

Summer- 2017 Examinations

Subject Code: 17511

Model Answer

Page 1 of 38

Important suggestions to examiners:

- 1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme.
- 2) The model answer and the answer written by candidate may vary but the examiner may try to assess the understanding level of the candidate.
- 3) The language errors such as grammatical, spelling errors should not be given more importance. (Not applicable for subject English and communication skills)
- 4) While assessing figures, examiner may give credit for principle components indicated in a figure. The figures drawn by candidate and model answer may vary. The examiner may give credit for any equivalent figure drawn.
- 5) Credits may be given step wise for numerical problems. In some cases, the assumed constant values may vary and there may be some difference in the candidate's answers and model answer.
- 6) In case some questions credit may be given by judgment on part of examiner of relevant answer based on candidate understands.
- 7) For programming language papers, credit may be given to any other program based on equivalent concept.

Q.1 (A)	Attempt any THREE of the following:	12 Marks
i)	Explain, why 3-phase induction motor never run on synch	ronous speed.
Ans:		(4 Marks)
	The working principle of three phase induction mo	tor is based on relative motion
	between rotating magnetic field and rotor conductors i.e. (N	N _S - N), According to Lenz's law
	rotor will try to catch the synchronous speed of rotating ma	gnetic field to oppose the 'cause
	producing it'. But rotor never succeeds due to frictional los	ses.
	If rotor catches the synchronous speed of rotating mag	netic field, (N _S - N) i.e. relative
	motion will be zero and rotor stops to rotate and therefore t	hree phase induction motor can
	never run on synchronous speed.	
ii)	With the help of torque-speed or slip characteristic, exp	lain the effect of rotor circuit
	resistance on different torques of an induction motor.	
Ans:	Characteristics: (2 Mark Cha	racteristics & 2 Mark Effect)
	$\begin{array}{c} & \text{Max. Torque} \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & $	
	Equ	ivalent Characteristics

Summer-2017 Examinations Model Answer

Page 2 of 38

Subje	ct Code: 17511	Model Answer	Page 2 of 38
	Effect: > When rotor r	resistance increases, maximum torque condition	occurs at higher values
	of slip and cl	naracteristics shifts towards left hand side.	
	➤ The maximu	m torque condition can be obtained at any requ	ired slip by changing
	rotor resistan	ce.	
iii)	With the help of a transformer starter u	neat labelled diagram, explain construction used for starting 3-phase induction motor.	and working of a auto-
Ans:	Diagram for Autotra	insformer starter : (Figure : 2 Marks & Construction	n & Working ? Morks)
	9	(Figure : 2 Marks & Construction	on & Working:2 Marks)
		Three Phase Supply	to ormer 1

Subject Code: 17511

Summer- 2017 Examinations Model Answer

Page 3 of 38

	Construction and working of a auto-transformer starter used for starting 3-phase induction
	motor :
	> The autotransformer reduced-voltage starter places the motor on the secondary of
	the autotransformer while starting. The taps on the autotransformer limit the
	voltage applied to the motor to 50%, 65% or 80% of the nominal voltage. The
	difference between line and motor current is due to the transformer in the circuit.
	\succ It is provided with a number of tappings. The starter is connected to one particular
	tapping to obtain the most suitable starting voltage. A double throw switch S is used
	to connect the auto transformer in the circuit for starting. When the handle H of the
	switch S in the START position. The primary of the auto transformer is connected to
	the supply line, and the motor is connected to the secondary of the auto transformer.
	▶ When the motor picks up the speed of about 80 percent of its rated value, the handle
	H is quickly moved to the RUN position. Thus, the auto transformer is disconnected
	from the circuit, and the motor is directly connected to the line and achieve its full
	rated voltage. The handle is held in the RUN position by the under voltage relay.
	\succ If the supply voltage fails or falls below a certain value, the handle is released and
	returns to the OFF position. Thermal overload relays provide the overload protection.
iv)	With the help of a neat labelled diagram, explain construction and working principle of a 3-phase alternator.
Ans:	
	a Rotor Field
	b' • c'
	Stator
	Sync. 🕀 🛞 Mach.
	c s b
	a'

	Summer-2017 Examinations	
Subje	ct Code: 17511 <u>Model Answer</u>	Page 4 of 38
	Construction of three phase alternator	(2 Marks)
	Construction wise, an alternator generally consists of field poles placed fixture of the machine i.e. rotor as shown in the figure above. In most practica of alternator, it is installed with a stationary armature winding. There are main rotor used in construction of alternator,	l on the rotating l construction lly two types of
	 Salient pole type. Cylindrical rotor type. 	
	The working principle of alternator :	(2 Marks)
	Principle of alternator depends upon <u>Faraday's law of electromagne</u> . When the field winding gets excited field current flows through the field wind produces magnetic flux in the air gap. As the prime mover rotates, the field w rotates and hence the magnetic flux also rotates. This rotating magnetic field is cut by the stationary armature conductor according to <u>Faraday's law of electromagnetic induction</u> , an EMF is induced conductors.	<u>tic induction</u> . ling which inding also rs. So in the armature
Q.1 (B)	Attempt any ONE:	6 Marks
i)	State different methods used for controlling speed of a 3-phase induct explain any one method of speed control in detail.	ion motor and
Ans:	Following methods to control the speed of 3 phase induction motor:	(3 Mark)
	1. By varying applied voltage (voltage control)	
	2. By Varying applied frequency (frequency control)	
	3. By varying number of poles of the stator winding (Pole changing cor	itrol)
	4. By rotor rheostatic control	
	5. By V/f method	
	1. by varying applied voltage (voltage control): (Any one explanation exp	ected: 3 Mark)
	This method is very easy but rarely used in commercial practice variation of voltage produces a very small change in speed and n wasted.	because a large nuch energy is
	In this method three resistances are inserted in series with the sta the motor and the value of these resistances is varied by a comm that equal resistances come in the stator circuit.	tor winding of on handle, so

Summer-2017 Examinations Subject Code: 17511 **Model Answer** Page 5 of 38 \triangleright For a particular load when voltage increases, speed of the motor also increases and vice-versa. 2. By varying applied Frequency (Frequency control): The synchronous speed of an induction motor is given by $N_s = \frac{120 \times f}{P}$. \triangleright It is clear from the equation that the speed of the induction motor can be \geq changed by changing the frequency of the supply. The speed of the motor will increase if frequency increased and vice vesa. \geq \triangleright Changing the frequency of supply to the motor is not an easy job. Therefore this method is only employed where the variable frequency alternator is available for the above purpose. 3. By varying number of poles of the stator winding (pole changing control): The synchronous speed of an induction motor is given by $N_s = \frac{120 \times f}{R}$. \triangleright \succ It is clear from the equation that if the number of poles of the stator is decreased, the speed of the motor will increased. When the number of poles are increases, the speed of the motor decreases. \geq \triangleright The poles of the stator winding can be changed by having two or more separate stator windings of different pole combination housed in common stator frame. By selecting proper number of pole combination, Ns can be varied and hence the speed. 4. By rotor rheostatic control: MOTOR \triangleright In this method star connected external resistances (of continuous rating) are connected in the rotor circuit.

> The speed of the motor increases with the decrease of resistance in the rotor

	Summer- 2017 Examinations	
Subje	ect Code: 17511 <u>Model Answer</u>	Page 8 of 38
	or Equivalent fig.	
	i) Wt = 0°, $\phi_r = \frac{3}{2}\phi_m$ ii) Wt =60°, $\phi_r = \frac{3}{2}\phi_m$ iii) Wt =120°,	$\phi_r = \frac{3}{2}\phi_m$
	From the above vector diagrams at different phase angles particu	larly at 0^0 , 60^0
	and 120° referred in waveform diagram, it is clear that the resultant flucture is the second s	ax vector is not
	stationary but it rotates with N _s (1 Mar	rk)
b)	A 3- ph, 50 Hz, 4 pole, induction motor operated at a slip of 4%, calculat motor (ii) Frequency of rotor emf. If the rotor has resistance of 1 ohm and standstill reactance of 4 oh calculate rotor power factor at: (i) Stand still (ii) At a speed of 1440 r.p.m	te: (i) Speed of ums per phase, n.
Ans:	Given Data: 3 ph,4-pole, 50Hz	
	$N_s = \frac{120 f}{P}$	
	120×50	2 Mark)
	$=\frac{120000}{4}$	
	$N_s = \frac{120 \times 50}{4} = 1500 \text{ RPM}$	
	N = (1-S) 1500 N = (1-0.04) 1500	
	N = 1440 RPM (1)	/2 Mark)
	$Frequency of Rotor = S \cdot f.$	/2 Mark)
	= 0.04 X 50	,
	Frequency of Rotor = 2.0 Hz	1/2 Mark)
	i) Power factor at stand still i.e s=1	
	R ₂	1/2 Mark)
	$\cos \phi_2 = \frac{1}{\sqrt{(R_2)^2 + (S)^2 \times X_2^2}}$	1/2 Mark)
	$\cos\phi_2 = \frac{1}{\sqrt{(1)^2 + (4)^2}}$	
	$\cos\phi_2 = 0.2425 \log$	/2 Mark)
	ii) Power factor at speed of 1440 RPM i.e at s= 0.04 :	
	$\cos\phi_{2} = \frac{R_{2}}{\sqrt{(R_{2})^{2} + (S)^{2} \times X^{2}}} \dots (1)$	/ 2 Mark)
	$\cos\phi_2 = \frac{1}{\sqrt{(1)^2 + (0.04)^2 (4)^2}}$	
	$\cos\phi_2 = 0.9874 \log$	/2 Mark)

	Summer– 2017 Examinations	
Subje	ect Code: 17511 <u>Model Answer</u>	Page 9 of 38
c)	A 3-phase, 6 pole, star connected alternator revolves at 1000 r.p.m. The slots and 8 conductors per slot. The flux per pole is 0.05 wb (sinusoidal calculate the value of phase voltage and line voltage generated by the r winding factor is 0.96.	e stator has 90 ly distributed) nachine, if the
Ans:	Given Data: $\phi = 0.05 \text{ wb}$, Pole-6 N _s = 1000 rpm \therefore K _C = 0	. 96
	$f = \frac{6 \times 1000}{120} = 50 \ Hz$	
	Pole pitch= $\frac{-1}{6}$ = 15	
	$\beta(\text{slot} \longrightarrow \text{pitch} \longrightarrow \text{angle}) = \frac{180^{\circ}}{15} = 12^{\circ}, m(\text{No.ofslots/pole/phase})$	$=\frac{90}{6\times3}=5$
	$Kd = \frac{Sin \ m \times (\beta/2)}{m \ Sin \times (\beta/2)}$	
	$\therefore \mathbf{K}_{d} = \frac{Sin 5 \times (12^{0} / 2)}{5 Sin \times (12^{0} / 2)} = \frac{0.5}{0.5226} = 0.9567$	(1/2 Mark)
	$\therefore \text{ Z/ph} = \frac{\text{No. of slots} \times \text{conductor / slots}}{3} = \frac{90 \times 8}{3} = 240$	(1/2 Mark)
	$\therefore T/ph = \frac{240}{2} = 120$	(1/2 Mark)
	$E / Ph = 4.44 \times \phi \times F \ T \times Kc \times Kd$	(1/2 Mark)
	$\therefore \ E_{Ph} = \ 4.44 \times 0.05 \times 50 \times 120 \times 0.96 \times 0.9567$	(1/2 Mark)
	$\therefore E_{Ph} = 1227.18 \text{ volt}$	- (1/2 Mark)
	$\therefore E_{\rm L} = \sqrt{3} \times 1227.18$	
	$\therefore E_{L}= 2125.55 \text{ volt}$	(1/2 Mark)

	Summer- 2017 Examinations
Subje	ct Code: 17511 <u>Model Answer</u> Page 10 of 38
d)	Explain the factors which affects terminal voltage of an alternator.
Ans:	The factors affecting terminal voltage of alternator:
	(Any Four Factor expected: 1 Mark each point)
	The terminal voltage of alternator depends upon: (Any four point are expected)
	1) Load current
	2) Armature resistance per phase
	3) Leakage reactance per phase
	4) Armature reaction reactance per phase
	5) Excitation (field current)
	6) Speed
	7) Load power factor OR when load power factor is unity or lagging, the terminal voltage drops with increase in load, when the load power factor is leading, the terminal voltage increase with increase in load
e) Ans:	What is an universal motor? Comment briefly on it's construction features and speed- torque characteristic, state any two applications of this motor. Diagram of Universal Motor: (Meaning: 1 Mark. Comments of construction feature:1 Mark, Speed torque characteristics :1 Mark and Application: 1 Mark)
	Universal Motor :
	Motors that can be used with a single phase AC source as well as a DC source of supply voltages are called "UNIVERSAL MOTORS"
	Comments on Constructional features:
	Compensating Wag. Field Wag. Compensating Wag. Generature Compensating Main Field wdg. Field wdg. Compensating Compensating Compensating Compensating Compensating Compensating Compensating Compensating Compensating Compensating Compensating Compensating Compensating Compensating Compensating Compensating Compensating Compensating Compensating Compensation Field wdg. Compensation
	OR Equivalent figure ➤ The field core is to be constructed of a material having low hysteresis loss and it is to
	be laminated to reduce eddy current loss.

			Summer-2017 Examinations		
Subje	ct Code: 1	17511	Model Answer	Page 13 of 38	
	Workin	g :			
	> 1	Let only phase A is e	excited, the current direction is form	A1 to A2 and from A3 to A4.	
	> 1	t produces N poles of	of stator along vertical axis, and S po	le along horizontal axis.	
	> 1	Rotor poles S1 & S2	are aline with vertical axis. It is star	ting reff. position.	
	> 1	Now coil A is switch	ned off & phase B is excited. The cur	rrent direction is B1 to B2 & B3	
	t	o B4. The stator N p	ooles shift in clockwise direction by 4	450. Therefore Rotor poles S1 &	
	2	S2 also rotate by 450	in clockwise direction.		
	> 1	Now phase B is turned	ed off and Phase A is excited in reve	rse direction. (A2-A1 & A4-A3)	
]	t causes shifted of st	tator N poles in clockwise direction l	by 450 again. Hence Rotor poles	
	<u>s</u>	S1 and S2 also rotate	es further in clockwise direction by 4	50	
		f switching sequenc	e is mainted as $A(+) \rightarrow B(+) \rightarrow A(-)$	$) \rightarrow B (-) \rightarrow A (+)$ then motor	
				, ,, ,,	
		Will continuously rot		italina anna 16 anitalina	
	F .	The direction of rota	uon can be reversed by changing sw	iteming sequence. If switching	
	5	sequence is $A(+) \rightarrow 1$	$\mathbf{B}(-) \rightarrow \mathbf{B}(+) \rightarrow \mathbf{A}(-) \rightarrow \mathbf{A}(+) \text{ then r}$	notor will rotate in	
	8	anticlockwise directi	on.		
		The number of switc	hing per second decides speed.		
0.3	Attemp	t any Four of the f	Collowing :	16 Marks	
a)	Compa	re cage and wou	nd rotor type 3-phase induction	on motor with reference to	
Ans:	following: (i) construction (ii) performance (iii) speed control (iv) applications				
7 1115.	S.No.	Point	Cage Rotor type 3-ph	Wound Rotor type 3-ph	
			Induction Motor	Induction Motor	
	1	Construction	Rotor is in the form of bars.	Rotor is in the form of 3-	
			No slip-ring and brushes	ph winding.	
				present.	
	2	Performance	Starting power factor is poor	Starting power factor is	
	3	Speed control	Speed control by stator control	adjustable Speed can be control by	
		Speed condor	method only	stator & rotor control	
	1	Applications	For driving somehow constant	method For driving somebow	
	4	Applications	load e g Lathe machine	constant load e g for	
			Workshop Machine and water	driving heavy inertia load	
			, orkenep waterine and water	& variable speed	

		Summer– 2017 Examination	ons
Subje	ct Code: 17511	<u>Model Answer</u>	Page 14 of 38
		pump	application such as Lift,
			Crane, Elevator, Cable car,
			Conveyor belt etc.
			-
	b) A 3-phase induction	motor has a synchronous speciation of 0.02 obms non phase	eed of 250 r.p.m. and 4% slip at full
	of 0.15 obms per phase	Astance of 0.02 onms per phase Calculate:	se and stand still leakage reactance
	(i) The speed at which	maximum torque is develope	d.
b)	(ii) The ratio of maxim	um to full load torque.	
	(iii) The ratio of maxin	num to starting torque.	
	(iv) What value should	the resistance per phase have	e so that the starting torque is half
	the maximum torque?		
Ans:	Given Data:	-250 DDM S $-40%$ at full load	(Stepwise Mark, Total : 4 Mark)
	3-PII I.WI = 0.02 of	= 250 RPM S = 4% at 1011 load	
	$K_2/pii = 0.02.0$	$A_2/p_1 = 0.13$ on $A_2/p_1 = 0.13$	
	(i) The Slip at which th	e maximum torque is develop	ped is given by : (1 Mark)
	$R_2 = S X_2$		
	2 2 R	0.02	
	$\therefore S = \frac{R_2}{V} =$	$=\frac{0.02}{0.15}$	
	Λ_2	0.15	
	S = 0.13	33	
	Speed at which maxi	mum torque occurs is	
	N = (1 -	S) $N_{\rm s}$	
	- (1-	$(1333) \times 250$	
	-(1)	6.1355) × 250	
	N = 210.	.0/ KPM	
	(ii) The ratio of maxim	um to full load torque:	(1 Mark)
	$T_{\text{max}} a2 + b$	S_{f}^{2}	
	T_{FL} – $2a S$	$\overline{\mathcal{O}_F}$	
	R2		
	$a = \frac{1}{X2} = 0.13$	333 and $S_F = 0.04 - given$	
	T = (0.1333)	$(0.04)^2 + (0.04)^2 = 0.01937$	
	$\frac{T_{\text{max}}}{T_{\text{current}}} = \frac{(0.1550)}{2(0.1550)}$	$\frac{333}{333}(0.04) = \frac{0.01957}{0.01066}$	
	juli load = (0.14	, ,	
	$\frac{I_{\text{max}}}{T} = 1.82$		
	I full load		

	Summer – 2017 Examinations	Dave 15 of
ect Code: 17511	Model Answer	Page 15 of
(iii) The ratio of ma	aximum to starting torque:	(1 Mar
$\frac{T_{\text{max}}}{1+a^2} = \frac{1+a^2}{1+a^2} = 1+a$	$\frac{1+(0.1333)^2}{1} = \frac{1.0178}{1000000000000000000000000000000000000$	
T_{st} 2 a	2(0.1333) 3.751	
$\frac{T_{\text{max}}}{T_{\text{max}}} = 0.2713$		
T_{st}		
(iv) What value sho the maximum torqu	ould the resistance per phase have so that ue:	the starting torque is h (1 Mar
We have,		
	$C R_{2}$	
T_{st}	$r_{1} = \frac{1}{R_{2}^{2} + X_{2}^{2}}$. (1)
	2 2	
	С	
$T_{ m m}$	$\max = \frac{C}{2X_{\perp}} \qquad (2)$)
T_{st}	$= \frac{2R_2X_2}{2R_2X_2}$	
$T_{ m max}$	$R_2^2 + X_2^2$	
1 2	$2 R_{2} X_{2}$	
$\frac{1}{2} = \frac{1}{R}$	$\frac{1}{R_{2}^{2} + X_{2}^{2}}$	
$\therefore R_2$	$x^{2} + X_{2}^{2} = (4)R_{2} \times X_{2}$	
$\therefore R_2$	$A_{2}^{2} - (4)R_{2} \times X_{2} + X_{2}^{2} = 0$	
$\therefore R_2$	$a^2 - (4) \times 0.15 R_2 + (0.15)^2 = 0$	
$\therefore R_2$	$R_2 = -0.6 R_2 + 0.0225 = 0$	
$\therefore R_2$	$f_{\pm} = \frac{0.6 \pm \sqrt{0.36 - 4 \times 1 \times 0.0225}}{2}$	
	2	
$\therefore R_2$	$\frac{0.0 \pm \sqrt{0.30 - 0.09}}{2} = \frac{0.0 \pm 0.32}{2}$	
∴ <i>R</i>	$R_2 = 0.56 \ o \ hm \ OR \ R_2 = 0.04 \ o \ hm$	
b	ut R_2 must be less than X_2 \therefore We se	$lect R_2 = 0.04 ohm$
$\therefore R_2$	$r_2 = r_2 + r_{ext}$	
-		
O.O	$04 = 0.02 + r_{ext}$	

	Summer- 2017 Examinations	
Subje	ct Code: 17511 <u>Model Answer</u>	Page 16 of 38
c)	Derive the emf. equation of a 3-0 alternator.	
Ans:	EMF Equation of alternator :	
	Let, $P = No.$ of rotor poles. $\phi = Flux$ per pole $Z = Number of stator cond$	uctors
	N = Speed in rpm	
	Z_{Ph}	
	$\therefore turns \ per \ pnase \ (1pn) = \frac{2}{2}$	(1/2 Marks)
	.:. Frequency of induced emf is	
	f = Cycles per rotation x rotation per sec	
	2 60	
	$\therefore f = \frac{PN}{PN}$	(1/2 Marks)
	120	
	Consider one rotation of rotor then change in flux linkage is,	
	$d\phi = P. \phi$ Time required for one rotation is,	
	$\therefore dt = \frac{1}{2} = \frac{1}{2} = \frac{1}{2} = \frac{60}{2} = \frac{60}{2} = \frac{1}{2} = \frac{1}{$	(1/2 Marks)
	n (N/60) N	
	By faradays law of Electromagnetic induction	
	\therefore Average emf per conductor = $\frac{d\phi}{dt}$	
	$P.\phi$	
	\therefore E _{ave} /Conductor = $\frac{-\tau}{(N/60)}$	
	$\mathbf{P} \times \mathbf{\phi} \times \mathbf{N}$	
	\therefore E _{ave} / Conductor = $\frac{60}{60}$	(1/2 Marks)
	: E / turn = 2 E / Conductor $\frac{P \times \phi \times N}{P \times \phi \times N}$	olt
	$\frac{1}{60}$	011
	\therefore E _{ave} / turn = 2 $\frac{P \times \phi \times N}{P \times \phi \times N}$ Volt	
	60 4 D 4 N	
	$\therefore \qquad = \frac{4F\psi N}{120} Volt Volt$	(1/2 Marks)
	120 P N	
	$\therefore \qquad = 4\left(\frac{1}{120}\right)\phi$	
	P N	
	$\therefore E_{\text{ave}} / \text{turn} = 4 f \phi \therefore (f = \frac{1}{120})$	
	\therefore E _{ave} / Phs = E _{ave} / x Number of turns per phase	
	$= 4 f \phi \times T_{ph}$	(1/2 Marks)
	RMS Value per phase is given by,	
	$E_{ph} = E_{ph}$ (ave) x Form Factor	

		Sum	mer–2017 Examinations	
ubjec	t Code: 1	7511	<u>Model Answer</u>	Page 17 of
		=	$4 f \phi \times T_{Ph} \times 1.11$	(1/2 Mar
		Γ	$E_{ph} = 4.44 \phi.f T_{Ph}$ volts	7
				_
	It is for f	ull pitched concentrated	Suted & short pitched then	
		EP	$P_{h} = 4.44 \ \phi.f. \ I_{Ph}. \ kd. \ kc$ volts	
		Where, Kc = coil span f	 factor or chording factor	······ (1/2 Wian
		Kd = Distribut	tion factor	
4)	Fundain	the acceptial difference	a hatwaan avlinduigal (am	asth) and calibrat note w
u)	used in l	arge alternators. What	type of rotor would you ex	pect to find in:
	(i) A-2-p	ole machine (ii) A-12-p	oole machine	int armostad 1 Mark and
ans:	S.No	Parameter/Machine	Smooth cylindrical type	Salient pole type rotor
			rotor	
	1	Operating speed	high	Low medium
	2	Number of poles	Small & medium	large
	3	Rotor construction	Cylindrical poles type	Projected type bulky &
			comparatively moderate weight	heavy weight
	4	Axial length	large	short
	5	Diameter	small	large
	6	Operation	Very smooth	noisy
	7	Centrifugal stresses	uniform	Non uniform
	8	Application	Thermal power station	In hydro power stations
			•	
	Type of	rotor would expected t	to find in:	(2 Mar
	(i) A	A-2-pole machine:- Cyli	indrical (smooth) rotor	
		1 2		

Summer-2017 Examinations

Subject Code: 17511 **Model Answer** Page 18 of 38 Why a single phase induction motor doesn't have a self starting torque? Explain with e) the help of a double field revolting theory. **Reason for single phase induction motors are not self starting torque:** Ans: (2 Mark) > When single phase AC supply is given to main winding it produces alternating flux. > According to double field revolving theory, alternating flux can be represented by two opposite rotating flux of half magnitude. > These oppositely rotating flux induce current in rotor & there interaction produces two opposite torque hence the net torque is Zero and the rotor remains standstill. ▶ Hence Single-phase induction motor is not self-starting torque. OR **Single phase induction motor** has distributed stator winding and a squirrel-cage rotor. When fed from a single-phase supply, its stator winding produces a flux (or field) which is only alternating i.e. one which alternates along one space axis only. It is not a synchronously revolving (or rotating) flux as in the case of a two or a three phase stator winding fed from a 2 of 3 phase supply. Now, alternating or pulsating flux acting on a stationary squirrel-cage rotor cannot produce rotation (only a revolving flux can produce rotation). That is why a single phase motor is not self-starting torque. > Double field revolving theory: ------ (Figure: 1 Mark & Explantion : 1 Mark) State = 0 $\theta = 90^{\circ}$ (c) (b) (a) OR Double field revolving theory $\theta = \theta$ (any angle) $\theta = \pi/2$ $\theta = 0$ Ф Ф -Ф (ii) (iii) (i)(iv) When single phase AC supply is given to main winding it produces alternating flux. According to double field revolving theory, alternating flux can be represented by two

opposite rotating flux of half magnitude.

	Summer– 2017 Examinations				
Subje	ct Code:	17511	Model Answe	<u>r</u>	Page 19 of 38
	\triangleright	Consider two	o components of flux nam	ely $\phi_1 \& \phi_2$ each having	equal magnitude
		$\phi_1 = \phi_2 = \phi_M$	$\frac{1}{2}$ it is constant.		
	\succ	Let, at $\phi = 0$	$)^0$ two components are at	180 [°] displaced from eac	th other. Let ϕ_1 is
		along +ve X-	axis. Therefore total flux is	$\phi_1 = \phi_2 = \phi_M = 0$	
	\succ	Let ϕ_1 is rota	ation in anticlockwise direct	ion & ϕ_2 in clockwise di	rection. Both have
		constant angu	ular speed of ω rad/sec.		
		At $\phi = 90^\circ$,	$\phi_1 \& \phi_2$ rotate by 90 ⁰ & bo	oth aline along +ve y-axi	s. Therefore, total
		flux $\phi = \phi_1 =$	$\phi_2 = \phi_M$		
	\succ	At $\phi = 180^{\circ}$,	both fluxes rotate by 180° ,	ϕ_1 is now along – ve X-a	ixis & ϕ_2 is along
		+ve X-axis. 7	Therefore, total flux is zero		
	\succ	At $\phi = 270^\circ$,	$\phi_1 \& \phi_2$ aline with –ve axis	& therefore, total flux be	comes $-\phi_{M}$
		At $\phi = 360^\circ$, zero, OR	ϕ_1 is along +ve X-axis & is	s along –ve X-axis. There	fore, total flux is
		When single	phase AC supply is given to	o main winding it produce	es alternating flux.
	Ac	cording to dou	uble field revolving theory,	alternating flux can be re-	epresented by two
	opposite	e rotating flux	of half magnitude.	n rotor & thora interact	ion produces two
	opposite	e torque hence	the net torque is Zero and t	he rotor remains standstill	l.
	If the rotor rotates in the direction of forward revolving filed then, torque in that direction			e in that direction	
	will increases and torque in opposite direction will decreases this will make rotor to rota			e rotor to rotate in	
	forward	direction.	OD		
	alternati alternati rotor ha	When sing ing field is pro ing field will i s closed circui	le phase supply is applied oduced. The axis of this fiel induce an emf in the rotor of it, current will flow through	across the single phase a d is stationary in horizon conductors by transforment the rotor conductors.	stator winding, an ital direction. The r action. Since the
		Due to indu	uced emf and current in the	rotor conductors the force	e experienced by
	the u	pper conductor	rs of the rotor will be downy	ward and the force experie	enced by the
	lower	r conductors of	f the rotor will be upward .7	The two sets of force will	cancel each other
	and t	he rotor will ex	xperience no torque.		
Q.4 (a)	Attemp	t any THREF	E of the following:		12 Marks
i)	A 500 V the inpu 500 W.	7, 3-phase, 50 ut power facto Find:	Hz, induction motor deve or is 0.86 lagging, mechani	lops an out-put of 15 kV cal losses are 730 W and	V at 950 r.p.m. If l stator losses are
	1) The s	slip 2) The ro	otor cu loss 3) The rotor in	put 4) The line current	
Ans:	Give 3Ph	n Data: 1, 50 Hz I.M	Motor $o/p = 15 \ge 10^3 W$	N = Actual Speed=	950RPM
	Ass	suming , $N_S = 1$	000 RPM which is very clo	se with N	

Subject Code: 17511	Model Answer	Page 20 of 38
1) The Slip :	% Slip = $\frac{N_s - N}{N_s} \times 100 = \frac{1000 - 950}{1000}$	
Now.	% Slip = 0.05 or 5 %	(1 /2Marks)
Gross Rotor	output = Net Motor output + Mechanical Loss	ses
	= (15000+730) watt	
	= 15730 Watts	(1/2 Marks)
2) Rotor Coppe	er Losses = $\frac{S}{(1-S)}$ (Gross Rotor output) = $\frac{0.05}{(1-S)} \times 15730$	(1/2 Marks)
	(1-0.05)	
	= 827.895 watts	
Rotor C	copper Lossees \cong 827.9 Watts	(1/2 Marks)
3) Net Motor in	put:	
Rotor	$Input = \frac{Rotor Copper losses}{S}$	(1/2 Marks)
Rotor	Input = $\frac{827.895}{0.05}$	
Rotor	Input = 16557.92 Watts	
Net Motor	r input = Rotor Input + (Stator Losses)	
Net Moto	r input = (16557.92 +500) Watts	
Net Moto	r input = 17057.92 Watts	(1/2 Marks)
Net Mot	or input = $\sqrt{3} V_L I_L \cos\phi$	
4) Line Current	of Motor :	
	Net motor input	(1/2 Marks)
	$\sqrt{3} V_L \cos\phi$	(1/2 Warks)
= -	$\frac{17057.92}{\sqrt{3} \times 500 \times 0.86}$	
I	$L = \frac{17057.92}{744.781}$	

Subject Code: 17511

Summer- 2017 Examinations Model Answer

Page 21 of 38

ii)	With the help of mathematical expression state why it is necessary to use starter in 3- phase induction motor.				
Ans:	Mathematical expression it is necessary to use starter in 3-phase induction motor:				
	(4 Marks)				
	If we look at the equivalent circuit of the three phase induction motor at the time of				
	starting, we can see the motor behaves like an electrical transformer with short				
	circuited secondary winding, because at the time of starting, the rotor is stationary and				
	the back emf due to the rotation is not developed yet hence the motor draws the high				
	starting current. So the reason of using the starter is clear here.				
	The equivalent circuit of three phase induction motor is given below				
	$\begin{array}{c} R_1 \\ K_1 \\ I_1 \\ I_2 \\ I_3 \\ I_4 \end{array}$				
	V_1 $R_o \neq X_o \neq \frac{R_2}{s}$				
	в				
	The stator current is given by following equation				
	$\vec{I}_1 = \vec{I}_m + \vec{I}_2$				
	\vec{I}_m is CONSTANT				
$\vec{I}_2 = \frac{\vec{V_1}}{\frac{R_2}{R_2} + iX}$					
	s s s				
	In above equation, s is the slip. The value of slip is <i>1 unity</i> at start so value of R_2+jX_2 is				
	smallest which results in large value of I_2 and therefore I_1 i.e. stator current.				
	As the motor picks up the speed, value of slip reaches near to zero. This results in large value				
	of $R_2/s+jX_2$. Value of I_2 falls to a small value and therefore I_1 i.e. the stator current.				
	With the help of a neat circuit diagram, explain the procedure to calculate voltage				
iii)	regulation of a 3-phase alternator by synchronous impedance method.				
Ans:	Necessary graphs and phasor diagram : (2 Marks)				
	Open circuit voltage				
	E the short circuit current				
	Rated terminal				
	voltage				
	S.C.C				
	EN SCOTT				
	Full load short				
	Field current				
	(or Amp-Turns) OR				

Summer-2017 Examinations Subject Code: 17511 **Model Answer** Page 23 of 38 Why it is necessary to run alternators in parallel? Explain. iv) The necessity of parallel operation of Alternators : Ans: (Any Four Point expected: 1 Mark each) 1. Continuity in supply system: Continuity in supply system is we have two or more alternator in parallel and if one is out of order then the power supply can be maintained with the help of another alternator. 2. More Efficiency: The alternators can be put ON or cut OFF as per the load demand. The efficiency of alternator is maximum at full load. Therefore we can put ON required number of alternators as per load demand and operate the alternators at full load capacity. 3. Maintenance and repair: With more number of alternators in parallel, any one can be taken out of maintenance and repair without disturbing the supply. The smaller units are very easily repairable. 4. Standby of reserved unit: In case of number of small alternators in parallel, The standby alternator required is also of small capacity. 5. Future expansion: Considering the probable increasing in demand in future, some additional units are installed and can be connected in parallel. 6. Saving In Fuel: Since almost all alternators are operated on full load no anyone alternator operates lightly loaded. OR Advantages of parallel operation of alternator:-1. Several small units connected in parallel are more reliable than a single large unit. If one of small units is disabled, the entire power supply is not cut -off. 2. The units may be connected in service and taken out of service to correspond with the load on the station. This keeps the units loaded to their full load capacity & increases the efficiency of the operation. 3) Out of several units if one unit fails, it can be repaired easily without the failure of supply to consumers. 4) Additional units can be connected in parallel with the resent units to correspond with the growth of the load. 5) Cost of the spares if any required for repair, maintenance will be reduced.

Summer-2017 Examinations

Subject Code: 17511

Model Answer

Page 24 of 38

Q.4 (B)	Attempt any ONE of the following:6 Marks			
i)	Define voltage regulation of an alternator. State and explain the factors on which			
,	voltage regulation depends. Voltage Regulation of Alternator: (2 Marks)			
	Voltage Regulation of Alternator. (2 Marks)			
	It is defined as the fise in voltage when full load is removed, keeping excitation &			
	speed of alternator constant, expressed as percentage of rated terminal voltage is called			
	"Voltage regulation".			
	OR			
	It is defined as the ratio of sudden rise or fall in voltage when the load is removed suddenly to the rated terminal voltage, keeping speed & excitation of alternator constant.			
	Following factors on which voltage regulation depends:(Each Point : 1 Mark)			
	1. Armature resistance per phase:			
	As armature resistance increases $I_a R_a$ drop increases, which make voltage			
	regulation poor.			
	2. Armature Leakage flux:			
Ans	If leakage flux is more, the leakage reactance X_L increases which increases I_a			
7 115.	X _L drop. Hence regulation becomes poor.			
	3. Magnitude of load current:			
	If load current increases $I_a R_a$ and $I_a X_L$ drop increases and armature reaction			
	effect also increases. Therefore terminals voltage drops which makes regulation poor.			
	4. Load Power factor:			
	i) For lagging power factor the effect of armature reaction is demagnetizing and			
	therefore the main flux reduces, considerably which causes poor regulation.			
	ii) For unity P.f, the effect of armature reaction is cross magnetizing, therefore			
	distortion in main flux will be resulted & hence regulation is comparatively less.			
	iii) For leading P.f, the effect of armature reaction is strong magnetizing therefore			
	main flux will be more stronger and so terminal voltage actually increases			
	which gives negative regulation.			
ii)	A 3-phase, star connected alternator rated at 1600 kVA 13500 V; The armature resistance and synchronous reactance are 1.5 ohms and 30 ohms respectively per phase - calculate percentage voltage regulation for a load of 1280 kW at a power factor: (i) 0.8 leading (ii) unity			

Subj	ect Code: 17511	Summer– 20 <u>Mode</u>	17 Examinations <u>l Answer</u>	Page 25 of 38		
	Solution:-					
	3-Ph, star c	onnected alternator,				
	V _T Line =	$13.5 \ge 10^3 \text{ KV}$	R_a/Ph =1.5 Ω	& $X_s / Ph = 30 \Omega$		
	$V_T / Ph = 1$	$3.5 \times 10^3 / \sqrt{3} = 7794.2$	23 Volt	(1/2 Marks)		
	i) $I_a li$	$ne \ Current = \frac{KW}{(\sqrt{3}) \times (1)}$	$\frac{7 \times 10^3}{V_{TLine}) \cos \phi}$			
	I _a line	$e\ Current = \frac{(128)}{(\sqrt{3}) \times (13)}$	$30) \times 10^{3}$ $3.5) \times 10^{3}$ (0.8)			
	I _a i	ine Current = 68.43 A	l ·	(1/2 Marks)		
	Now, % regulation at	0.8 leading Power Fa	ctor;			
	E/ph = -	$\left(V_T \ \cos\phi + I_a R_a\right)^2 + \left(V_T \ \cos\phi + I_a $	$\overline{V_T \sin \phi - I_a X_s}^2 - \cdots$	(1/2Mark)		
	$E_{ph} = \chi$	$(7794.23 \times 0.8) + (68.4)$	$\overline{43 \times 1.5}^2 + (7794.23 \times$	$0.6 - 68.43 \times 30)^2$		
Ans:		$Eph = \sqrt{6338.25}^2 + (6000)^2 + (60000)^2 + (6000)^2 + (60000)^2 + (60000)^2 + (60000)^2 + (60000)^2 + (60000)^2 + (60000)^2 + (60$	$(2623.64)^2$			
		$Eph = \sqrt{47056899.91}$	- -			
	i i	Eph = 6859.8 Volt		(1/2Mark)		
	Re gula	$tion = \frac{6859.8 - 7794.2}{7794.23}$	$\frac{23}{2} \times 100 = -11.99\%$			
	% Regula	tion = -11.99 %		(1 Mark)		
	ii) % regulation at Unity Power Factor;					
		$ie \ Current = \frac{KW}{(\sqrt{3}) \times (V)}$	$\frac{7 \times 10^3}{7_{TLine}) \cos \phi}$	(1/2 Marks)		
	I _a lin	$ne \ Current = \frac{1280 \times 1}{(\sqrt{3}) \times 13}$	$\frac{10^3}{500 \times 1}$			
	I _a li	ne Current = 54.74 A	.mp	(1/2 Marks)		

	Summer- 2017 Examinations	
Subje	ct Code: 17511 <u>Model Answer</u>	Page 26 of 38
	$E / ph = \sqrt{(V_T Cos\phi + I_a R_a)^2 + (V_T sin\phi + I_a X_s)^2}$	
	$E_{ph} = \sqrt{(7794.23 \times 1 + 54.74 \times 1.5)^2 + (7794.23 \times 0 + 54.74 \times 30)^2}$	$\overline{0)^2}$
	$Eph = \sqrt{64733552.6}$	
	<i>Eph</i> = 8045.72 <i>Volt</i>	(1 Mark)
	Re gulation = $\frac{8045.72 - 7794.23}{7794.23} \times 100 = 3.23\%$	
	% Regulation = 3.23 %	(1 Mark)
0.5	Attempt any FOUR of the following :	16 Marks
<u>X</u>	A 20 H.P., 3-phase, 50 Hz, 4 pole induction motor has a full lo	ad slip of 4%. The
a)	friction and windages losses are 500 watts. Calculate the rotor co	opper loss and rotor
	speed.	
Ans:	Given data: 3-ph, 4 Pole, 50 Hz, 20 HP I.M. $S_f = full load slip = 4\%$	
	- F, , ,	
	Net output of Motor = 20 HP	
	= (20 x / 35.5) watts	(1/2 Mortra)
	= 14/10 waits	(1/2 WIAFKS)
	Gross Rotor output = Net Motor output + Mechanical Losses	(1/2 Marks)
	= 14710 + 500 watts	
	= 15210 watts	(1/2 Marks)
	Rotor Copper Losses = $\frac{S}{(1-S)}$ (Gross Rotor output)	(1 Marks)
	$= \frac{0.04}{(1-0.04)} \times 15210$	
	= 633.75 watts	(1 /2Marks)
	Rotor Speed (N) = (1-S)N _S where $N_{s} = \frac{120 \text{ f}}{P} = \frac{120 \times 50}{4} = 1500 \text{ RPM}$	(1/2 Marks)
	N = (1-0.04) x 1500	
	Motor Speed N = 1440 RPM	(1/2 Marks)

Subje	ct Code: 17511 Summer– 2017 Examinations Page 27 of 38				
b)) State different methods used for measurement slip of a 3-phase induction motor and explain any one method in detail.				
Ans:	Methods used for measurement slip of a 3-phase induction motor:				
	(Methods of measurement of Slip:1 Mark each & Explanation any one Method:1 Mark				
	1. Measurement of actual Speed (Tachometer Method):-				
	2. Galvanometer Method:-				
	3. Stroboscopic Method:-				
	1. Measurement of actual Speed (Tachometer Method):-				
	In this method speed of rotor (N) is actually measured with the help of digital/				
	analog tachometer. Than slip is calculated $\frac{N_s - N_s}{N_s} \times 100$ where, N _s is				
	synchronous speed it can be calculated from given data of motor, $N_s = \frac{120f}{P}$				
	2. Galvanometer Method:-				
	In case of slip-ring induction motor rotor frequency is measured by inserting a low value centre zero reading DC moving coil voltmeter connected across the slip-rings.				
	Measure number of oscillations made by pointer of centers zero moving coil voltmeter and time. The slip can be determined from the following relation.				
	$Slip = \frac{Number of oscillations counted over aperiod of t seconds}{50 \times t} = \frac{Rotor frequency(f^{1})}{Supply frequency(f)}$				
	3. Stroboscopic Method:-				
	3¢ I.M. Ac Supply				

Subje	Sum ect Code: 17511	mer– 2017 Examinations <u>Model Answer</u>	Page 28 of 38	
	In the stroboscopic method a disc with alternate black and white sectors (painted) is attached to the end of the motor shaft. The number of black sector as well as white sectors, each is equal to the number of poles for which the motor is wound. For example for a 6-pole motor there will be 12 sectors, 6 black and 6 white, for testing motor with different numbers of poles, separate disc having different numbers of sectors (painted) is required. The disc is laminated by means of a neon lamp of stroboscope. The frequency of neon lamp is adjusted till the disc appears stationary; when disc would be appeared stationary at that time the frequency of the stroboscope corresponds to slip frequency. The slip is noted from the calibrated dial or the stroboscope. OR			
	$Slip = \frac{Apparent}{a}$	t revolutions counted in the Time in Seconds	$\frac{given time}{Supply Frequency} \times \frac{pairs of poles}{Supply Frequency}$	
c)	State various methods of syn method in detail.	nchronizing 3-phase alter	mators and explain any one	
Ans:	Following are the 'Three lamp met (State 1. All Dark lamp method or all b 2. One Dark, Two bright lamp m Explanation of various methods 1. All Dark lamp method or all Fig: For Three Phase Alter Fig: For Three Phase Alter	Thod' of synchronizing an 3-Ple: 2 Mark and Any One Lambright lamp method: ethod (One Straight, two cross of synchronizing 3-phase bright lamp method: nator	hase alternator:- ap Method are expected: 2 Mark) oss method) alternators : (Any One Method expected)	

Subject Code: 17511

Summer- 2017 Examinations <u>Model Answer</u>

Page 29 of 38

$$\begin{split} V_{L1} &= \text{Voltage across the lamps } L_1 = V_{R2} - V_{R1} \ \ V_{L2} = \text{Voltage across the lamps } L_2 = V_{Y2} - V_{Y1} \\ V_{L3} &= \text{Voltage across the lamps } L_3 = V_{B2} - V_{B1} \end{split}$$

Vector Diagram:

- The 3 lamp pairs L₁ & L₂, and L₂ & L₂, and L₃ & L₃ of equal wattage and voltage rating are connected as shown in figure across the switch and to the bus bar and alternator terminals.
- > The Phasor diagram of the bus bar voltages $(V_{R1}=V_{Y1}=V_{B1})$ and the Phasor diagram of voltage of incoming alternator $(V_{R2}=V_{Y2}=V_{B2})$ are shown in the figure.
- If the bus bar voltage vector and the alternator voltage vector are in phase with each other then the polarities (phase sequence) of bus bur and alternator are same. At this instant the voltage across each lamp will be zero and thus lamps will be dark. This is the correct instant of synchronizing. The synchronizing switch is closed so that the incoming alternator is connected to the synchronizing satisfactorily.
- If the alternator voltage vectors are not in phase with the bus bar voltage vectors then there will be some voltage across the lamps and the lamps will glow with equal brightness. This shows the polarity of alternator is not the same as that of the bus bars. The alternator should not be synchronized at such instant. The correct instant of synchronizing is obtained by slightly adjusting the speed of the prime mover of the incoming alternator.

OR other method

2. One Dark, Two bright lamp method (One Straight, two cross method)

Summer-2017 Examinations Subject Code: 17511 **Model Answer** Page 30 of 38 V_{L1} = Voltage across the lamps $L_1 = V_{R1} - V_{R2}$ V_{L2} = Voltage across the lamps $L_2 = V_{Y1} - V_{Y2}$ V_{L3} = Voltage across the lamps $L_3 = V_{B1} - V_{B2}$ > The 3 lamp pairs $L_1 \& L_2$, and $L_2 \& L_2$, and $L_3 \& L_3$ of equal wattage and voltage rating are connected as shown in figure across the switch and to the bus bar and alternator terminals. > The Phasor diagram of the bus bar voltages $(V_{R1}=V_{Y1}=V_{B1})$ and the Phasor diagram of voltage of incoming alternator ($V_{R2}=V_{Y2}=V_{B2}$) are shown in the figure. > The lamps will still flickers in this case also and the rate of their flickering will depend on the amount of diff of the frequencies of the two alternators. > The correctness of the phase sequence is indicated by the lamps blowing bright or dark, one after another and not simultaneously. > The correct instant of closing the synchronizing switch is when the straight connected lamps are dark and the cross connected lamps are equally bright. OR Student may write this way INCOMING AI TERNATOR

> If the synchroscope is not available, synchronizing lamp method is used.

PARALLELING

Summer – 2017 Examinations : 17511 <u>Model Answer</u>	Page 31 of 38		
There are different methods of lamp connection. The method of two b	oright and one		
dark lamp indication is illustrated in above figure.			
In this connection the lamps become bright and dark as follows for co	orrect phase		
sequence. "Two lamps bright and one lamp dark at a time".			
If all the lamps become simultaneously dark or bright, the phase sequ	ence is wrong.		
The switch is closed when the voltage, frequency and the lamps (2 bright and 1 Dat satisfy the condition of synchronism.			
Iternators A and B operate in parallel and supply a load of 8 M lagging. The power out put of A is adjusted to 5000 kW by cha and its power factor adjusted to 0-9 lagging by changing its factor of alternator B.	W at 0-8 power anging its steam excitation. Find		
OBD is the power triangle of alternator of the load : OAE is the power triangle of alternator of the load A : ECD is the power triangle of alternator of the load A : ECD is the power triangle of alternator of the load B : er factor of alternator A : $\phi_A = Cos^{-1} (0.9) = 25.84^{\circ}$ elect. lag er factor angle of load : $\phi_L = Cos^{-1} (0.8) = 36.86^{\circ}$ elect. lag $l (AE) = RMVA of alternator A = l (OA) \tan \phi_A$ $= (5MW) \tan 25.84)$ l (BC) = 2.421 RMVA	tt fig (1/2Mark) (1/2Mark) (1/2Mark)		
	Summer- 2017 Examinations Model Answer There are different methods of lamp connection. The method of two l dark lamp indication is illustrated in above figure. In this connection the lamps become bright and dark as follows for consequence. "Two lamps bright and one lamp dark at a time". If all the lamps become simultaneously dark or bright, the phase sequence with a closed when the voltage, frequency and the lamps (2 br satisfy the condition of synchronism. Iternators A and B operate in parallel and supply a load of 8 M lagging. The power out put of A is adjusted to 5000 kW by char and its power factor adjusted to 0-9 lagging by changing its factor of alternator B. OBD is the power triangle of alternator of the load : OAE is the power triangle of alternator of the load A : ECD is the power triangle of alternator of the load B : er factor of alternator A : $\phi_A = Cos^{-1} (0.9) = 25.84^\circ$ elect. lag		

Summer-2017 Examinations				
Subje	ect Code: 17511 <u>Model Answer</u>	Page 32 of 38		
	l(CD) = l(BD) - l(BC) = (5.998) - (2.421)			
	<i>l</i> (<i>CD</i>) = 3.5766 <i>RMVA</i>	(1/2Mark)		
	In RA \triangle ECD tan $\phi_B = \frac{l(CD)}{l(EC)}$			
	$RA \Delta ECD \tan \phi_B = \frac{3.576}{3}$			
	$RA \Delta ECD \tan \phi_B = 1.192 \dots$	(1/2Mark)		
	$\phi_B = Power \ factor \ angle \ of \ alternator \ B$			
	$\phi_B = \tan^{-1}(1.192)$			
	$\phi_B = 50^0 \ Elect. \ lag$			
	$Cos \phi_B = Cos 50 = Pf$ of alternator at B			
	$Cos \phi_B = 0.64 \ lag $	(1/2Mark)		
e)	Explain the principle of operation of a linear induction motor.			
	linear induction motor: (Figure- 2 Marks & Princi	ple – 2 Marks)		
Ans:	$\frac{linear}{rolar} \longrightarrow Direction of rotor\frac{linear}{rolar} \longrightarrow Direction stator. \longrightarrow of Plux R g or Equivalent fi$	g.		
	Working principle of operation linear induction motor:-			
	Linear Induction Motor (LIM) is an asynchronous motor, working on principle an Induction motor works, but is designed to produce the line	the same ear motion,		
	 When the stator (primary) is excited by applying 3 phase supply in an motor, rotating magnetic field is produced. 	induction		

Summer-2017 Examinations				
Subje	ect Code: 17511 <u>Model Answer</u>	Page 33 of 38		
	> Here, after laying down the stator flat, excitation with three phase suppl	y would		
	induce a 'travelling flux', a travelling magnetic field, which would linea	rly travel		
	along the stator.			
	This would again induce emfs in the rotor, which produces a forward the if the secondary (rotor) is fixed primary is free to move, it would tra- length of the machine linearly, along the tracks provided so produ- motion.	rust force, and avel across the uce the linear		
	OR IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	1		
	In a sector IM, if sector is made flat and squirrel cage winding is t	brought to it		
	we get linear I.M. In practice instead of a flat squirrel cage winding, all	uminum or		
	copper or iron plate is used as rotor.			
	The flat stator produces a flux that moves in a straight line from its o	one end to		
	other at a linear synchronous speed given by $Vs = 2$ wf			
	Where, $Vs = linear$ synchronous speed in m/sec			
	w = width of one pitch in m.			
	f = supply frequency (Hz)			
	The speed does not depends on number of poles but only on the p supply frequency. As the flux move linearly it drags the rotor plate along w direction. However in much practical application the rotor is stationary moves.	ooles pitch and with it in same y while stator		
f)	What is an induction generator? State it's principle of operation.			
Ans:	Induction generator:	(2 Mark)		
	When rotor of induction motor runs faster than synchronous speed, it motor runs as generator and called as induction generator. It converts mechanic receives from the shaft into electrical energy which is released by stator. Howe creating its own magnetic field, it absorbs reactive power Q from the lime to we connected. The reactive power is supplied by a capacitor bank connected at the generator output terminals.	nduction cal energy it ver, for hich it is induction		
	or Equivalent fig.			
l	of Equivalenting.			

Summer– 2017 Examinations Subject Code: 17511 Model Answer Page 34 of 38					
	The princ	ator: (2 Mark)			
	l	When rotor of induction motor runs	s faster than synchronous speed (N>Ns),		
	induction	motor runs as generator and called a	s induction generator. It converts mechanical		
	energy it r	receives from the shaft into electrical	l energy which is released by stator. However,		
	for creatin	ig its own magnetic field, it absorbs i	reactive power Q from the line to which it is		
	connected	. The reactive power is supplied by a	a capacitor bank connected at the induction		
0(generator	output terminals.	16 Marsha		
Q.0	Attempt a	any FOUR of the following:	16 Marks		
a)	(i) Shade	d nole induction motor (ii) Canaci	itor start induction run motor		
u)	(iii) Resis	tance start induction run motor (i	iv) Capacitor start capacitor run motor		
Ans:	Applicatio	ons of each of the following:			
	Sr.No	Types of 1-Ph Induction Motor	Applications (Any Two expected)		
	i)	Shaded pole motor (Any Two Applications 1Marks)	Recording Instruments, Record Player, Gramophones, toy Motors, Hair dryers,		
			Photo copy machine, Advertising display		
	ii)	Capacitor Start Induction run	Fans, Blowers, Grinder, Drilling Machine,		
		(Any Two Applications 1Marks)	Washing Machine, Refrigerator, Air		
			conditioner, Domestic Water Pumps,		
	iii)	Resistance Start Induction run	Washing Machine, Fans, Blowers,		
		(Any Two Applications Intarks)	Small electrical Tools, Saw machine		
	iv)	Capacitor Start Capacitor run	Fans, Blowers, Grinder, Drilling Machine,		
		(Any Two Applications 1Marks)	Washing Machine, Refrigerator, Air		
			compressors		
			compressors.		
	1				
	With a no	eat circuit diagram, explain constr	nuction and working principle of a capacitor		
b)	start indu	iction run 1-phase induction moto	r.		
Ans:	Working	principle of a capacitor start indu	iction run 1-phase induction motor :		
	(Figure- 2 Mark & Explanation- 2 Mark)				
	Centrifugal				
	switch				
	l	I'm t C	A€		
	l		$\left \left(\circ \right) \right\rangle$		
	l				
	l	¥			
	l	Main Winding Squ	irrel cage rotor OR Equivalent fig		

		Summer-2017 Examinations				
Subje	ct Code: 17511	<u>Model Answer</u>	Page 36 of 38			
d)	d) Define armature reaction in an alternator. Discuss the effect of lagging power factor load on armature reaction.					
	Definition of arm	ature reaction in an alternator:	(2 Mark)			
Ans:	When the armature conductors carry current they produce their own flux this flux					
	affects the main pole flux. Due to the change in flux the terminal voltage available at the					
	load conditions will be different. The effect of armature flux on pole flux is called as					
	armature reaction.					
	The effect of armature reaction depends upon Lagging power factor the load:					
		dem at zero p.f. lag to the formation of the				
	OR					
		$I_{a} \xrightarrow{\varphi_{a}} \Phi_{a} \xrightarrow{\varphi_{a}} \Phi_{a}$ Armature 90° flux $E_{ph} \text{ Induced e.m.f.}$ due to φ_{f}	ne			
	For lagging P.f. or inductive load: - In this case the armature flux opposes the main					
	flux. This effect is called as <u>de-magnetizing Effect</u> . Due to this, the main flux will be					
	weakened and terminal voltage drops ie $V_T \langle E.$ (2 Mark)					
	State any two onr	lications of the following motors:				
e)	(i) A.C. servomo	tor (ii) D.C. servomotor (iii) Variable reluctan	ce stepper motor			
Ans	(iv) Permanent m	agnet stepper motor f AC serve motor. It is widely used in :				
7 1115.	5. 1) Application of AC Sci vo motor, it is writely used in : (Any Two Applications expected: 1 Mark each)					
	1. Roboti	cs:				
	2. Convey	yor Belts:				
	3. Camera	a Auto Focus:.				
	4. Roboti	c Vehicle:				
	5. Solar T	Tracking System:				

MAHARASHTRA STATE BOARAD OF TECHNICAL EDUCATIOD (Autonomous) (ISO/IEC-27001-2005 Certified)

	Summer- 2017 Examinations	
Subject Code: 175	11 <u>Model Answer</u>	Page 37 of 38
6.	Metal Cutting & Metal Forming Machines:	
7.	Antenna Positioning:	
8.	Woodworking/CNC:	
9.	Textiles:	
10.	Printing Presses/Printers:	
11.	Automatic Door Openers:	
(ii) Appl	lication of DC servo motor, It is widely used in :	
	(Any Two Applications ex	spected: 1 Mark each)
1. Ra	adars	
2. Co	omputers	
3. Ro	obots	
4. M	achine Tools	
5. Tr	acking and guidance systems	
6. Pr	ocess controllers	
(iii) App	lication of Variable reluctance stepper motor , It is w	videly used in :
	(Any Two Applications e	xpected: 1 Mark each)
1. Su	itable for use with computer control systems	
2. W	idely used in numerical control of machine tools	
3. Ta	ape Drives	
4. Fl	oppy disc Drives	
5. Pr	inters	
6. X-	-Y Plotters	
7. Ro	obotics	
8. Te	extile Industries	
9. In	tegrated circuit fabrication	
10. E	Electric Watches	
11. I	n Space crafts launched for scientific explorations of plan	iets.
12. I	n the production of science fiction movies.	
13. \	Varity of commercial, medical and military applications	

Subject Code: 17511	Summer– 2017 Examinations <u>Model Answer</u>	Page 38 of 38				
(iv) Permanent magnet stepper motor, It is widely used in :						
	(Any Two Applications expected: 1 Mark each)					
1. Suitable for us	e with computer control systems					
2. Widely used in	numerical control of machine tools					
3. Tape Drives						
4. Floppy disc Dr	ives					
5. Printers						
6. X-Y Plotters						
7. Robotics						
8. Textile Industr	ies					
9. Integrated circu	uit fabrication					
10. Electric Watc	hes					
11. In Space craft	ts launched for scientific explorations of I	planets.				
12. In the product	tion of science fiction movies.					
13. Varity of com	mercial, medical and military application	18				
I						

-----END------