

SUMMER-2017 EXAMINATION

Model Answer

Subject Code:

17543

Important Instructions to examiners:

- 1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme.
- 2) The model answer and the answer written by candidate may vary but the examiner may try to assess the understanding level of the candidate.
- 3) The language errors such as grammatical spelling errors should not be given more Importance, not applicable for subject English and Communication Skills.
- 4) While assessing figures, examiner may give credit for principal components indicated in the figure. The figures drawn by candidate and model answer may vary. The examiner may give credit for any equivalent figure drawn.
- 5) Credits may be given step wise for numerical problems. In some cases, the assumed constant values may vary and there may be some difference in the candidate's answers and model answer.
- 6) In case of some questions credit may be given by judgement on part of examiner of relevant answer based on candidate's understanding.
- 7) For programming language papers, credit may be given to any other program based on equivalent concept.

Q.	Sub	Answer	Marking
----	-----	--------	---------

No.	Q. N.		Scheme
Q.1.	(A)	Attempt any <u>THREE</u>	12
	a)	 List four properties of biomaterials. Ans: Properties of biomaterials It should not irritate the surrounding structure. It should not provoke abnormal inflammatory response. It should not cause any allergic or immunologic reaction. It should not lead to causing cancer. Good corrosion resistance. Excellent fabrication properties & great strength. Good biocompatibility, easy availability, & lower cost. It should have adequate mechanical strength, fatigue, & physical properties. It should be chemically inert & stable. 	04
	b)	 Give composition & two applications of stainless steel. Ans: Applications of stainless steel : Stainless steel ate basically used in orthopedic implants, the major uses include fracture fixation and joint replacement They are used in replacement of hip joints, ankle joints, knee joints, leg lengthening spacers, intramedullary pins, femur shafts, bone plate etc. The uses of these alloys for fabrication of mandibular staple bone plates, heart valves and many devices with neurosurgical application have been investigated Clement 316 CS 316-L CS 31	02
	c)	$\frac{1}{1200} \frac{1}{1200} \frac{1}{1200$	02
			04

		Kid	Iney				
	Renal a Renal	vein Ureter –	ig : Structure of		Calyces Renal pelvis Medull	a	
d)	List four mechanical		•	Klulley			
	Ans: Dentine Not as hard a protection of the enam	as enamel, el is lost.	forms the bulk			sitive if the	
		Density (g/cm ³)	Compressiv e Strength (MPa)	Young's Modulus (GPa)	Thermal Conductivit y (W/mk)		04
	Dentine	1.9	138	13.5	0.59	-	
		Fig: Me	chanical proper	ties of denti	ine		
(B)	Attempt any <u>ONE</u>						06
a)	State the composition Ans:	n of teeth. I	Draw schematic	neat labelle	d diagram of to	ooth.	
	Constituents ^a		Dentine		Enamel		
	Ca ²⁺		27.0		36.0	_	
	PO_4^{3-} as P		13.0		17.7		
	Na ⁺ K ⁺		0.3 0.05		0.5 0.08		
	Mg ²⁺		1.1		0.44		
	CO ₃ ²⁻ F ⁻		4.5 0.05		2.3 0.01		
1	Cl-		0.01		0.30		
	$P_2O_7^{4-}$		0.08 70		0.022 97.0		03
	Ash ^b		20		1.0		
	Ash ^b Organic				1 55		
		Tah	10	n of Teeth	1.55		
	Organic	Tab		n of Teeth	1.55		
	Organic	Tab	10	n of Teeth	1.55		

03
ealing of broken
shrut Surgicz
one until natural can be removed. ry devices. during healing of cture. Screws are n intramedullary sizes and shapes
16
of the bonds that ress & strain, i.e. displacement. I to shear (G) and $= - \mathcal{E}_x / \mathcal{E}_z = - \mathcal{E}_y /$ 02

	Table 3.5 T	the compositions of	cobalt_chromium allow	s used in dentistry and	surgery*	
		F75 (Cast)	F90 (Wrought)	F562 (Wrought)	F563 (Wrought)	
	Element	%	%	%	% 1.0 max	
	i i i i i i i i i i i i i i i i i i i	1.00 max 1.0 max	1.0 to 2.0 0.4 max	0.15 0.15 max	0.5 max	
		27-30 2.5 max	19-21 9-11	19-21 33-37	18-22 15-25	02
	2	.0 to 7.0 .35 max	- 0.05 to 0.15	9-10.5 0.025 max	3.0-4.0 0.05 max	
	Iron 0	.75 max	3.0 max	1.0 max	4-6	
	Tungsten Titanium		14-16	1.0 max	3-4 0.5-3.5	
	Cobalt Ba	alance	Balance	Balance	Balance	
	1	e & yield stre	ngth.	y .		
	rensile	655	COCTWNI 860	795 - 1790	fullyted 600	
	strength			1000		
	Yield	450	310	240-655 158.	5 276	
	Elongation	8	10	50 8	50	02
	Reduction of area ()	8	-	65 35	65	
	area ('r-)			3	* *	
	fatigue . strength	810	-		340	
		Table:	Properties of C	r alloy	4	
	List two properties and					
)		m + Any the	ree applications	2m)		
	(Any two properties 2					
	Ans:					
	Ans: Properties of alumina		ent corrosion resi			
	Ans: Properties of alumina 1. Chemically stab	le and excelle		stant.	id.	
	Ans: Properties of alumina 1. Chemically stab 2. It is insoluble in	le and excelle water & slig		stant.	id.	
	Ans: Properties of alumina 1. Chemically stab 2. It is insoluble in 3. High melting po	le and excelle water & slig int.		stant.	id.	02
	Ans: Properties of alumina 1. Chemically stab 2. It is insoluble in	le and excelle water & slig int. s.		stant.	id.	02
	Ans: Properties of alumina 1. Chemically stab 2. It is insoluble in 3. High melting po 4. Highest hardness	le and excelle water & slig int. s. ical strength		stant.	id.	02
	Ans: Properties of alumina 1. Chemically stab 2. It is insoluble in 3. High melting po 4. Highest hardness 5. Highest mechanic	le and excelle water & slig int. s. ical strength tibility.	htly soluble in str	stant.	id.	02
	Ans: Properties of alumina 1. Chemically stab 2. It is insoluble in 3. High melting po 4. Highest hardness 5. Highest mechan 6. Good biocompat	le and excelle water & slig int. s. ical strength tibility. ance & reaso	htly soluble in str	stant.	id.	02
	Ans: Properties of alumina 1. Chemically stab 2. It is insoluble in 3. High melting po 4. Highest hardness 5. Highest mechan 6. Good biocompat 7. High wear resist	le and excelle water & slig int. s. ical strength tibility. ance & reaso na :	htly soluble in str nable strength.	stant. ong alkali and ac	id.	02
	Ans: Properties of alumina 1. Chemically stable 2. It is insoluble in 3. High melting po 4. Highest hardness 5. Highest mechan 6. Good biocompat 7. High wear resist Applications of alumin 1. The implant dev 2. High density alu	le and excelle water & slig int. s. ical strength tibility. ance & reaso na : ices are prepa	htly soluble in str nable strength. ared from purifie	stant. ong alkali and ac d alumina.	id.	02
	Ans: Properties of alumina 1. Chemically stab 2. It is insoluble in 3. High melting po 4. Highest hardness 5. Highest mechan 6. Good biocompat 7. High wear resist Applications of alumin 1. The implant dev 2. High density alu 3. Dental implant.	le and excelle water & slig int. s. ical strength tibility. ance & reaso na : ices are prepa mina is used	htly soluble in str nable strength. ared from purifie in load bearing h	stant. ong alkali and ac d alumina. ip prostheses.		02
	 Ans: Properties of alumina Chemically stab. It is insoluble in High melting po Highest hardness Highest mechanic Good biocompation High wear resist Applications of alumint The implant dev High density alu Dental implant. Orthopedic uses 	le and excelle water & slig int. s. ical strength tibility. ance & reaso na : ices are prepa mina is used of alumina c	htly soluble in str nable strength. ared from purifie in load bearing h consist of hip & k	stant. ong alkali and ac d alumina. ip prostheses. mee joints, tibial	plates, femur shaft,	
	 Ans: Properties of alumina Chemically stab. It is insoluble in High melting po Highest hardness Highest mechanic Good biocompation High wear resist Applications of alumint The implant dev High density alu Dental implant. Orthopedic uses 	le and excelle water & slig int. s. ical strength tibility. ance & reaso na : ices are prepa mina is used of alumina c s, vertebra, le	htly soluble in str nable strength. ared from purifie in load bearing h consist of hip & k g lengthening spa	stant. rong alkali and ac d alumina. ip prostheses. tnee joints, tibial acer & ankle joint	plates, femur shaft,	02

d)	State the procedure & evaluation of dental implants.	
	 Ans: The procedure and evaluation of dental implants involves several stages. 1. First, materials are tested for toxicity by implantation subcutaneously in rats for periods of time up to 30 days and through tissue culture tests. 2. The second step is to test the devices in an animal model. Of all animals, the baboon is considered the most preferred experimental animal in dental-implant studies, since its physiology and immunological responses are very similar to those of humans. 3. In general, the clinical condition of dental implants is evaluated by using radiographs, gingival tone, pocket depth and mobility. A stereo-photogrammetric method of measuring the extent of tissue changes and mobility of sub periosteal implants technique utilizes stereo photographs to measure quantitatively, the extent of tissue swelling or resorption, as well as, migration of dental implants to an accuracy of 16 µm. 	04
e)	List two types of dialyzers & draw two among them. (Any 2Types 2m + Diagram 2m) Ans: Types of dialyzers 1. Flat plate 2. Coil-type 3. Hollow fiber	02
	3. Hollow liber	03
f)	Draw the diagram of contact angle to measure surface properties. Describe Young Dupree equation. Ans : Young-Dupree equation: $\gamma s/g = \gamma s/l + \gamma l/g \cos \theta$ where $\gamma s/g$, $\gamma s/l$ and $\gamma l/g$ are the interfacial free energy between the solid and gas; solid and liquid, liquid and gas respectively and θ the contact angle.	02
	Gas Yu'g Liquid 0 Solid Ys/l Fig. 2.8 Contact angle Fig: Contact angle between the liquid and solid surface	02
3.	Attempt any FOUR	16

 2)	Define his materials & give two everylag	
a)	Define biomaterials & give two examples. Ans:	
	Definition of biomaterials	
	A biomaterial is defined as any systemically, pharmacologically inert substance	
	or combination of substances utilized for implantation within or incorporation with a	
	living system to supplement or replace functions of living tissues or organs. In order to	02
	achieve that purpose, a biomaterial must be in contact with living tissues or body fluids	02
	resulting in an interface between living and non-living substances.	
	OR	
	It replaces a part or function of the body in safe reliable, economic and	
	physiologically acceptable manner.	
	Examples of biomaterials:	
	1. Polymers: Polysters, polymides, silicon rubber, polyether, collagen, elastin,	02
	mucopolysaccharides, chitin, Polysaccharides, polyurethane, rubber, nylon,	
	polytetrafloroethylene, bone cement.	
	 Metals: stainless steel, cobalt-chromium, titanium alloys, etc. Caramias: Alumina, zirconia, calcium phosphate 	
	 Ceramics: Alumina, zirconia, calcium phosphate Composites: Fiber reinforced, Particle reinforced. 	
 b)	Draw the schematic of metallic corrosion & state anodic & cathodic reaction.	
U)	Ans:	
	Anodic & cathodic reaction	
	Reactions of metals with aqueous environments are electrochemical in nature involving	
	the movement of electrons to the cathode. For implanted metals in aqueous environment	
	with dissolved oxygen. The primary anodic & cathodic reactions are represented by	
	equation.	
		02
	$\mathbf{M} \to \mathbf{M}^{n+} + ne^{-}$	
	$1/2 O_2 + H_2O + 2e^- \rightarrow 2OH^-$	
	Fig: Anodic & cathodic reaction	
	Anode Cathode Fe ⁺⁺ OH	
	$e^- + O_2^+ + H_2O$	
	e 11	
	eee	
	Fig 3.2 G i	02
	Fig. 3.3 Schematic illustration of electrochemica cell set up between anodic and catholic	
	sites on an iron surface undergoin	
	Fig: metallic corrosion	
c)	Draw structure of artificial kidney & give its two functions.	
	Ans:	
	Functions of artificial kidney	
	1. It can be remove nitrogenous metabolic waste products.	02
	2. Remove excess body water.	~=
	3. Partially reestablish appropriate plasma acid base & electrolyte composition and	
	concentration.	

		Bath Vein Coil Dialyzing Coil Spout Fig. 9.19 Diagram of typical dialyzers.	02
	d)	List four applications of acrylic polymers. Ans: Applications of acrylic polymers : 1. It is used extensively in medico-surgical application as contact lenses. 2. Implantable ocular lenses. 3. Bone cement for joint fixation. 4. Dentures and maxillofacial prostheses. 5. It is used for treatment for coxarthropathy & in hip arthroplasties. 6. It is suitable for the repairs of cranial defects.	04
	e)	List factors affecting bone formation resorption. Ans: Table 11.2 Factors affecting bone formation and resorption 1. Vascular in growth: Fibronectin, endothelial cell growth factor (ECGF). 2. Bone formation: Insulin-like growth factor (IGF-1) somatomedin c, platelet-derived growth factor. (PDGF), Fibroblast growth factor (FGF) IL-1, ECGF, insulin, bone-derived growth factors (BDGF II and I) bone morphogenetic protein (BMP). 3. Bone resorption, IL-1, Osteoclast-activating factor: (OAF), parathyroid hormone, PDGF, transforming growth factor B (TGF-B), tumor necrosis factor (TNF), prostaglandin E ₂ . * Adapted from Ziats et al., (1988). 1123 Mechanical Burnetic CE	04
4.	(A)	Attempt any <u>THREE</u>	12
	a)	Describe electrokinetic theory used in surface analysis. Ans: Electrokinetic theory : When a material with a charged surface is placed in a solution with ions, a diffused layer of oppositely charged ions (counter ions) appears close to the surface. The electrical double layer is the Stern theory, which describes the change in potential Ψ as the distance from the surface increases. The distance from the surface is Debye length γ. Materials acquire charge due to many reasons, example: Metals develop a surface potential due to surface oxidation. The presence of the electrical double layer gives rise to electrokinetic phenomena when either the particles or the medium moves.	

.			
		The streaming potential and electro osmosis owe their existence to the electrical double layer. Electro osmosis is observed when an electrical potential is applied to the opposite ends of porous plug in a liquid medium. A flow of liquid through plug occurs. The streaming potential is the converse. Forced motion of liquid through a porous plug generates an electrical potential, called Zeta potential (ζ). The Zeta potential is the electrical potential at the plane of shear in the liquid. Measurements of ζ potential have been useful for determining characteristics of blood vessels. The surface properties are among the most important material properties that a biomaterial possesses. This is due to the fact that when a device is implanted into tissues, the surface chemistry will determine to a large extent how the material and the tissues, or fluids interact.	04
	b)	List four properties & two applications of Zirconia.	
		Ans :	
		Properties of Zirconia:	
		1. Use temperatures up to 2400°C	
		2. High density	
		3. Low thermal conductivity (20% that of alumina).	02
		4. Chemical inertness.	
		5. Resistance to molten metal's.	
		6. Ionic electrical conduction.	
		7. Wear resistance.	
		8. High fracture toughness.	
		9. High hardness.	
		10. High refractive index.	
		11. Excellent biocompatibility and wear properties.	
		12. Fine grain size, lack of surface roughness.	
		Applications of Zirconia:	
		1. Dental implants	
		±	
		2. Zirconia ceramics are employed to develop new shoulder prosthesis,	
		3. Knee and hip replacements (orthopedic prosthesis).	
		4. Middle-ear reconstruction.	02
		5. Zirconium cyclosilicate is under investigation for oral therapy in the treatment of	
		hyperkalemia.	
		6. It is a highly selective oral sorbent designed specifically to trap potassium ions	
		over other ions throughout the gastrointestinal tract.	
	c)	State two types of blood clot formation technique & differentiate them.	
		(types 02m + Any two difference 02m)	
		Ans:	
		1. Intrinsic pathway:	
		The contact activation pathway (Intrinsic) begins with formation of the primary	
		complex on collagen by high-molecular-weight kininogen (HMWK), prekallikrein, and	
		FXII (Hageman factor). Prekallikre in is converted to kallikrein and FXII becomes FXIIa.	
		FXIIa converts FXI into FXIa. Factor XIa activates FIX, which with its cofactor FVIIIa	
		form the tenase complex, which activates FX to FXa. The minor role that the contact	
		activation pathway has in initiating clot formation can be illustrated by the fact that	
		patients with severe deficiencies of FXII, HMWK, and prekallikrein do not have a	
		bleeding disorder. Instead, contact activation system seems to be more involved in	
		inflammation.	
		2. Extrinsic pathway:	
		The main role of the tissue factor pathway (Extrinsic) is to generate a "thrombin	

burst", a process by which thrombin, the most important constituent of the coagulation cascade in terms of its feedback activation roles, is released very rapidly. FVIIa circulates in a higher amount than any other activated coagulation factor.

02

		C	
	Intrinsic pathway	Extrinsic pathway	
	1) All the factors in the intrinsic pathway are available in circulation.	1) The extrinsic pathway is so named because it requires a substance not normally present in the blood for activation.	
	2) It is a natural technique for clotting.	2) It require external substance o get clotting.	02
	3) The extrinsic pathway is initiated when blood comes into contact with tissue factor following the rupture of a blood vessel.	3) The intrinsic pathway, of which both clotting factor VIII and IX are a part, is initiated by the activation of certain contact factors in the plasma (e.g. factor XII, prekallikrein, or high-molecular- weight kininogen) following blood vessel injury.	02
	4) Activated by: (-) charged surfaces in vivo (collagen, sub endothelial connective tissue) & in vitro (glass)	4) Activated by: Factor VII activation by tissue factor (TF) on sub endothelium.	
	5) Factors: XII, XI (↓in hemophilia B), IX (↓in hemophilia A)	5)Factors Involved: VII	
	6)Activation time: 1 - 6 min (slow)	6)Time to Activation: 15s (fast)	
	Table: Difference between Intrin	sic & Extrinsic blood clot formation	
d)	Draw diagram of cellular events in bone he Ans:	ealing.	
	Gellular activity Gellular activity (arbitraty unit) Cellular activity (arbitraty unit) Cellular activity (arbitraty unit) Collular activity (arbitraty unit) Collular activity (browner arbitraty of the second	oblasts Trobacular bone Compact bone 4	04
 (B)	Fig: cellular even Attempt any <u>ONE</u>	ts in bone healing	06
			00
a)	dental implants. Ans: Reimplantation of teeth : The ideal implant is the tooth itself p	weth. Draw various designs of self-tapping	
		periodontal ligament bridge the gap between ntation studies have indicated that a highly	03

d)	 which are aligned phase with a repet of potential in the about the same, stimulation provide electromagnetic f ingrowth enough the 	across the we ition rate of 7 bone. The eff over 70% su ides a signifield and AC to be noticed.	ound site and a ma 5 Hz is applied. The ficiency of both m ccess rate. Recen- ficant improveme	gnetic field with his pulse amplitud agnetic and direct studies indicate nt in bone ing led electrical stin	air of Helmholtz coils, a monophasic 150-ms e induces 1-2 m V/ <i>cm</i> current stimulation is that direct electrical rowth, while pulsed nulation do not help	04
	Ans: Properties of Ti based alloy : Titanium is a light metal, Density 4.505 g/cm cube at 25 Degree Celsius, Melting point of titanium is about 1665 Degree Celsius OR					
	Properties	Grade-1	Grade-2	Grade-3	Grade-4	
	Tensile Strength (Mpa)	280	345	450	550	02
	Yield Strength (Mpa)	170	275	380	485	
	Elongation (%)	24	20	18	15	
	Reduction of area (%)	30	30	30	25	
	 It is used f 	cations of Ti for the product for making of the for surgical im for manufactur for making of l	ion of hip prosthes fracture equipment plant applications. ing of implants. pone screws and pl	es.		02
0)	6. It is also us Draw diagram of		edic application.			
e)	(i) Total knee rep	lacement pai	⁺ts (02m) replacement.(02n	1)		
	Ans:					
						02

6.	Attempt any <u>FOUR</u>	16
a)	List ceramic & polymer material used in TJR & list application of same. Ans: Ceramic & Polymer material used in TJR & their applications	
	CeramicsBioinertCoatings on metallic femoral stems, second phase in composites and bone cementAluminaFemoral stems, heads, acetabular cupsAluminaFemoral stems, heads, acetabular cupsBioactiveCoatings on metallic and ceramic femoral stems, scaffold materials, second phase in PMMA and UHMWPE compositesBioglassesCoatings on metallic and ceramic femoral stemsPolymersPolymersPMMABone cementUHMWPE/HDPEAcetabular cups, tibial and patellar components, porous coatings on metallic and ceramic femoral stemsPTFEFemoral stems, porous coatings on metallic femoral stemsFemoral stemsFemoral stemsFemoral stems<	04
b	Table: Ceramic & Polymer material used in TJR & their applicationsState the concept of artificial implants of eye.	
	Ans: Artificial Implants : Eye implants are used to restore functionality of cornea, lens, vitreous humor, when they are damaged or diseased. Ophthalmology is a field that has rapidly advanced as a result of the development of new techniques & materials. Biomaterials are an important component of the procedures that are used to improve & maintain vision. The materials that make up normal structures of eye, as well as, those used for replacements. These biomaterials includes viscoelastic solutions, intraocular lenses, contact lenses, eye shields, artificial tears, vitreous replacements, correction of corneal curvature, scleral buckling materials.	04
c)	Draw cross section of eye showing posterior chamber lens fixation & list the material used. Ans: Materials : Optical portion of the IOL is composed of PMMA, PHEMA, silicone, Attachment region is fabricated using metals, bioglass, & polypropylene. Upper tensor of eye showing posterior chamber lens fixation Fig: Cross section of eye showing posterior chamber lens fixation	02 02
d	List types of prosthetic valve & biomaterials used for same. Ans:	
	The four types of heart valves & used biomaterials :	

	Types of prosthetic valve Biomaterials used		
	8	tanium, silicon rubber, Teflon,	
		polypropylene	
	Ball - in - cage	Titanium, silicon rubber, Teflon,	04
	m'1	polypropylene	
	Tilting disk	Pyrolytic carbon, UHMPE, Titanium, Teflon, Dacron	
	Porcine aortic valve	Dacron, Teflon cloth, silicone rubber	
	Draw structure & four functions of h		
e)	Ans:		
		Trachea	
	Right lung	国内公	
	Upper lobe		
	Middle lobe	A C	02
	Terminal bronchiole Alveoli Al		
		COST COST	
	(0.63636)	Red blood	
	The lungs contain millions Oxyge	en (Oz) from air breathed in, goes into the red blood his alveoli. Carbon dioxide (Oo2) goes from the red	
	blood	cells into alveoli and breathed out wing alveoli	
	Fig: S	tructure of lungs	
	Functions of lungs:		
	1. The lungs' main function is to help oxygen from the air we breathe enter the red		
cells in the blood.			02
	2. Red blood cells then carry oxygen around the body to be used in the cells found in our body.		
	3. The lungs also help the body to get rid of CO2 gas when we breathe out.		
	4. Changing the pH of blood (whether the blood is more acid or alkali) by increasing		
or decreasing the amount of CO2 in the body.			
	5. Filtering out small gas bubbles t		
		lood called angiotensin I to angiotensin II. These	
	chemicals are important in the c	ontrol of blood pressure.	