

Summer-2017 Examinations

Subject Code: 17507

Model Answer

Page 1 of 33

Important suggestions to examiners:

- 1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme.
- 2) The model answer and the answer written by candidate may vary but the examiner may try to assess the understanding level of the candidate.
- 3) The language errors such as grammatical, spelling errors should not be given more importance. (Not applicable for subject English and communication skills)
- 4) While assessing figures, examiner may give credit for principle components indicated in a figure. The figures drawn by candidate and model answer may vary. The examiner may give credit for any equivalent figure drawn.
- 5) Credits may be given step wise for numerical problems. In some cases, the assumed constant values may vary and there may be some difference in the candidate's answers and model answer.
- 6) In case some questions credit may be given by judgment on part of examiner of relevant answer based on candidate understands.
- 7) For programming language papers, credit may be given to any other program based on equivalent concept.

Q.1 A)	Attempt any three :(3x4=12)		
a)	State the factors governing selection of electric motors.		
Ans:	Following Factors governing / or are considered while selecting electric drive (Motor) for		
	particular application: (Any Four factor expected: 1 Mark each , Total 4 Marks)		
	1. <u>Nature of supply:</u>		
	Whether supply available is		
	\succ AC,		
	Pure DC		
	Or Rectified DC		
	2. <u>Nature of Drive (Motor</u>):		
	Whether motor is used to drive (run)		
	Individual machine		
	OR group of machines.		
	3. <u>Nature of load:</u>		
	Whether load required light or heavy starting torque		
	OR load having high inertia, require high starting torque for long duration.		
	> OR Whether load torque increases with speed (T α N)		
	> OR decreases with speed (T α 1/N)		
	> OR remains constant with speed $(T = N)$		

	Subject Code: 17507	mmer– 2017 Examinations <u>Model Answer</u>	Page 2 of 33
	OR increases with square	of speed (T α N ²)	
	4. <u>Electric Characteristics of drive</u>	<u>:</u>	
	Starting,		
	Running,		
	Speed control		
	and braking characteristic	S	
	of electric drive should be studie	d and it should be matched with loa	d requirements(i.e.
	machine).		
	5. <u>Size and rating of motor</u> :		
	Whether motor is short tir	ne running	
	> OR continuously running		
	OR intermittently running		
	OR used for variable load	cycle.	
	Whether overload capacity,	pull out torque is sufficient.	
	6. <u>Mechanical Considerations</u> :		
	Types of enclosure,		
	Types of bearing,		
	 Transmission of mechanic 	cal power,	
	> Noise		
	> and load equalization		
	7. <u>Cost:</u>		
	Capital,Running		
	 Running And maintenance cost shows 	ould be less.	
b)	0		Mark and Total 4 Marks)
Ans:			Mark each, 10tal 4 Marks)
	1. It can be put into service	e miniedialery.	
	 No standby losses. Uist afficiency. 		
	3. High efficiency.	then commentional terms of the st	
		ther conventional types of heating s	system.
	5. Easy to operate and con	trol.	

Summer-2017 Examinations Subject Code: 17507 **Model Answer** Page 3 of 33 6. No air pollution. 7. System is clean, as there is no waste produced. 8. No fuel transportation cost. 9. No space is required for storage of fuel and waste. 10. Noiseless operation. 11. Uniform heating is possible; heating at particular point is also possible. 12. Dielectric material can be heated. 13. Electrical heating equipments are generally automatic, so it requires low attention and supervision. 14. Protection against overheating can be provided by suitable switch gear. Explain the factors to be considered while designing a lighting scheme. **c**) Ans: Following factors to be considered while designing a lighting scheme (Any Four factors are expected : 1 Mark each, Total 4 Marks) 1. Design of illumination scheme should be very simple. 2. Area of the working plane. 3. Find out application of working plane Decided lux level on working plane as per application.(Illumination level) 4. 5. Find out total lumens required on working plane. Decide the type and wattage of lamp which is to be used for that particular application 6. 7. Quality of light 8. Assume waste light Factor 9. Assume utilization Factor 10. Assume deprecation Factor 11. The illumination scheme is designed in such a way that there should be fewer glares. 12. The illumination scheme is designed in such a way that there should be minimum shadows. 13. The control of light intensity is possible. 14. Assume the illumination efficiency of those specific lamps which are to be used. 15. Provide safety and prevent accident.

	Subject Code: 17507	Summer– 2017 Exan <u>Model Answ</u>		Page 4 of 33
	16. Take care to achieve d	esired energy saving.		
	17. Choose lamp with high	her luminous efficienc	y, better color, and longer l	ife
	18. For any type of illumin	nation scheme the main	ntenance & repairing shoul	d be less.
	19. The cost of the design	ed illumination scheme	e should be low	
d)	d) Explain the principle of powe		nt.	
Ans:	Principle of power facto We know that,	rs improvement:-		(4 Marks)
	$P = \sqrt{3} V_L I_L C$	Cosφ		
	➢ For same power	to be transmitted		
	At same voltage			
	Over a same dist	ance		
	$I \alpha \frac{1}{\cos \phi} \alpha \frac{1}{P.f}$			
	 From above equators to decreases in current, 	-	oower factor increases curr s.	ent decreases, due
		\blacktriangleright	OR	
	↓ V			
)R	

		7 Examinations <u>Answer</u>	Page 5 of 33
	C Xeij	$KVAR c Qc$ $kW = A$ $kVAR_{2}$ $kVAR_{2}$ $kVAR_{3}$ $g1$ $g1$ $g1$ $g1$ $g1$	
Q.1B)	Attempt any ONE :	(1	(x6=6)
a) i)	(i) Define electrical braking.	· · · · · · · · · · · · · · · · · · ·	
Ans:	Electrical braking:	(1	Marks)
	It is necessary to stop the vehicle when within reasonable time by use of electrical e	-	en required
a) ii)	State its types electrical braking		
	Electrical braking system: 1. Plugging 2. Rheostatic (Dynam: 3. Regenerative Braking 4. Electromagnetic Bracking 5. Eddy current braking	ng aking	
a) iii)	Explain regenerative braking for D.C. series me	otor.	
Ans:	OH Conductor	(Fig.—2 Marks, Explanatio erative braking of D.C. series :-	n 2 Marks)
	Current Limiting device	To limit current R Connection during EPB	R
	Fig A	Fig B	

	Subject Code: 17507	Summer– 2017 Examinations <u>Model Answer</u>	Page 6 of 33
	Explanation of regenerative b	oraking:	
	During normal running, r armature as shown in fig	notors are connected in parallel with figure A.	eld winding in series w.r.t.
	_	ng braking all the armature are connect ries field winding are connected in series s shown in fig.B	-
		s a generator and excitation current is shan supply voltage (V), so that power v	
	-	l up to the speed of train reaches up to 2 herated voltage greater than supply volt	
	 For final stop mechanical braking is applied. External Resistances are connected to limit the current. 		
b)	Explain with the diagram butt	welding. State its applications.	
Ans:	(Diagram 2 Marks, Explan Diagram butt welding:-	ation 2 Marks, Applications	2 Marks, Total 6 Marks)
	Bu	camp Butt welding press applied who temperature edecedededed welding xmee apply	ere Weld , is obtained

Summer-2017 Examinations Subject Code: 17507 **Model Answer** Page 7 of 33 **Explanation:** > Transformer used for welding is designed for low voltage and high current secondary. \geq Transformer is oil cooled \geq The job is clamped as shown in fig. two parts which are to be welded are brought together \geq Sufficiently heavy current is passed through joints by welding transformer, which creates necessary heat at joints due to I^2R \geq \geq When welding temperature is reached supply is cut down. \geq And external pressure is applied simultaneously across the job to complete weld **Application Butt Welding:** 1) For welding rod, wire, pipe etc 2) For joining thick metal plates or bars at end Q.2 Attempt any FOUR : (4x4=16 Mark) State four advantages of electrical braking over mechanical braking. a) Ans: (Any Four Advantages expected : 1 Mark each, Total 4 Marks) Following are the advantages of electrical braking over mechanical braking system. Advantages: 1. It is most reliable braking system. 2. Breaking actuation time is small as higher value of braking retardation is obtained. 3. Electrical braking is smooth & gradual. 4. Life of braking system is more. 5. There is less wear & tear of brake shoes, break block etc. so there is less maintenance cost. 6. Higher speeds are possible even when train is going down the gradient, as breaking system is reliable. 7. Trains having heavy loads can be stopped even when train going up the gradient. 8. Higher speeds of train is possible as braking system is reliable so pay load capacity increases. 9. In case of electric regenerative braking we can utilize 60 to 80% of kinetic energy to generate electricity which is not possible with mechanical braking.

Subject	Code: 17507	Summer– 2017 Examinations <u>Model Answer</u>	Page 8 of 33
	• • •		
		od heating material in indirec	t resistance heating:-
1.			
	-	•	npact in size and produces more heat
	-	nt.	
2.	High melting point:		
	It should have high me	elting point to withstand at high	temperature.
3.			
	It should have high ox	kidizing temperature or it should	d not oxidize even at high
	temperature.		
4.	High Resistance to corro	osion:	
	It should have high res	sistance to corrosion to avoid ru	isting.
5.	High Mechanical Strengt	h:	
	It should have high m	echanical strength to withstand	from mechanical injury.
6.	Ductile:		
	It should be ductile so	that it can be manufactured inte	o different size & shape.
7.	Long Life:		
	It should have long lif	e.	
8.	Less Costly:		
	It should be less costly	y and easily available.	
9.	Low temperature co-effic	cient of resistance:	
	For accurate temperat	ure control, it should have low	temperature co-efficient of
	resistance.		
10.	It should not be brittle.		
-	-		
Compa	are A.C. and D.C. system		1 Mark each, Total 4 Marks)
S.No	Points	AC System Traction	DC System Traction
1	Supply given to O/H condition	1-ph, 25KV, AC 25 Hz	600/750V-Tromways 1500/3000V urban/suburban
	State d (A F(1) 2. 3. 4. 5. 6. 7. 8. 9. 10. Compa S.No	(Any Four properties are expensional structures of good 1. High resistivity:It should have high resistivity:It should have high resistivity:It should have high resistivity is should have high med 3. High Oxidizing temperaIt should have high med 3. High Oxidizing temperature.4. High Resistance to corroot it should have high resists is should have high med it should have high med 5. High Mechanical Strength It should have high med 6. Ductile:It should be ductile so7. Long Life:It should be ductile so7. Long Life:It should be less costly:It should be less costly:9. Low temperature co-efficient resistance.10. It should not be brittle.Compare A.C. and D.C. systemS.NoPoints1Supply given to O/H	Subject Code: 17507 Model Answer State desirable properties of heating elements used in indirect (Any Four properties are expected : 1 Mark each, Total Following properties of good heating material in indirect 1. High resistivity: It should have high resistivity. So that it becomes conwith small input current. 2. High melting point: It should have high melting point to withstand at high 3. High Oxidizing temperature: It should have high oxidizing temperature or it shoul temperature. 4. High Resistance to corrosion: It should have high resistance to corrosion to avoid runt temperature. 5. High Mechanical Strength: It should have high mechanical strength to withstand 6. Ductile: It should have long life. 8. Less Costly: It should have long life. 9. Low temperature co-efficient of resistance:

Summer-2017 Examinations

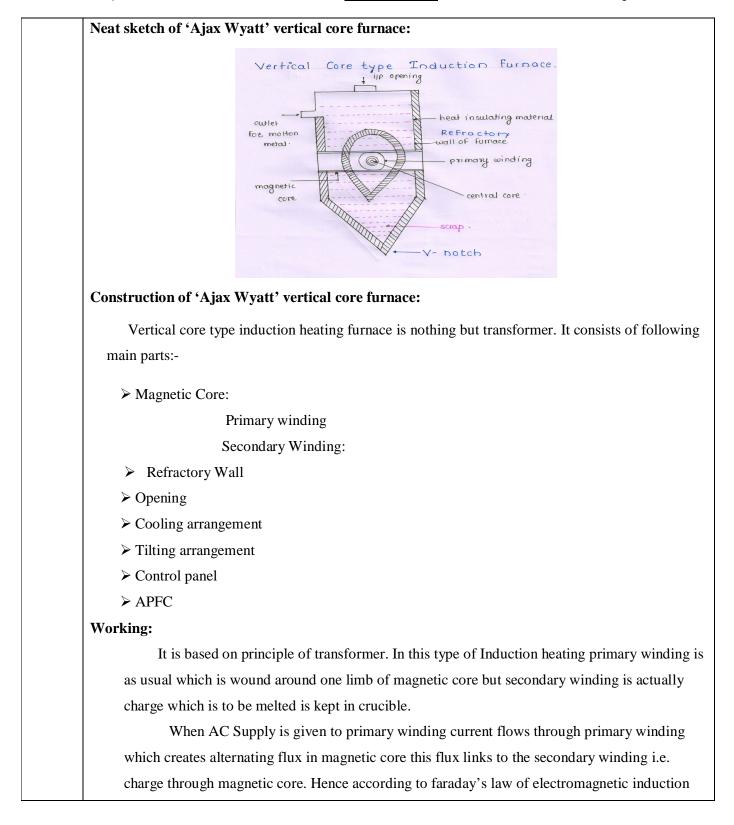
Subject Code: 17507

Model Answer

Page 9 of 33

	2	Type of drive used	1-ph, AC series motor	DC series motor for
	2	Type of allve used	1-pii, AC series motor	tramways. DC compound
				motor
	3	Weight of traction motor	1.5 times more than d.c.	1.5 times less then a.c series
	C C		series motor.	motor
	4	Starting torque	Less starting torque	High starting torque
	5	Accl ⁿ and retardation	Less than d.c series motor	High
	6	Overload capacity	Less than d.c series motor	High
	7	Method of speed control	Simple and smooth	Limited, except chopper
				method
	8	Maintenance cost of	More	Less
		traction motor		
	9	Starting Efficiency	More	Less
	10	Regenerative braking	Easy	Difficult
	11	Ridding quality	Less, better than d.c.	Smooth (Better)
	12	Insulation cost	High	Low
	13	Cross section of conductor	Less	More
	14	Design of supporting	light	Heavy
		structure		
	15	Distance between two	More	Less
		substation		
	16	No. of substation required	Less	More
		for same track distance.		-
	17	Size (capacity) of traction	More	Less
	10	substation		
	18	Capital & maintenance	Less	More
	10	cost of substation	Lass	Mana
	19	Cost track electrification for same track distance	Less	More
	20	Electrolysis trouble	No	Yes, if ground is used as
	20	Electrolysis trouble	INO	return path
	21	Applications	Main line services	Urban and suburban area
	21	reprications	Widin fine services	orban and suburban area
d)	Explai	n the suitability of 3-phase in	nduction motor for traction	service.
Ans:		Four points expected: 1 Marl		
	Suita	bility of 3-phase induction m	otor for traction service be	cause of following points:-
		1. It is robust in construc	tion and canable to withstand	l against continuous vibration
	1. It is robust in construction and capable to withstand against continuous vibration.			

	Subject Code:	Summer- 2017 Examinations17507Model Answer	Page 10 of 33
	2.	Simple in design & construction.	
	3.	Slip-ring induction has high starting torque when external resistanc circuit.	e is added in rotor
	4.	Since the torque speed characteristic of the induction motor is ma induction machine can take better advantage of maximum possible tr	• •
	5.	No restriction on speed of motor because of absence of commutators	
	6.	Speed control methods are simple	
	7.	Power to weight ratio of induction motor is much higher than the DC	c motor.
	8.	High efficiency.	
	9.	Require little maintenance. Apart from bearing, it has no parts subjuint not much effected by dust, vibration and heat	ected to wear. It is
	10.	Less maintenance.	
	11.	A high mean adhesion coefficient can be expected.	
	12.	The induction motor drives are about 20% energy efficient compared	l to DC drives.
	13.	Three phase drives allow regeneration and unity power factor operation	ion.
	14.	The energy saving due to regeneration and improved power factor are	e sizable.
	15.	It operates at high voltage ($3.3 / 3.7$ KV) consequently requiring less	amount of current
	16.	Automatic regeneration is the main advantage of I.M.	
	17.	Trouble free operation.	
e) Ans:		line diagram of 132 kV/25 kV traction substation. diagram of 132 kV/25 kV traction substation:	


	Subject Code: 17507	Summer– 2017 Examinations <u>Model Answer</u>	Page 11 of 33
	132 KV INCOMINO LINES, FROM STATION STATION 132 KV CRCUIT SREAKER 132 KV M BUSBA		
Q.3	Attempt any TWO :		(2 x 8 =16 Marks)
a) Ans:		of elevator motor. State with reason best su ator motor: (Any Six requirements are E	
Alls.	-		xpecteu: o marks, suitable
	motor for elevator – 2 N		ation
		long with high rate of acceleration and retard	ation.
	-	n size especially smaller in diameter.	
	3. Speed of motor should	*	
	4. It should have sufficient overload capacity.5. Low initial and maintenance cost.		
		enance cost.	
	6. Long life.	n and fluctuation in sumply values	
		r rapid fluctuation in supply voltage sed because it covers all above requiremer	1
	1. DC Series Mot	-	115
	 Ac Series Mot 3-Ph Slip ring 		
	4. Permanent mag		
	5. Split Phase AC	-	
	6. Capacitor Star		
1.)			rott wortigel some in in the
b)	Explain with neat diagram	m construction and working of Ajax Wy	val vertical core induction
Ans:	(Diagram3 Marks,	Construction 2 Marks, Working 3N	Iarks, Total 8 Marks)

Subject Code: 17507

Summer– 2017 Examinations Model Answer

Page 12 of 33

	Subject Code: 17507	Summer– 2017 Examinations <u>Model Answer</u>	Page 13 of 33
	emf will be induced in	n secondary winding that is in the charge.	
	As charge forms	a close circuit (secondary) heavy current flows through	h charge this current
	is responsible to produ	uce heat in charge due to I^2R losses. This heat is utilized	d to melt the charge.
		Where, $R = Resistance$ of charge & I secondary current k	ent.
c)	(i) Torque 140 Nm for 20 (iii) 200 Nm for 10 minute If the speed of the m	otor is 720 rpm, find the power rating of motor.	
Ans:	i) 140 Nm for 20		
	ii) 40 Nm for 10 min	e , ,	
	iii) 200 Nm for 10 n		
	iv) 100 Nm for 20 n	$f(t) = t_1 + t_2 + t_3 + t_4$	(1 Morka)
	Duty Cycle (1	$(-t_1+t_2+t_3+t_4) = 20+10+10+20$	(1 WIAIKS)
		= 60 Min.	(1 Marks)
		$prque) = \sqrt{\frac{T_1^2 \times t_1 + T_2^2 \times t_2 + T_3^2 \times t_3 + T_4^2 \times t_4}{T}}$	
	rating of motor (1	Forque) = $\sqrt{\frac{140^2 \times 20 + 40^2 \times 10 + 200^2 \times 10 + 100^2 \times 20}{60}}$	
	rating of motor (2	$Torque) = \sqrt{16800} Nm$	
		<i>Torque</i>) = 129.61 <i>Nm</i>	(1 Mark)
	\therefore rating of motor (v	$vatt) = \frac{2 \pi N T}{60} \qquad$	(1 Mark)
	rating of motor (we	$att) = \frac{2 \pi \times 720 \times 129.61}{60}$	
	rating of motor (w	<i>vatt</i>) = 9773.63 <i>Watt</i>	(1 Mark)
	rating of motor (K	$f(w) = \frac{9773.63}{1000}$	
	rating of motor (ky	(w) = 9.773 kW i.e.	

	Summer– 2017 Examinations	
	Subject Code: 17507 <u>Model Answer</u>	Page 14 of 33
	\therefore rating of motor (kw) $\cong 10 kW$	(2Mark)
Q.4A)	Attempt any THREE :	(3 x 4 =12 Marks)
a)	State four advantages of seam welding over spot welding.	
Ans:	(Four advantages are expected 1 Mark	each, Total 4 Mark)
	Advantages of seam welding over spot welding:-	
	 Due to seam welding we get continuous weld which is air-tight Gas tight as well as liquid tight joints can be made. The Overlap is less than spot or projection welding. The production of single seam weld and parallel seams can be 	
	5. Efficient energy use.	
b)	Define the following : (i) Luminous intensity (ii) Utilization factor (iv) Mean spherical candle power	(iii) Depreciation factor
	(Each definition : 1 M	lark , Total 4 Mark)
	1) Luminous intensity:-	
	The luminous intensity in any particular direction is the luminous per unit solid angle is called the luminous intensity of the source. And its	•
	OR $I = \frac{\phi}{w}$ (Where $\phi = lu \min ous \ flux$, $w = Solid \ Angle$)	
	ii) Utilization factor:	
	It is defined as the ratio of total lumens reaching the working plan	e to the total
	lumens given out by the lamp. Its value is always less than one.	
	(iii) Depreciation factor	
Ans:	It is defined as the ratio of initial illumination to the ultimate m the working plane. OR	aintained illumination on
	$Depreciation \ factor = \frac{1}{\text{Maintenantece} \ Factor}$	
	iv) MSCP (Mean Spherical Candle power):	
	It is the average of all candle powers in all direction in all plan	nes.
	OR	
	$MSCP = \frac{Total \ Lu \ min \ ous \ lux \ in \ lumens}{MSCP}$	
	4π	

Т

Summer-2017 Examinations

Subject Code: 17507

Model Answer

Page 15 of 33

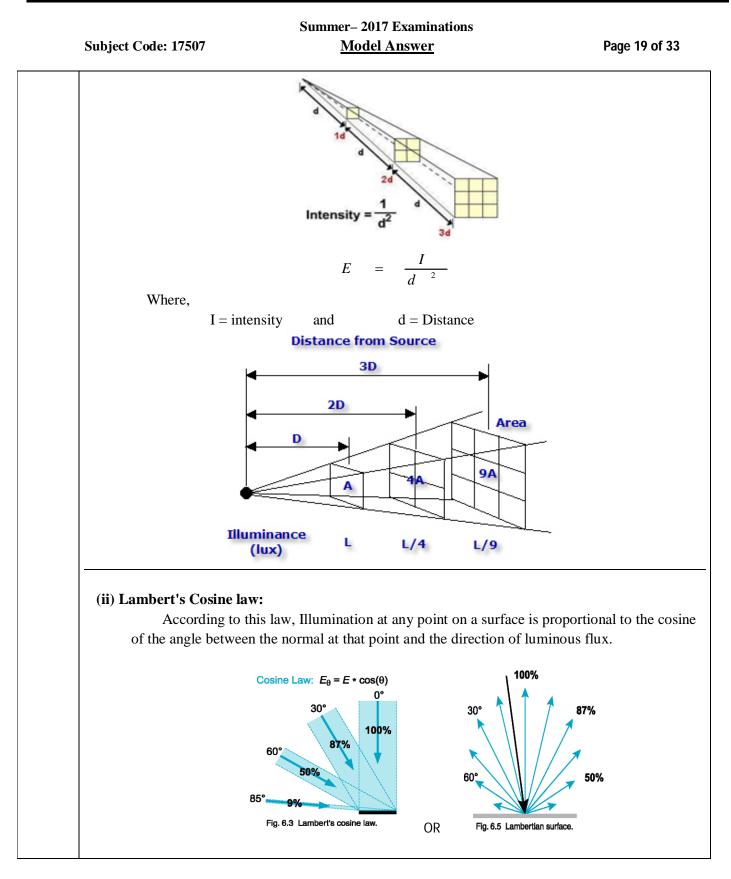
c) Ans:	State and explain four types of tariff applicable to H.T. and industrial consumers. (Names of tariffs 1Mark, Explanation3Marks, Total 4 Marks)
7 110.	Following tariffs are applicable to industrial/ HT consumers:-
	Types of Tariff:-
	1. Maximum demand Tariff (KVA maximum demand Tariff)
	2. Power factor Tariff
	3. TOD (Time of Day) Tariff
	4. KW and KVAR Tariff
	1. Maximum Demand Tariff/KVA Maximum Demand Tariff / Load factor tariff:-
	▶ It is similar to two part tariff except that maximum demand (KVA) is actually measured by
	installing maximum demand meter (in KVA)
	➤ M.D. Meter (it is an electromagnetic or electronic trivector meter) is installed in the
	premises of consumer, in addition to energy meter.
	Maximum Demand Tariff / Load factor Tariff =
	$M.D.(KVA) \times Rs'X'$ permonth + {Number of units (KWH) Actual consumer} × Rs'Y"
	2. <u>Power Factor Tariff (Sliding Scale Tariff or Average P.F. Tariff):-</u>
	In addition to basic tariff the tariff in which P.F. of industrial consumer is taken into consideration for billing.
	▶ If the P.F. of consumer is less than P.F. declare by Supply Company (say below 0.9 Lag.)
	than penalty will be charged in energy bill.
	 If The P.F. of consumer is more than P.F. declare by Supply Company (say above 0.95lag.) than discount will be given in energy bill.
	As usual consumer has to pay actual energy consumption charges
	3. <u>Time of Day (TOD) Tariff or OFF-load Tariff:-</u>

	Subject Code: 17507	Summer– 2017 Examinations <u>Model Answer</u>	Page 16 of 33
	In addition to basic tar time for which energy is		consumption charges according to
		installed in the consumer premise	es.
	This meter is specially	designed to measure energy con	sumption w.r.t. time.
	This type of tariff is such that energy consumption charges/unit are less at during OFF- period		rges/unit are less at during OFF-load
	Energy consumption c	charges/unit are more during PEA	AK -load period
	4. <u>KW and KVAR Tariff:</u>		
	An electromagnetic or	electronic trivector meter is inst	alled in the consumer premises.
	\succ In this type both active	e (KW) & reactive power (KVAr) supplied are charged separately and
	actual energy consumpti	ion charge.	
	Energy $Bill = \{Rs A' \}$	$(KW) Charges \} + \{Rs'B'(KVAR)\}$	$Ch \arg es\} + \{Rs 'C'(KWH) Ch \arg es\}$
d)		-	.75 lagging. Determine the size of
	capacitor in KVAK require to r	improve the power factor to 0.9	90.
Ans:	Given Data	improve the power factor to 0.9	00.
Ans:		$\cos \phi_1 = 0.75 \text{lagging}$	$\cos \phi_2 = 0.90 \text{ lagging}$
Ans:	Given Data P=5kW $\therefore Cos \phi_1 = 0.75$	$\cos\phi_1 = 0.75$ lagging	$\cos\phi_2 = 0.90$ lagging
Ans:	Given Data P=5kW $\therefore Cos \phi_1 = 0.75$ $\tan \phi_1 = 0.881$	$\cos\phi_1 = 0.75$ lagging	
Ans:	Given Data $P=5kW$ $\therefore Cos \phi_1 = 0.75$ $\tan \phi_1 = 0.881 - \cdots$ $\tan \phi_2 = 0.484$	$\cos\phi_1 = 0.75$ lagging	$\cos\phi_2 = 0.90$ lagging
Ans:	Given Data $P=5kW$ $\therefore Cos \phi_1 = 0.75$ $\tan \phi_1 = 0.881$ $\tan \phi_2 = 0.484$ $Q_1 = P \tan \phi_1$	$\cos\phi_1 = 0.75$ lagging	$\cos\phi_2 = 0.90$ lagging
Ans:	Given Data $P=5kW$ $\therefore Cos \phi_1 = 0.75$ $\tan \phi_1 = 0.881 - \cdots$ $\tan \phi_2 = 0.484$ $Q_1 = P \tan \phi_1$ $= 5 \ge 0.881$	$\cos \phi_1 = 0.75$ lagging	cosφ ₂ =0.90 lagging (1 Mark)
Ans:	Given Data $P=5kW$ $\therefore Cos \phi_1 = 0.75$ $\tan \phi_1 = 0.881$ $\tan \phi_2 = 0.484$ $Q_1 = P \tan \phi_1$	$\cos \phi_1 = 0.75$ lagging	$\cos\phi_2 = 0.90$ lagging
Ans:	Given Data $P=5kW$ $\therefore Cos \phi_1 = 0.75$ $\tan \phi_1 = 0.881 - \cdots$ $\tan \phi_2 = 0.484$ $Q_1 = P \tan \phi_1$ $= 5 \ge 0.881$	$\cos \phi_1 = 0.75$ lagging	cosφ ₂ =0.90 lagging (1 Mark)
Ans:	Given Data P= 5kW $\therefore Cos \phi_1 = 0.75$ $\tan \phi_1 = 0.881 $	$\cos \phi_1 = 0.75$ lagging	cosφ ₂ =0.90 lagging (1 Mark)
Ans:	Given Data $P=5kW$ $\therefore Cos \phi_1 = 0.75$ $\tan \phi_1 = 0.881 - \cdots$ $\tan \phi_2 = 0.484$ $Q_1 = P \tan \phi_1$ $= 5 \times 0.881$ $= 4.405 \text{ KVAR}$ $Q_2 = P \tan \phi_2$	$\cos \phi_1 = 0.75$ lagging	cosφ ₂ =0.90 lagging (1 Mark)
Ans:	Given Data P= 5kW $\therefore Cos \phi_1 = 0.75$ $\tan \phi_1 = 0.881 $	$\cos \phi_1 = 0.75$ lagging	cosφ ₂ =0.90 lagging (1 Mark)
Ans:	Given Data P= 5kW $\therefore Cos \phi_1 = 0.75$ $\tan \phi_1 = 0.881 $	$\cos \phi_1 = 0.75$ lagging	cosφ ₂ =0.90 lagging (1 Mark)

Summer-2017 Examinations

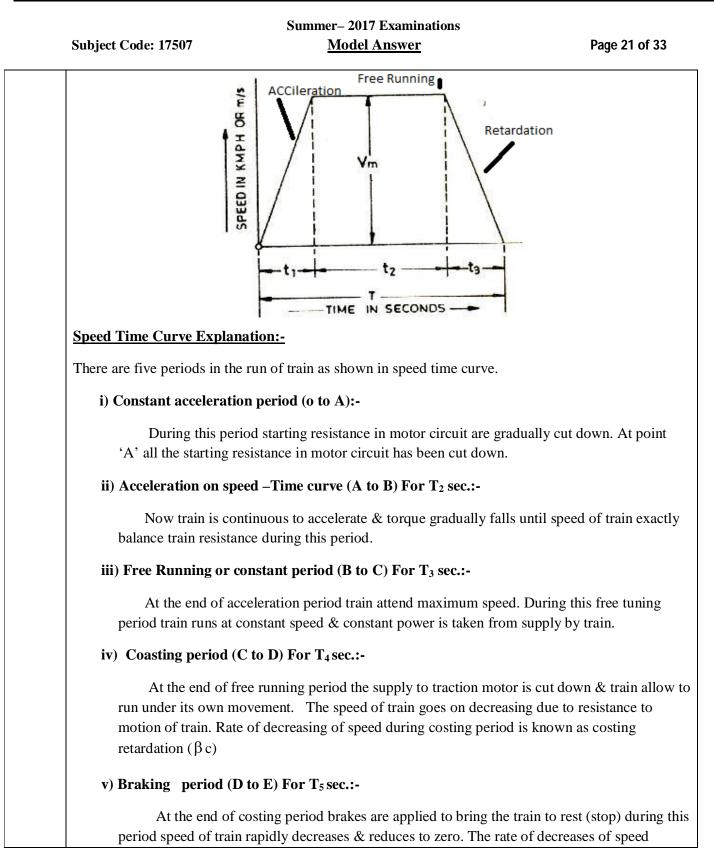
Subject Code: 17507

Model Answer

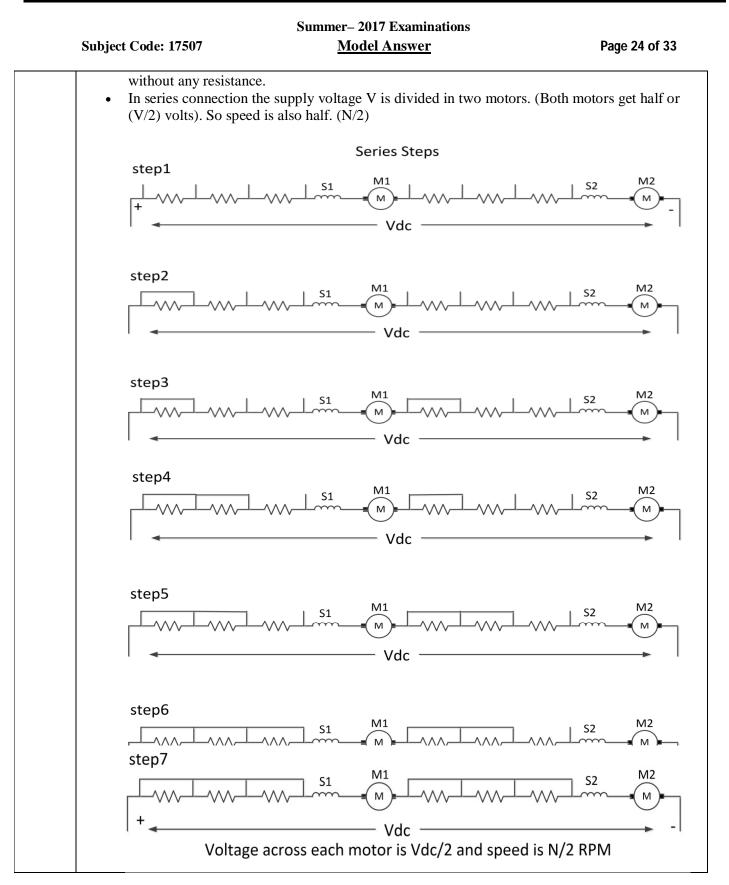

Page 17 of 33

). 4 B)	Attempt any ONE 06 Marks				
<u>2. 4 D)</u> a)	Compare resistance welding and arc welding (any six points). (Any six points are expected, 1 Mark each point, Total 6 Marks.				
Ans:					
	Sr.No	Parameters	Resistance Welding	Arc Welding	
	1	Type of welding	Plastic / Pressure / Non-	Fusion / Non pressure	
	2	Principle of heat developed	fusion welding Heat is developed due to I ² R losses where R is the contact resistance	welding Heat developed due to arc produced in between electrode and job	
	3	External filler material required	Not required during welding	Required during welding	
	4	External pressure required	Required	Not required	
	5	Type of supply used	Both AC, DC supply is used. But generally Ac Supply is used.	Metal arc welding – Both AC, DC supply is used. But generally Ac Supply is used. and for <u>Carbon arc welding</u> –only DC supply are used	
	6	Voltage ¤t required	Low voltage (2 to 20V AC) and high current (40 to 400A, in some cases 5 to 20KA) supply is required	Metal Arc welding Voltage- 70 to 100V AC and Carbon arc welding voltage- 50 to 60V DC, Current- 50-600-800A	
	7	Energy consumption	Low (3 to 4 KWH/Kg of deposited material)	High (5 to 10 KWH/Kg of deposited material.)	
	8	Temperature obtained	Temperature obtained is not very high (up to 1350 ^o C)	Temperature obtained is very high (up to 3500° C to 6000° C)	
	9	Power factor	Low	Poor	
	10	Type of electrode	Non-consumable electrodes are used.	Coated electrodes are used for metal arc welding and bare electrodes are used for carbon arc welding. (Electrodes may be consumable or non- consumable)	
	1.	Application	It is suitable for mass production	It is suitable for heavy job, maintenance and repair work	
b)	Explain t	he factors affecting fram		1 x 6 = 6	
Ans:				ted, 1 Mark each, Total 6 M	

	Subj	Summer- 2017 Examinations ect Code: 17507 <u>Model Answer</u>	Page 18 of 33
		Factors affecting framing of tariffs:-	
	1.	Total recovery of all taxes, duties and other charges	
	2.	Expenses on premium (installment) paid to insurance company.	
	3.	T&D losses.	
	4.	Electricity cannot be stored economically. It has to be consumed as soon	as it is generated.
	5.	Additional supply charges (ADC) to compensate the costly purchase ener	gy (power) from
		outside to reduce the load shading.	
	6.	Investment required for future expansion.	
	7.	Economics as compare to other types of energy sources.i.e.to encourage t	he consumers to use
		electricity.	
	8.	Applying different tariff for different types of consumers.i.e. Proper retur	m is secured from each
		consumer.	
	9.	Applying tariff high during peak load period.	
	10.	Applying tariff low during off load period.	
	11.	For industrial consumer, in addition to basic tariff incentives and penalty	related to P.F and L.F.
	12.	The tariff should be simple cheap and capable of easy explanation to cons	sumers.
Q.5		empt any FOUR : the following : (i) Law of inverse squares (ii) Lambert's Cosine law	(4 x4=16 Marks)
<u>a)</u> Ans:	Stat		Iarks, Total-4 Marks)
	Inve	erse Square Law:-	
		Intensity of illumination produced by a point source varies inversely as	s square of the distance
	f	from source.	

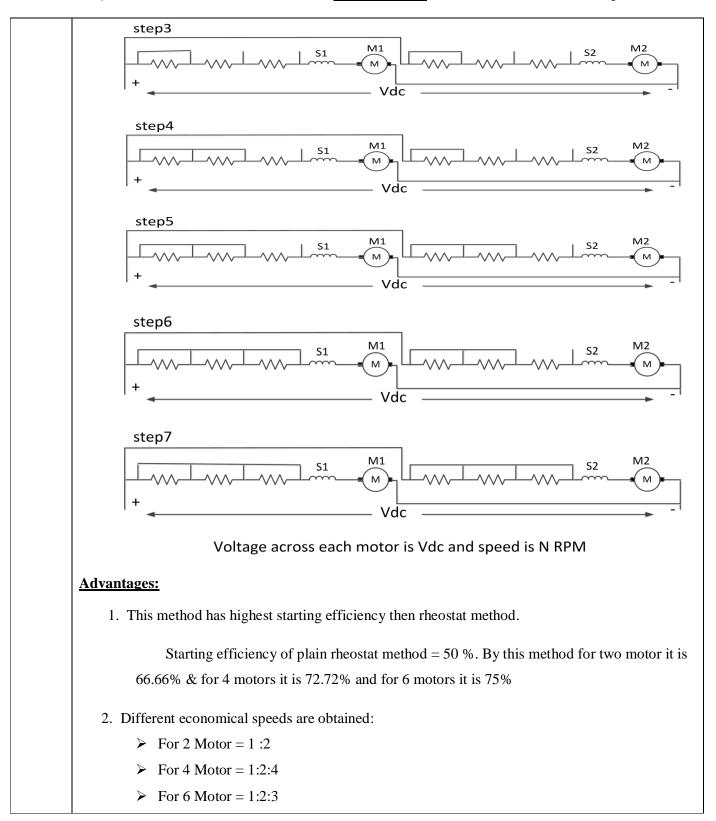


	Summer - 2017 ExaminationsSubject Code: 17507Model AnswerPage 20 of 33
b)	Justify the use of saturable reactor to control the magnitude of welding current.
Ans:	(4 Marks) A saturable reactor in electrical engineering is a special form of inductor where the magnetic core
	can be deliberately saturated by a direct electric current in a control winding. Once saturated, the
	inductance of the saturable reactor drops dramatically. This decreases inductive reactance and allows
	increased flow of the AC current.
	Saturable reactors often have multiple taps, allowing a small inductance to be used with a large load or
	a larger inductance to be used with a smaller load. In this way, the required magnitude of the control
	current can be also held roughly constant, no matter what the load.
c)	Draw labelled speed-time curve for main line. Explain various parts of the curve.
Ans:	Typical speed time curve for main traction line :
	(Curve 2 Marks, Explanation 2 Marks, Total, 4 Mark)
	SPEED CURVE RUNNING RU
	OR



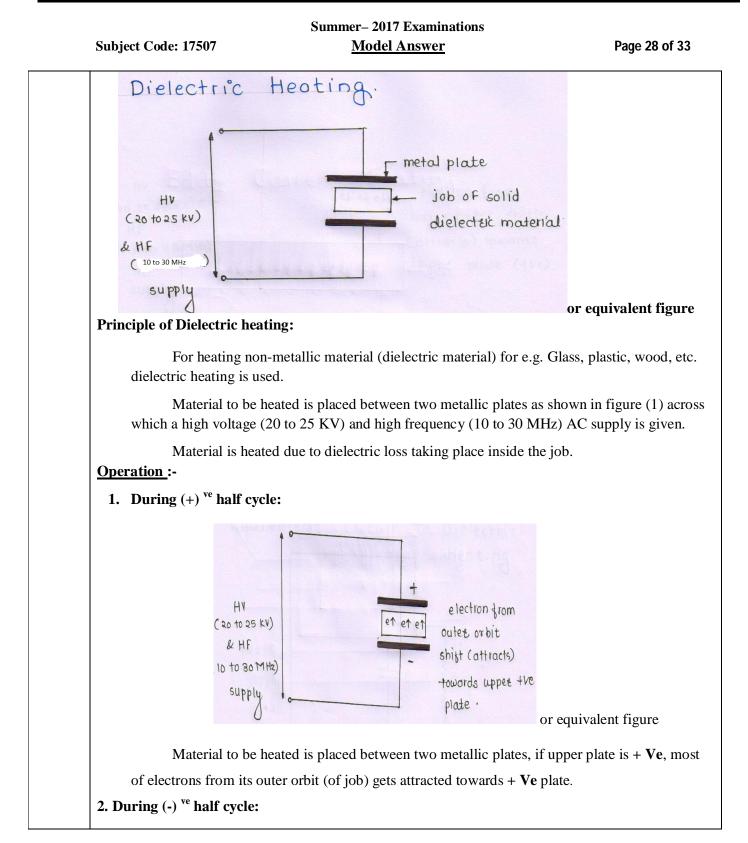
	Subject Code: 17507	Summer– 2017 <u>Model A</u>		Page 22 of 33		
	during braking	period is known as 'Braking	g retardation' (β)			
d)		is preferred for traction				
Ans:	Single phase, 25	KV AC system is preferred	for traction work in India	(2 Marks)		
	It is explained on fo	llowing point :- (Any two P	oints are Expected)			
	1)_Supply fed to traction	on sub-station:-		(2 Marks)		
	Traction sub-station receivers AC power from a 3-ph high voltage nearest transmission line.					
	For e.g. – 220/ 132 / 1	10 KV etc.				
	2) Equipment in sub-s	tation:-				
	In traction sub-station input voltage is step down to utilization voltage (1-ph, 25KV,					
	AC) So main eq	uipments in traction substat	ion are			
	a. Step c	lown transformer	b. Protective equipme	ents,		
	c. Switc	hgear	d. Control panel etc	2.		
	3) Number of Overhea	d conductor:-				
	Single condu	ctor contact wire is used an	d return being through rail.			
	4) Normal Voltage fed	to overhead conductor:				
	Voltage: - 1-j	oh, 25 KV A.C.				
	Frequency: -	Standard ,50 Hz				
	5) Equipment in motor	5) Equipment in motor coach (locomotive):-				
	As working voltage of 1-ph AC series motor is 300/400 V AC. So supply voltage must be					
	step down in loco	motive with the help of step	down transformer. This is inst	alled in motor coach		
	6) Types of drives used	1:-				
	To obtai	n mechanical power to mov	e the train 1-ph AC series moto	or is used. The		
	working volta	age of motor is 1-ph AC, 30	0/400V.			
	7) Advantages:-		(Any two advantages a	re expected)		
	1. As system voltage is high (25KV) as compared to DC supply system (1500/3000V) so current					
	drawn by overhea	d conductor is less because.	(since $I \alpha 1/V$)			
	2. Due to low current	t cross section of overhead	conductor reduces. So its weigh	nt reduces.		
	Sr.No.	Supply System	Weight of copper conduc	ctor		
	1	AC System	2.57 T / Km			

	Subject Code: 17507	Summer– 2017 Examinations <u>Model Answer</u>	Page 23 of 33			
	-					
	3. As weight of overhead	conductor reduces design of supporting stru	cture becomes lighter.			
	4. Due to low current copper losses in transmission line reduces, so transmission efficiency					
	increases.					
	5. Due to low current volt	age drop in transmission line decreases. Due	e to this distance between two			
	substation increases. So number of substation required is less than DC track electrification system					
	for same track distance. e.g.					
			0.1			
	S.No.	ç	veen 2 substation 80 KM			
	2		30 KM			
	3		12 KM			
	4		5 KM			
	Sr.No. 1 2 7. Due to all above advarelectrification system. 8. Since here 1-Ph AC see as high starting torque,	1-ph AC, 25KV 10 to	Substation 15 MW 6 MW mpared to DC track ver and its Characteristics such ose.			
e)	Explain with neat sketches	s series parallel control of traction motors				
Ans:	(Series steps 2Marks, Parallel steps 2Marks, Total 4 Marks) Series parallel control of DC series motor 1. For traction purpose, two motors are operated in following steps.					
	<u>Series steps of traction mo</u>	<u>tor</u> :				
	 Step 1 – Two traction motors M1 and M2 are connected in series and started with all starting resistances in series. Step 2 to 7 – 					
	• The starting resistant	ces are cut out one by one gradually and fina	ally two motors are in series			


	Summer – 2017 Examinations	
Subject Code: 17507	<u>Model Answer</u>	Page 25 of 33
Parallel steps of traction	<u>motor</u> :	
Step 1 –		
-	n of series last step motors are now connected in wise motor will draw very high current and may	
Step 4 to 7 –		
Both motors are by one.	e now connected in complete parallel and starting	g resistances are cut out or
•	ection, voltage across M1 and M2 will be full i.e	e. V (voltage is always sar
Voltage across	each motor = V and speed of each motor = N	
So, voltage is n	by increased from $(V/2)$ to V.	
Hence, speed al	so increases from (N/2) to N and motor runs with	h full speed.
step1	Parallel Steps	
		S2 M2
+	Vdc	-
step2		
+ ◀	Vdc	

Subject Code: 17507

Summer– 2017 Examinations Model Answer


Page 26 of 33

Summer-2017 Examinations **Model Answer** Subject Code: 17507 Page 27 of 33 3) For same power input torque of different magnitude is obtained. **Disadvantages:** 1. If proper transition method is not used then > There is loss of torque when motors are disconnected from supply > There will be jerk when motors are reconnected in parallel **Q.6** Attempt any TWO of the following : 16 Marks (i) Differentiate between core type and core less induction furnace. a) i) (Any Four Points are expected 1 Mark each, Total 4 Marks) Ans: Sr.No. Core type induction furnace. Core less induction furnace. 1. Less leakage flux More leakage flux 2. Power factor is good Power factor is poor 3. Works at normal frequency High frequency supply is required Weight & size is more As there is no magnetic core weight & size 4. of furnace reduces. 5. Design for high capacity Design for low capacity Crucible used is either Horizontal 6. Crucible of any shape is used or Vertical 7. Initial cost is less Initial cost is more as High frequency supply is required Both conducting and non-conducting 8. Used to melt only conducting charge can be heated. metals 9. Time required for heating is more Due to high frequency, high voltage as normal frequency is used. supply, time required for heating is less. Explain what is dielectric heating. State its four applications. a) ii) (Explanation---2Marks, Applications-2 Marks, Total 4Marks) Ans: **Figure of dielectric heating:**

Subject Code: 17507	Summer– 2017 Examinations <u>Model Answer</u>	Page 29 of 33
	HV (20 to 25 kv)& HF (10 to 3D MHz) AC supply	
most of electrons Effect:-	Ve half cycle field is reversed i.e. bottom plate becomes $+$ Ve from its outer orbit gets attracted towards bottom electrode.	
rotation of atomic	e structure, Dielectric loss takes place inside the job which pro electric Heating:- (Any four application expected: 1,	oduces heat.
Applications of Die		oduces heat. / <mark>2 Mark each</mark>
Applications of Die	electric Heating:- (Any four application expected: 1	oduces heat. / <mark>2 Mark each</mark>
 Applications of Die 1) In food proce bakeries. 2) Cooking of feedback 	Example 2 (Any four application expected: 1 , essing industry, dielectric heating is used for Baking of cakes food without removing outer shell (e.gboiled egg) and paster	oduces heat. / <mark>2 Mark each</mark> & biscuits in
 Applications of Die 1) In food proce bakeries. 2) Cooking of fe 3) For Rubber version 	Example 2 (Any four application expected: 1 , essing industry, dielectric heating is used for Baking of cakes food without removing outer shell (e.gboiled egg) and paster vulcanizing.	oduces heat. / <mark>2 Mark each</mark> & biscuits in
 Applications of Dia 1) In food proceed bakeries. 2) Cooking of feed of the second secon	<u>electric Heating</u>:- (Any four application expected: 1, essing industry, dielectric heating is used for Baking of cakes food without removing outer shell (e.gboiled egg) and paster vulcanizing. manufacturing industry for dehydration of tobacco.	oduces heat. / <mark>2 Mark each</mark> & biscuits in
 Applications of Die 1) In food proce bakeries. 2) Cooking of fe 3) For Rubber v 4) In Tobacco n 5) In wood indu 	<u>electric Heating</u>:- (Any four application expected: 1, essing industry, dielectric heating is used for Baking of cakes food without removing outer shell (e.gboiled egg) and paster vulcanizing. manufacturing industry for dehydration of tobacco. ustry for manufacturing of ply wood.	oduces heat. / <mark>2 Mark each</mark> & biscuits in
 Applications of Dia 1) In food proceed bakeries. 2) Cooking of feed 3) For Rubber weights 4) In Tobacco media 5) In wood induce 6) In plastic Induces 	<u>electric Heating</u>:- (Any four application expected: 1, essing industry, dielectric heating is used for Baking of cakes food without removing outer shell (e.gboiled egg) and paster vulcanizing. manufacturing industry for dehydration of tobacco. ustry for manufacturing of ply wood. dustry for making different containers.	oduces heat. /2 Mark each & biscuits in urizing of mill
 Applications of Dia In food proceed bakeries. Cooking of feed For Rubber weights In Tobacco media In vood induced In plastic Induced In cotton induced 	<u>electric Heating</u>:- (Any four application expected: 1, essing industry, dielectric heating is used for Baking of cakes food without removing outer shell (e.gboiled egg) and paster vulcanizing. manufacturing industry for dehydration of tobacco. ustry for manufacturing of ply wood. dustry for making different containers. lustry for drying & heating cotton cloths for different processed	oduces heat. /2 Mark each & biscuits in urizing of mill
 Applications of Dia In food proceed bakeries. Cooking of feed For Rubber weights In Tobacco media In vood induce In plastic Induce In cotton induce In tailoring in 	<u>electric Heating</u>:- (Any four application expected: 1, essing industry, dielectric heating is used for Baking of cakes food without removing outer shell (e.gboiled egg) and paster vulcanizing. manufacturing industry for dehydration of tobacco. ustry for manufacturing of ply wood. dustry for making different containers. lustry for drying & heating cotton cloths for different processed ndustry for producing threads.	oduces heat. /2 Mark each & biscuits in urizing of mill
 Applications of Dia 1) In food proceense bakeries. 2) Cooking of fe 3) For Rubber w 4) In Tobacco m 5) In wood induce 6) In plastic Induce 7) In cotton induce 8) In tailoring in 9) For manufact 	Example 2 Construction expected: 1 Example 2 Construction expected: 1 Construction expected: 1 Const	oduces heat. /2 Mark each & biscuits in urizing of mill
 Applications of Dia In food proceed bakeries. Cooking of feed For Rubber weights For Rubber weights In Tobacco ne In Tobacco ne In plastic Inde In plastic Inde In cotton inde In tailoring in For manufact In medical line 	electric Heating:- (Any four application expected: 1.) essing industry, dielectric heating is used for Baking of cakes food without removing outer shell (e.gboiled egg) and paster vulcanizing. manufacturing industry for dehydration of tobacco. ustry for manufacturing of ply wood. dustry for drying & heating cotton cloths for different processed ndustry for producing threads. eturing process of raincoats & umbrellas. nes for sterilization of instruments & bandages.	oduces heat. /2 Mark each & biscuits in urizing of mill es.
 Applications of Dia In food proceed bakeries. Cooking of feed For Rubber weights For Rubber weights In Tobacco ne In Tobacco ne In plastic Inde In plastic Inde In cotton inde In tailoring in For manufact In medical line 	Example 2 Construction expected: 1 Example 2 Construction expected: 1 Construction expected: 1 Const	oduces heat. /2 Mark each & biscuits in urizing of mill es.

MAHARASHTRA STATE BOARAD OF TECHNICAL EDUCATIOD

	Summer-2017 Examinations			
	Subject Code: 17507Model Answer	Page 30 of 33		
	13) For quick drying gum used for book binding purpose.			
	14) In foundry for heating of sand, core, which are used in molding processes	S.		
b)	An electric train has a schedule speed of 25 km/hr between stations 800 m ap of stop is 20 seconds, the maximum speed is 20% higher than average runn braking retardation is 3 km/hr/sec. Determine rate of acceleration required to	ing speed and the		
Ans:	Given:- Schedule speed of 25 km/hr, Distance between stations 800 m			
	Stop time 20 Sec. Maximum speed is 20% higher than average running speed, Braking retard km/hr/sec	dation is 3		
	Scheduled speed = $\frac{3600D}{T_{sch}} (1:Mark)$			
	$T_{sch} = \frac{3600 \times 0.8}{25}$ $= 115.20 \operatorname{sec}$			
	Actualtime of run = T = $T_{xh} - T_{zpp}$			
	= 115.20 - 20			
	= 95.20 sec.	(1 Mark)		
	A var age speed = $\frac{3600D}{T}$			
	$=\frac{3600 \times 0.8}{95.2}$	(1 Mark)		
	$= 30.2521 \ km/hr.$			
	Maximum Speed = $1.2 \times \text{Average speed}$			
	=1.2×30.2521 =36.3025 km/hr	(1 Mark)		
	$\frac{1}{\alpha} + \frac{1}{\beta} = \frac{7200D}{V^2 \max} = \left[\frac{V_{\max}}{V_{ac}} - 1\right]$	(1 Mark)		
	$=\frac{7200D}{(36.3025)^2}=[1.2-1]=\frac{5760}{1317.87}$	(1 Mark)		
	$\frac{1}{\alpha} + \frac{1}{\beta} = 0.8741$			

	Summer – 2017 Examinations	D 04 -6 00
Subject Code: 17507	<u>Model Answer</u>	Page 31 of 33
$\frac{1}{\alpha} = 0.8741 -$ = 0.8741 -	$\frac{1}{\beta}$ $\frac{1}{3}$	(1 Mark)
$\frac{1}{\alpha} = 0.5407$ $\alpha = 1.8495 k$	kmphs	(1 Mark)
c) i) State any four advantage Ans: Following Advantages of	ges of high power factor. of high power factor:	
	(Any Four Advantages are expected: 1)	Mark each, Total 4 Marks)
1. Cross section of c	onductor reduces:	
Cross sec	etion of conductor $\alpha I \alpha \frac{1}{P. f}$	
As P.F. include the cost reduced by the cost r	reases current reduce so; cross section of condu uces	ctor and its weight reduces
2. Design of suppor	ting Structure:	
As weigh lighter, so its cost	t of conductor reduces design of supporting strutt reduces.	acture (tower) becomes
3. Cross section of t	terminal (contacts) reduces:	
As power and contacts etc d	r factor increases, current reduces. hence cross s lecreases.	ection of switchgear bus bar
4. Copper losses rec	duces:	
As power fact increase.	or increases current reduces. So copper losses re	educes. As a effect efficiency
5. Voltage drop redu	uces:	
As P.F. incr improved (better)	reases, current decreases. So voltage drop decre	eases, So regulation gets
	y (KW) of equipment increases:	
	r factor increases, handling capacity of each equ	ipment such as Alternator,

	Subject Code: 17507	Summer– 2017 Examinations <u>Model Answer</u>	Page 32 of 33
	transformer increase	28	
	7. KVA rating of equip	ments reduces:	
		uses, current decreases. So KVA rating of all e eases, so its capital cost reduces.	equipments for eg- alternator,
	8. Cost per unit (KWH) reduces:	
		ove advantages, it is seen that cost of generaties, so cost/unit reduces.	ion, transmission &
	Also performance i.e.	efficiency & regulation gets improved at high	h power factor
c) ii)	P.F. has to he improved to	Hz motor takes a supply current of 50 A 0.9 by connecting a capacitor te the required capacity of capacitor in Fa	
Ans:		r = 50 Hz , I = 50 amp. At 0.6 P.F. To be imp	
	I_{ω} =	$= I_1 \times Cos\phi_1$	
		= 50×0.6	(1 Mark)
	I_{ω} =	= 30 <i>Amp</i>	(1 Walk)
	$I_{\mu} = I\alpha$	$p \times \tan \phi_1$	
	$I_{\mu} = 30$	×1.33	
	$I_{\mu} = 39$		
	$I_{\mu^2} = I\omega$	$\times \tan \phi_2$	
	$I_{\mu 2} = 30$	×0.4843	
	$I_{\mu 2} = 14.$	529 Amp	
	$I_C = I \mu_1$	$-I\mu_2$	
	$I_{c} = 39.9$	9×14.53	
	$I_{c} = 25.3$	37 Amp	_ (1 Mark)

Subject Code: 17507	Summer– 2017 Examinations <u>Model Answer</u>	Page 33 of 33
$I_{C} = \frac{V}{X_{C}}$ $X_{C} = \frac{2}{2}$	- c 400	
$X_{C} = \frac{1}{2}$ $X_{C} = 15$	5.37 5.76 Ohm	(1 Mark)
	$\frac{1}{\pi FX_{C}}$ 1	
	$\frac{1}{\pi \times 50 \times 15.76}$ 019×10 ⁻⁴ F	(1 Mark)

-----END-----