a-a) through the frame. Since        | 2m |        |
|    | frame members are subjected to only tensile or compressive forces      |    |        |
|    | along their length, the internal forces at the cut member will also be |    |        |
|    | either tensile or compressive with the same magnitude. This result is  |    |        |
|    | based on the equilibrium principle and Newton's third law.             |    |        |
|    | Steps for Analysis                                                     | 4m |        |
|    | 1. Decide how you need to "cut" the frame. This is based on:           |    |        |
|    | a) where you need to determine forces, and, b) where the total         |    |        |
|    | number of unknowns does not exceed three (in general).                 |    |        |
|    | 2. Decide which side of the cut frame will be easier to work           |    |        |
|    | with(minimize the number of forces you have to find).                  |    |        |
|    | 3. If required, determine the necessary support reactions by drawing   |    |        |
|    | the FBD of the entire frame and applying the E-of-E.                   |    |        |
|    | 4.Draw the FBD of the selected part of the cut truss. You need to      |    |        |
|    | indicate the unknown forces at the cut members. Initially we assume    |    |        |
|    | all the members are in tension, as we did when using the method of     |    |        |
|    | joints. Upon solving, if the answer is positive, the member is in      |    |        |
|    | tension as per your assumption. If the answer is negative, the member  |    |        |
|    | must be in compression. (Please note that you can also assume forces   |    |        |
|    | to be either in tension or compression by inspection as was done in    |    |        |
|    | the figures above.)                                                    |    |        |
|    | 5. Apply the E-OI-E to the selected cut section of the truss to solve  |    |        |
|    | for the unknown member forces. Note that in most cases it is possible  |    |        |
|    | to write one equation to solve for one unknown                         |    |        |
|    | direcuy.                                                               |    |        |
|    |                                                                        |    | l l    |



| Let. T= Torque Transmitted by shaft .                                                                            |    |  |
|------------------------------------------------------------------------------------------------------------------|----|--|
| the transmitted of older t                                                                                       |    |  |
| F = Tankenhal force acting at the circumberance of other                                                         |    |  |
| d = diameter of Shaft                                                                                            |    |  |
| 1 - length of bey                                                                                                |    |  |
| w = width of bey                                                                                                 |    |  |
| t = thickness of key                                                                                             |    |  |
| T + like = Permissible schear 4 crushing stream for key                                                          | 2m |  |
| Considering shear failum of key                                                                                  |    |  |
| Torque Transmitted                                                                                               |    |  |
| T= Fx d                                                                                                          |    |  |
| T= Jxwx Txd                                                                                                      |    |  |
| From this equation at the length of bey I can be                                                                 | 2m |  |
| de termine d                                                                                                     |    |  |
| anordering crushing failure of bey                                                                               |    |  |
| here Tangeutal Crushing Force                                                                                    |    |  |
| F= Jx f x box                                                                                                    | 1m |  |
| Torous Tologramitted                                                                                             |    |  |
| T Ca d                                                                                                           |    |  |
| 1= KA 4                                                                                                          |    |  |
| T= JX = K (KX = )                                                                                                |    |  |
| From this equation the length of bey I can be determined                                                         |    |  |
| alter this collect the larker value of key                                                                       |    |  |
| ay d                                                                                                             |    |  |
|                                                                                                                  |    |  |
|                                                                                                                  |    |  |
| and the second |    |  |



|   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | I                               |    |
|---|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|----|
| C | In designing such joints, it is assumed that the fluid pressure acts in<br>between the flanges and tends to separate them with a pressure<br>existing at the point of leaking. The bolts are required to take up<br>tensile stress in order to keep the flanges together.<br>1) The effective diameter on which the fluid pressure acts, just at<br>the point of<br>leaking, is the diameter of a circle touching the bolt holes. Let this<br>diameter<br>be D 1. If d1 is the diameter of bolt holeandDp is the pitch circle<br>diameter,<br>then<br>D1 = Dp-d1<br>2) Force trying to separate the two flanges,<br>Pipes and PJpe Joints<br>$F=\pi/4(D1)2 \times P$ (i)<br>Let n = Number of bolts,<br>dc = Core diameter of the bolts, and<br>ot = Permissible stress for the material of the bolts.<br>Resistance to tearing of bolts<br>$= \pi/4 \times (dc)2x n(ii)$<br>3) Assuming the value of dc the value of n may be obtained<br>from equations (i)<br>and (ii). The number of bolts should be even because of the<br>symmetry of<br>the section.<br>4) The circumferential pitch of the bolts is given by<br>$P = (\pi Dp)/n$ | 02<br>marks<br>For each<br>step | 8m |
|   | $P = (\pi Dp)/n$ 5) In order to make the joint leakproof, the value of Pc should                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                 |    |
|   | be between<br>$20 \sqrt{d1}$ to $30 \sqrt{d1}$ :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                 |    |
|   | 20 val 10 50 val.,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                 |    |
|   | where di is the diameter of the bolt hole. Also a bolt of less than 16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                 |    |
|   | mm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                 |    |
|   | diameter should never be used                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                 |    |









| b    | A. 5.4.1                                                                                                                                | 2m for | 8m |
|------|-----------------------------------------------------------------------------------------------------------------------------------------|--------|----|
|      |                                                                                                                                         | each   |    |
|      | Given                                                                                                                                   | step   |    |
|      | w=75mm, t=10mm S=10mm                                                                                                                   |        |    |
|      | 6t=70 N/mm² 7=50 N/mm²-                                                                                                                 |        |    |
|      | W = SSEN = SS XIOUN                                                                                                                     |        |    |
|      | 1) To Find effective length of weld                                                                                                     |        |    |
|      | d1 = Width - 18.5                                                                                                                       |        |    |
|      | = 75-12.5                                                                                                                               |        |    |
|      | $\left[ J_{1} = 6d.5 \text{ mm} \right]$                                                                                                |        |    |
|      | 2) I and Coaried by and                                                                                                                 |        |    |
|      | W1 = 0.707 × S× d1× d1                                                                                                                  |        |    |
|      | = 0.707 × 10× 61.5× 70                                                                                                                  |        |    |
|      | W1 = 30-33 ×103 N                                                                                                                       |        |    |
|      | 3) load Carried by Double Parallel weld                                                                                                 |        |    |
|      | W2 = 2×0707× SX d2× T                                                                                                                   |        |    |
|      | = dx 0.707 x 10 x dex 50                                                                                                                |        |    |
|      | 1 W2= 707 d2 1 N                                                                                                                        |        |    |
|      | 4) we know that                                                                                                                         |        |    |
|      | $W = W_1 + W_2$                                                                                                                         |        |    |
|      | 55×103 = 30 33×103 + 707 J2_                                                                                                            |        |    |
|      | = 55×10 <sup>4</sup> - 30. 83×10 <sup>3</sup> = 707 Ja                                                                                  |        |    |
|      | ( dr = 34.04 mm)                                                                                                                        |        |    |
|      | For starting & company well men in a                                                                                                    |        |    |
|      | or i colling of all some is man is added                                                                                                |        |    |
|      | - dr = 39.09 + 12.5                                                                                                                     |        |    |
|      | ( dz = 46.59 mm)                                                                                                                        |        |    |
|      |                                                                                                                                         |        |    |
| C i) | •Keyway is a slot machined either on the shaft or in the hub to                                                                         | 04     |    |
|      | accommodate the key.                                                                                                                    | marks  |    |
|      | • It is cut by vertical or horizontal milling cutter.                                                                                   |        |    |
|      | • The keyway cut into the shaft reduces the load carrying capacity of shaft.                                                            |        |    |
|      | • This is due to stress concentration near the comers of the keyway and                                                                 |        |    |
|      | reduction in the crosssectionalarea of shaft.                                                                                           |        |    |
|      | • In other words, the torsional strength of shaft is reduced.                                                                           |        |    |
|      | • The following relation of reduction factor is used to analyze the                                                                     |        |    |
|      | weakening effect of keyway is given by $\mathbf{n}$ . $\mathbf{r}$ . Moofe.<br>$\mathbf{e} = 1 - 0.2 \text{ (w/d)} - 1.1 \text{ (h/d)}$ |        |    |
|      | Where $e = \text{shaft strength factor} = \text{Strength of shaft with keyway/Strength}$                                                |        |    |
|      | Of shaft Wlithout keyway                                                                                                                |        |    |







| 6. | Attempt any FOUR of the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                    | 4X4=16                           |                               |    |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|----------------------------------|-------------------------------|----|
| a  | Stresses in Pipes:The stresses in pipes due to the internal fluid pressure are determined by Lame's equation.<br>1)According to Lame's equation, tangential stress at any radius x<br>$Gt = \{[p (ri)^2] / [(ro)^2 - (ri)^2] \} / \{1 + [(ro)^2 / x^2]\}$<br>2)And Radial stress at any radius x<br>$Gr = \{[p (ri)^2] / [(ro)^2 - (ri)^2] \} / \{1 - [(ro)^2 / x^2]\}$<br>where p = Internal fluid pressure in the pipe,<br>ri = Inner radius of the pipe, and<br>ro = Outer radius of the pipe                                                                                                                                                |                    |                                  |                               | 4m |
| Ъ  | 20<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | astle nut          | 0.2 d<br>1<br>0.15 d<br>Ring Nut | 2m for<br>any two<br>dia      | 4m |
|    | $ \begin{array}{c}                                     $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Screw<br>Drozo+2   |                                  | 2m for<br>expalina<br>tion of |    |
|    | Locking with Pin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Locking with Plate | Spring lock Washer               | that                          |    |
|    | <ol> <li>Jam Nut or lock nut. This is about one half or two third thickness of standard nut.</li> <li>Castle nut. It is a hexagonal nut with cylindrical upper part. This part is slotted in line with the centre of each face. A split pin is inserted through two slots in the nut and a hole in the bolt. This used in automobile industry.</li> <li>Sawn nut. It has a slot sawn half way through. After the nut is tightened, the small screw is screwed which produces more friction between the nut and the bolt preventing the loosening of the nut.</li> <li>Penn, ring or grooved nut. It has a upper hexagonal part and a</li> </ol> |                    |                                  |                               |    |



| lower cylindrical part. The bottom cylindrical portion is recessed to receive the tip of locking set screw.                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <b>5)Locking with pin.</b> The nuts are locked by means of taper pin or cotter pin.                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| <b>6)Locking with plate.</b> A plate or locking plate is used to lock the bolt.                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| <b>7)Spring lock washer.</b> As the nut is tightened, one edge of the washer will be digging itself in the that piece thus increasing the resistance so that the nut will not be loosened.                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Key is a machine element which is used to connect the transmission shaft to the rotating machine element like pulleys, gear, sprocket or flywheel. <b>Functions of key:-</b>                                                                                                                                                                                                                                                                                                                                                                           | 2m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 4m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| <ol> <li>The primary function of the key is to transmit the torque from the shaft to the hub of mating element and viceversa.</li> <li>The second function of the key is to prevent relative rotational motion between the shaft and the joined machine element like gearor pulley.</li> </ol>                                                                                                                                                                                                                                                         | 2m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 3) Sometimes key also prevents axial motion between two elements.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| <ol> <li>The load is distributed uniformly along the entire length of the weld.</li> <li>The stresses is spread over the effective section uniformly.</li> <li>Proper type of welded joints is used.</li> <li>Suitable stress concentration factors and factors of safety are employed for unknown factors.</li> </ol>                                                                                                                                                                                                                                 | 4m any<br>4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <b>4</b> m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| <ul> <li>Following are the general considerations in designing a machine component:</li> <li>Type of load and stresses caused by the load</li> <li>Motion of the parts or kinematics of the machine.</li> <li>Selection of materials</li> <li>Form and size of the parts</li> <li>Frictional resistance and lubrication.</li> <li>Convenient and economical features</li> <li>Use of standard parts</li> <li>Safety of operation</li> <li>Workshop facilities</li> <li>Number of machines to be manufactured</li> <li>Cost of construction.</li> </ul> | 4m<br>Any 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 4m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <ul> <li>lower cylindrical part. The bottom cylindrical portion is recessed to receive the tip of locking set screw.</li> <li>5)Locking with pin. The nuts are locked by means of taper pin or cotter pin.</li> <li>6)Locking with plate. A plate or locking plate is used to lock the bolt.</li> <li>7)Spring lock washer. As the nut is tightened, one edge of the washer will be digging itself in the that piece thus increasing the resistance so that the nut will not be loosened.</li> <li>Key is a machine element which is used to connect the transmission shaft to the rotating machine element like pulleys, gear, sprocket or flywheel.</li> <li>Functions of key:- <ol> <li>The primary function of the key is to transmit the torque from the shaft to the hub of mating element and viceversa.</li> <li>The second function of the key is to prevent relative rotational motion between the shaft and the joined machine element.</li> <li>The load is distributed uniformly along the entire length of the weld.</li> <li>The stresses is spread over the effective section uniformly.</li> <li>Proper type of welded joints is used.</li> <li>Suitable stress concentration factors and factors of safety are employed for unknown factors.</li> <li>Following are the general considerations in designing a machine component:</li> <li>Type of load and stresses caused by the load</li> <li>Motion of the parts or kinematics of the machine.</li> <li>Selection of materials</li> <li>Form and size of the parts</li> <li>Frictional resistance and lubrication.</li> <li>Convenient and economical features</li> <li>Use of standard parts</li> <li>Safety of operation</li> <li>Workshop facilities</li> <li>Number of machines to be manufactured</li> <li>Cost of construction.</li> </ol></li></ul> | lower cylindrical part. The bottom cylindrical portion is recessed to receive the tip of locking set screw.         5)Locking with pin. The nuts are locked by means of taper pin or cotter pin.         6)Locking with plate. A plate or locking plate is used to lock the bolt.         7)Spring lock washer. As the nut is tightened, one edge of the washer will be digging itself in the that piece thus increasing the resistance so that the nut will not be loosened.         Key is a machine element which is used to connect the transmission shaft to the rotating machine element like pulleys, gear, sprocket or flywheel.       2m         Functions of key:-       1) The primary function of the key is to transmit the torque from the shaft to the hub of mating element and viceversa.       2m         2) The second function of the key is to prevent relative rotational motion between the shaft and the joined machine element like gearor pulley.       2m         3) Sometimes key also prevents axial motion between two elements.       4m any         1) The load is distributed uniformly along the entire length of the weld.       4m any         2) The stresses is spread over the effective section uniformly.       4         3) Sometimes key also prevents and factors of safety are employed for unknown factors.       4m Any 4         4. Suitable stress concentration factors and factors of safety are employed for unknown factors.       4m         5. Frictional resistance and lubrication.       6. Convenient and economical features       7. Use of standard parts         5. Frictio |



