

Summer- 2017 Examinations

Subject Code: 17506

Model Answer

Page 1 of 28

Important suggestions to examiners:

- 1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme.
- 2) The model answer and the answer written by candidate may vary but the examiner may try to assess the understanding level of the candidate.
- 3) The language errors such as grammatical, spelling errors should not be given more importance. (Not applicable for subject English and communication skills)
- 4) While assessing figures, examiner may give credit for principle components indicated in a figure. The figures drawn by candidate and model answer may vary. The examiner may give credit for any equivalent figure drawn.
- 5) Credits may be given step wise for numerical problems. In some cases, the assumed constant values may vary and there may be some difference in the candidate's answers and model answer.
- 6) In case some questions credit may be given by judgment on part of examiner of relevant answer based on candidate understands.
- 7) For programming language papers, credit may be given to any other program based on equivalent concept.

Q.1 A	Attemp	t any THREE of the following : 12 Marks				
a)	List ou	t energy conservation techniques to be adopted to reduce losses in the induction				
a)	motor.					
Ans:	Follo	wing are the list of energy conservation techniques in electrical motors:				
		(Any four point expected: 1 Mark each)				
	1)	Reduction in iron losses by using low loss silicon steel core material laminated to				
		thinner dimension.				
	2)	Using bigger length dimension (longer cores) to increase the area of magnetic flux due				
		to which the flux density is lowered to reduce the eddy currents & hysteresis losses.				
	3)	Lowering the air gap that leads to reduction of the reluctance of the magnetic circuit &				
	hence lower magnetizing current to produce the same flux density.					
	4) Using low resistance copper bars in rotors instead of high resistance aluminum bars					
		leading to reduction in the copper losses in rotor.				
	5)	Use very smooth surface finishing of stator/rotor (air gap) leading to low windage losses				
	6)	Use high quality bearings to reduce the frictional losses.				
	7)	Use smaller diameter fans to reduce fan load (as above measures lead to lower heat				
		production in motors & hence reduced cooling requirements).				
	8)	By minimizing idle & redundant running.				
	9)	By matching motor rating as per required load.				
	10)	By Phase balancing.				
	11)	By improving power quality.				
	12)	Operating motor in star mode at light load.				

Summer-2017 Examinations

Model Answer

Page 2 of 28

	TABLE 2.2 ENERGY				
	Power Loss Area	Efficiency Improvement			
	1. Iron	Use of thinner gauge, lower loss core steel reduces eddy current losses. Longer core adds more steel to the design, which reduces losses due to lower operating flux densities.			
	2. Stator I ² R	Use of more copper and larger conductors increases cross sectional area of stator windings. This lowers resistance (R) of the windings and reduces losses due to current flow (I).			
	3. Rotor I ² R	Use of larger rotor conductor bars increases size of cross section, lowering conductor resistance (R) and losses due to current flow (I).			
	4. Friction & Windage	Use of low loss fan design reduces losses due to air movement.			
	5. Stray Load Loss	Use of optimized design and strict quality control procedures minimizes stray load losses.			
b) I Ans:		considered to select electrical drives for an application. Fors to be considered to select electrical drives for an application:			
	(Any Four factor are expected: 1 Mark each)				
	1) Load torque requ	ired at normal speed matches with available torque of motor.			
	-	ue or pull out torque or maximum torque must match with the requirement by load.			
		f motor must be more than that needed by load.			
		cycle of the motor determines the motor's thermal loading; hence it nat sufficient time is available for cooling between the cycles.			
	5) The torque speed of the load.	l characteristics available from the motor must match the requirement			
	operating character	t/atmosphere in which the motor is to be installed govern the motor teristics required. Eg. Corrosive atmospheres, dusty atmospheres, high ses need properly chosen motors for drives.			
	 7) Cost of the motor plays an important role if a range is available. 8) Easily procurable, quick and easily serviceable motors are normally preferred. Stand motors are normally preferred. 				
	9) Normally while s	selecting motors its performance is verified from the test certificate.			
	-	r (reactive power drawn) and performance between 70% load to 100% red. A motor having good characteristics in this regards will be always			
	11) If selecting an ene	ergy efficient motor the cost benefit analysis over the long run must b			

Summer– 2017 Examinations	D 0 000
Subject Code: 17506 <u>Model Answer</u>	Page 3 of 28
OR Following Factors governing / or are considered while selecting elec (Motor) for particular application: 1. <u>Nature of supply:</u>	tric drive
 Whether supply available is ➢ AC, ➢ Pure DC ➢ Or Rectified DC 2. Nature of Drive (Motor):	
Whether motor is used to drive (run)	
Individual machine	
> OR group of machines.	
3. Nature of load:	
Whether load required light or heavy starting torque	
OR load having high inertia, requirehigh starting torque for long dur	ation.
> OR Whether load torque increases with speed (T α N)	
> OR decreases with speed (T α 1/N)	
> OR remains constant with speed $(T = N)$	
> OR increases with square of speed (T α N ²)	
4. <u>Electric Characteristics of drive:</u>	
➢ Starting,	
Running,	
Speed control	
and braking characteristics	
of electric drive should be studied and it should be matched with load requi	rements(i.e.
machine).	
5. <u>Size and rating of motor</u> :	
Whether motor is short time running	
OR continuously running	
OR intermittently running	
OR used for variable load cycle.	
Whether overload capacity, pull out torque is sufficient.	

S	ubject Code: 17506	Summer– 2017 Examinations <u>Model Answer</u>	Page 4 of 28
	6. <u>Mechanical Conside</u>	rations:	
	Types of enclosure	re,	
	Types of bearing,	,	
	\succ Transmission of r	mechanical power,	
	Noise		
	and load equalization	tion	
	7. <u>Cost:</u>		
	Capital,		
	Running	anat should be loss	
	r and maintenance	cost should be less.	
c)	efficiency is 90%?	techniques should be adopted in trans	_
Ans:	Reason for energy conservat	tion techniques should be adopted in tra	ansformers even though
	its efficiency is 90% :		(4 Marks)
	 Transformer perform 	nance depends on its efficiency. Transform	ners used in real-time
	applications suffer fr	rom load as well as no load losses. Loss of	f efficiency reduces
	transformer performa	ance. Hence, customers should try different	nt types of methods to
	improve the efficience	cy of the transformer.	
	Since transformer is	almost connected in circuit for 24hrs. Con	ntinuously so it is
	necessary to reduce t	he losses.	
	 By different techniqu 	ues it is possible to improve the efficiency	of the transformer more
	than 90% as there are	e no mechanical losses.	
d)	Epoxy resin transformers ar	e more suitable in hazardous areas. Giv	ve reason.
Ans:		nsformers are more suitable in hazardou	
			expected: 1 Mark each)
) M4-M3 circular size, minimizes leakage	e reactance and hence core
	losses will be less.		
	C	exible rope of copper instead of rectangula	ar strips or rod. Therefore
	current carry capacity	is more and better cooling effect.	
	3. Insulation consists of	high quality epoxy resin which is capable	to withstanding high
	temperature and also p	provides minimum clearance as per voltag	ge requirement.

S	ubject Code: 17506	Summer– 2017 Examinations <u>Model Answer</u>	Page 5 of 28
	4. As the transforme	er is fully encapsulated, routine maintenances is	less.
	5. As cooling oil is	absent the total weight of transformer is less.	
	6. Due to less weigh	nt loading & unloading of the transformer is easy	у.
	7. In the absence of of oil.	oil there is no need of testing the dielectric stren	ngth of oil or no filtration
Q.1 B)	Attempt any ONE of the	he following:	06 Marks
a)	List out any six signific	ant features of Indian Electricity Act, 2003.	
Ans:	Significant features of l	Energy Conservation Act 2003:	
		(Any Six point exp	pected: 1 Mark each)
	1) The Central Gove	rnment to prepare a National Electricity Policy i	in consultation with State
	Governments.		
	2) Thrust to complet	e the rural electrification and provide for manag	ement of rural
	distribution by pa	nchayats, Co-operative Societies, non-Governme	ent organizations,
	franchisees etc.		
	3) Provisions for lice	ense free generation and distribution in the rural	areas.
	4) Generation being	delicensed and captive generation being freely p	permitted. Hydro projects
	need clearance fro	om the Central Electricity Authority.	
	5) Transmission utili	ity at the central as well as state level to be gove	rnment company with
	responsibility for	planned and co-ordinated development of transm	nission network.
	6) Provision for priv	ate licensees in transmission and entry in distrib	ution through an
	independent netwo	ork.	
	7) Open access in tra	insmission from the outset.	
	8) Distribution licens	sees would be free to undertake generation and g	generating companies
	would be free to t	ake up distribution businesses.	
		OR	
	 tariff policy in connational policy for sources in consult 2. Rural electrificat provide supply of generate and dis 	ent: Central government shall prepare national insultation with state government. Central govern r rural areas permitting stand alone systems base ation with state government. cion: Concerned state and central government sh electricity to villages. No requirement of license eration free from licensing captive generation is	all jointly take effort to e if a person intends to

S	ubject Code:	17506		Summer- 20 <u>Mode</u>	17 Examin <u>I Answer</u>	nations			Page 6 o	of 28
	 Nonce 4. Tranunder under hands / Tranprovi 5. Distrutariff provito dis 6. Regu Provitappea contri 7. Centrution India stand 8. New Free Reforming 	rance of central conventional sor smission: Ther rtake planning a s of Governmer assion Licer ded to distribut ibution: Distril to be determine sion of suspens tribution to be latory commis sion for Joint C als against orde ol over state an ral Electricity / state Governmer ards for electric central law as c rm laws not inc e state. State Go d of six months	arces/ e wou and do at com- isee r ion li- pution ed by ion o allow sion / comm sion / comm comm d cen Auth nent cal pla omsist overni	captive general d be transmi evelopment o npany / organ to to trade in censes, general to be license the Regulato r revocation of ed by SERC / Appe: commission cECC/SERC tral commission ority: CEA to with responsion ants and elect tred with state tent with provision	ration to b ission util f transmis ization. L power. O ating com ed by state ry commi of license in phases. nission to re than on and also continue bility of o rical lines e Reform visions of	be promity at the sion system of a displanation of the sion system of a displanation of the sion of the sion. Note the state of the sta	oted. e centre stem. La patch ce cess to the city reg Aetering ulatory of stituted / UT. A cise genoming main technning to specifi dment la / central	and ir bad dis entre / ' he tran ulatory made commi within ppellat eral su chnica . CEA fy safe aws: P l law w	a the states to spatch to be in Transmission smission lines commission. mandatory assion . Open a six months. the tribunal to h pervision and l advisor of G to specify tech ty standards. rovision of sta- cill continue to	the utility s to be Retail access hear ovt. of hnical ate o apply
b) Ans:	facility.	epwise proced		_			nce of ex	xisting		em in
		epare Inventori ating, populatio Plant location	n and Lig dev	0.	Rating i watts: la and ball	n	as give Popula numbe	ation	w. Operation hours per day	
	Lighting Sr no	transformer/rat Plant location	Ū	nd population Lighting transformer		Install numbe			rs installed: kW, kWh.	

Summer-2017 Examinations Subject Code: 17506 **Model Answer** Page 7 of 28 Step II: Use lux meter to measure and note the light levels at different places of work at day time and night time with the lamps put on during measurements. Step III: Using portable load analyzer, measure and note the V, I, pf, and power consumed at different input points as lighting transformers, DBs etc. Step IV: Compare measured lux values with standard required and classify locations as under lit and over lit. Step V: Collect and analyze failure rates of lamps, ballasts, and actual life expectancies from past data. **Step VI:** (optional step for this question not expected) Suggest improvement options based on above study as: Maximize sunlight use by transparent roofs and other means. Replacement of existing low efficacy fixtures with those with high ones without compromising the CRI, required lux etc. ➤ Interior re-coloring.] Modify layout for optimization. ➢ Form/Modify control groups for lights. ➤ Use sensor operated fixtures. ▶ Install control gears or regulators. Replacement of Lamp Using separate Transformer \succ Using light control gears. Q.2 Attempt any FOUR of the following : 16 Marks State the significant features of Energy Efficient Motor. a) Significant features of Energy Efficient Motor: Ans: (Any four point expected: 1 Mark each) 1. Material used is of high quality. (High flux density & High current density) 2. Due to high quality material luminous used are thin hence core size will be less so that losses will be less. 3. Due to precise air gap between stator and rotor reduces the losses. 4. The starting and running torque is more.

Subject Code: 17506

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous) (ISO/IEC-27001-2005 Certified)

Summer – 2017 Examinations <u>Model Answer</u> ton level is less.

Page 8 of 28

	5. The noise & vibration level is less.					
	6. Less (negligible) maintenance.					
	7. Operating temperature with standing capacity is more without any problem.					
b)	Suggest the energy conservation techniques in following cases : (i) Motor is running with 70% loaded condition. (ii) Motor is continuously loaded at 50%. (iii) Motor runs with 30% loaded condition but sometimes rises to 50% loading condition. (iv) Motor runs continuously under no-load condition.					
Ans:	Following are the suggestion the energy conservation techniques in following cases :					
	(Each Point : 1 Mark)					
	(i) Motor is running with 70% loaded condition:					
	 Use APFC or IPFC for better power factor improvement. 					
	Use cooling fans for motors.					
	(ii) Motor is continuously loaded at 50% :					
	Convert Delta to Star connection for lightly loaded motors.					
	Use APFC or IPFC for better power factor improvement.					
	Use cooling fans for motors.					
	(iii) Motor runs with 30% loaded condition but sometimes rises to 50% loading condition:					
	Convert delta to star connection for lightly loaded motors.					
	➢ Use APFC or IPFC for better power factor improvement.					
	\succ Use cooling fans for motors.					
	If possible use low capacity motor for this above condition.					
	(iv) Motor runs continuously under no-load condition:					
	Convert delta to star connection for lightly loaded motors.					
	Use APFC or IPFC for better power factor improvement.					
	Use cooling fans for motors.					
	If possible use low capacity motor for above condition.					
	If possible switch off the motor.					
c)	State how 'parallel operation of transformers' helps in energy conservation.					
Ans:	'Parallel operation of transformers' helps in energy conservation: (4 Marks)					
	The transformers operate near their maximum efficiency at around 70 $\%$ to 100 $\%$					
	of their rated loads. For a huge load system drawing highly varying powers at different times					
	supplying from single transformer will be uneconomical and inefficient at low loads.					
	Hence to operate the system at highest efficiencies as much as possible parallel					
	connected transformers are utilized such that at lower power requirements one of those in					

S	ubject Code: 17506	Summer– 2017 Examinations <u>Model Answer</u>	Page 9 of 28
	parallel will supply at	around its maximum efficiency while the other is	s switched off thus
	saving its low load los	sses. This is done as per the requirements of the lo	oads. When more
	power is needed the of	ther transformer if of higher rating may be put in	service while the first
	one may be switched o	off.	
d)	List out the different te system.	echnical losses that takes place in Transmiss	ion and Distribution
Ans:	Different technical losses	s that takes place in Transmission and Distribu	ition system:
		(Any four losses exp	pected: 1 Mark each)
	1) Losses due to rando	om growth of sub transmission & distribution systemeters	em. planned
	growth/expansion	maintains the losses to optimum values as the sys	stem conductors and
	other components	are judiciously selected.	
	2) Losses due to large	scale rural electrification through long 11KV & l	LT lines unbalanced
	loading		
	3) Losses due to many	v stages of transformation. (Large no. of transform	ners).
	4) Un balance loading	on three phases	
	5) Losses due to unsat	isfactory reactive power compensation.	
	6) Losses due to poor	quality of equipment used.	
e)	Define the following tari for each.	ff: • Time-off-day tariff • Peak-off-day tari	ff. Give one example
Ans:	Time-off-day tariff:-		(2 Mark)
	In addition to b	pasic tariff (Maximum Demand Tariff / KVA Ma	aximum Demand
	Tariff / Load fac	ctor tariff also the tariff in which P.F. of industria	l consumer is taken
	into consideration	on.) Consumer has to pay energy consumption ch	arges according to
	time for which e	energy is consumed.	
		eter is installed in the consumer premises.	
		ecially designed to measure energy consumption	w.r.t. time.
	-	ff is such that energy consumption charges/unit a	
	load period	, , , , , , , , , , , , , , , , , , ,	6
	-	ption charges/unit are more during PEAK -load p	eriod
		ff is introduced to encourage industrial consumer	

Summer-2017 Examinations Subject Code: 17506 **Model Answer** Page 10 of 28 maximum load during OFF-load period. **Peak-off-day tariff:** (**2 Mark**) Energy consumption charges/unit are more during PEAK -load period > This type of tariff is introduced to encourage industrial consumers to run their maximum load during Off-load period. \geq e.g. Rate / KWH Rs Sr.No Block Remark 8.00 am to 12.00 noon 1 Rs. 6.00 per unit+0.80 Rs. Per unit Peak load period 2 12.00 noon to 6.00 pm Rs. 5.00 per unit+ 0 Rs. Per unit Base load 3 Rs. 6.00 per unit+ 1.10 Rs. Per unit Peak load period 6.00 pm to 10.00 pm 4 10.00 pm to 8.00 am Rs. 5.00 per unit – 1.50 Rs. Per unit OFF load period OR ▶ In this tariff expect TOD metering the timer with energy meter facility is provided in the consumer premises, for the consumers there may be some type load. e.g: > Heating, pumping, refrigeration, agriculture load can be made off during peak period. Whenever total connected load on power station is less. The consumers load become ON which is less charged State and explain "power factor tariff'. **f**) Ans: **Power Factor Tariff:-**(4 Marks) In addition to basic tariff (Maximum Demand Tariff / KVA Maximum Demand Tariff / Load factor tariff) the tariff in which P.F. of industrial consumer is taken into consideration. Is known as Power Factor Tariff. ▶ If the P.F. of consumer is less than P.F. declare by Supply Company (say below 0.9 Lag.) than penalty will be charged in energy bill. ▶ If The P.F. of consumer is more than P.F. declare by Supply Company (say above 0.95lag.) then discount will be given in energy bill. As usual consumer has to pay actual energy consumption charges

Subject Cod	Summer- 2017 le: 17506 Model A		Page 11 of
>	Application :-		
	This type of tariff is applicable to indu	ustrial consumer/H.T/ commere	cial consumers
	with contract demand above 80 kw/1	00Kva/107 hp consumer.	
		_	
	Incentives and Penalties to Power fac	tor tarrif :-	
Power	factor incentive:- e.g.		
	Power Factor	Percentage of incentive	
	0.95	0% of energy bill	
	Above 0.96	1% of energy bill	
	Above 0.97	2% of energy bill	
	Above 0.98	3% of energy bill	
	Above 0.99	4% of energy bill	
	At unity P.F.	5% of energy bill	
	Power factor lagging	Percentage of penalty	
	For 0.90 Power factor lagging	0% of energy bill	
	For 0.89 Power factor lagging	2% of energy bill	
	For 0.88 Power factor lagging	3% of energy bill	
	For 0.87 Power factor lagging	4% of energy bill	
	For 0.86 Power factor lagging	5% of energy bill	
	For 0.85 Power factor lagging	6% of energy bill	
	For 0.84 Power factor lagging	7% of energy bill	
	For 0.83 Power factor lagging	8% of energy bill	
	For 0.82 Power factor lagging	9% of energy bill	

Summer-2017 Examinations

Subject Code: 17506

Model Answer

Page 12 of 28

Q.3	Attempt any FOUR of the following : 16 Marks
a)	With example explain how the replacement of lamps in lighting system contributes for
Ans:	energy conservation? Replacement of lamps in lighting system contributes for energy conservation: (4 Marks)
	i. Replacing incandescent lamps by Compact Fluorescent Lamps (CFL's)
	ii. Replacing conventional fluorescent lamp by energy efficient fluorescent lamp.
	iii. Replacement of Mercury/Sodium Vapour Lamp by Halides Lamp.
	iv. Replacing HPMV Lamps by High pressure sodium Vapour Lamp (HPSV)
	v. Replacing filament lamps on panels by LED.
	OR
	Following are the energy efficient lamps for Domestic Installation for replacing
	Lamps as follows:
	i) Replacing incandescent lamps (14 lumens/W) by Compact Fluorescent Lamps
	(CFL's) (70 to 90 lumens/W)
	ii) Replacing conventional fluorescent lamp (50 lumens/W) by energy efficient
	fluorescent lamp (70 to 90 lumens/W)
	iii) Replacing filament lamps (10 to 15 W) on panels by LEDs (< 1 W).
	Using LED lights in place of all other lamps above as feasible (in terms of cost)
b)	List out the energy conservation techniques in Fans.
Ans:	Following are energy conservation techniques in Fans :
	(Any four point expected: 1 Mark each)
	➢ Use the electronic regulators instead of conventional regulator.
	> The fan used at low speed instead of high speed.
	> Adjust the direction of the ceiling fan so the air blows down.
	➢ Make sure to turn your ceiling fan "off "when you leave the home and industry.
	> or even more energy savings, purchase a ceiling fan that has earned the ENERGY
	STAR rating,
	➢ Whole house fans are large, powerful fans usually 20-48 inches in diameter with a
	one-quarter to one-half horsepower motor.
	 Don't forget to properly maintain your electric fan and keep it in good working order.

		Summer-2017 Examinations	
S	ubject Code: 17506	<u>Model Answer</u>	Page 13 of 28
		ing for an electric fan or any other type of home liance energy consumption by following this for	
	Wattage x Ho	ours Used Per Day / 1000 = Daily Kilowatt-hou (1 kilowatt [kw] = 1000 watts)	r (kWh) Consumption
c) Ans:	conservation techniqu	mercial losses in Transmission Distribution s les adopted for reducing the losses. mmercial losses in Transmission Distribution (Any four commercial losses ex	systems:
	 2) Errors in 3) By pass 4) Improper 5) Stoppin 6) Changin 7) Changin 8) Intention The methods of reduce These can be reduced detect pilferage amount of supping resorting to region consumers preside	nauthorized extension of loads. (Direct Hooking n meter reading & recording (faulty meter). ing the meter. (unmetered supply & unmetered l er testing & calibration of meters. g the meters by remote control. ng the sequence of thermal wiring. og the C.T. ratio. nal burning of meters. Eing commercial losses in distribution system: reduced by: Installing summation meters for a g e, fixing responsibility (on personnel) of the amo plied by the agency personnel, installing accurate ular testing/calibration of meters, conducting sum nises to detect theft or pilferage. s lead to proper evaluation of the energy produce	bills) (2 Marks) roup of customers to ount power drawn and e meters properly tested, rprise raids/checks on
	utilized. They w	will lead to avoidance of improper /unwarranted educes the energy requirements by some scale in	use of available energy

	Summer – 2017 Examinations	
S	ubject Code: 17506 <u>Model Answer</u>	Page 14 of 28
d)	Explain the following energy conservation techniques: (i) By reducing I^2R system (ii) By optimizing distribution voltage.	osses in Trans.
Ans:	i) By reducing I ² R losses in Trans:	(2 Marks)
	1. Opting for low resistance All Aluminum Alloy conductors (AAAC) in place	e of
	conventional aluminum cored steel reinforced (ACSR) lines.	
	2. Increasing the system voltage leads to reduction in the line current transmitt	ed that leads
	to lower I^2R losses.	
	3. Using relevantly suitable means to reduce the line currents to lowest possible	e values by
	maintaining the power factor near unity (reactive power control, power factor improvement)	
	4. Use of voltage controllers to maintain the voltage level at rated levels (not a	llowing the
	voltage to fall that leads to higher line currents)	
	5. Marinating proper distance (as low as economically possible) between cons	sumer and
	distribution transformer.	
	(ii) By optimizing distribution voltage:	(2 Marks)
	Optimization of system voltage is maintaining the voltage of the system	stem at the
	rated/specified level such that the related load requirements are most satisf	actorily
	fulfilled and at the same time the losses/abnormal conditions related to over	er voltages/
	under voltages are eliminated/reduced. There is fall in efficiency and quali	ty of output
	with both these adverse/abnormal voltage conditions.	
	For example;	
	High voltages to resistance loads such as ovens etc. lead to excessive	e currents that
	create unnecessary heating leading to power losses in the supply lines and	load. Also over
	voltages to motors leads to higher iron losses and higher torque that is not	needed. Hence
	these are to be avoided.	
	Under voltages to motors leads to excessive currents being drawn to	take up the
	load resulting in higher supply line power losses.	
	Thus maintaining the voltages at the specified levels leads to energy	7
	savings/conservation.	

S	ubject Code: 17506	Summer– 2017 Examinations <u>Model Answer</u>	Page 15 of 28
e)	State the incentives and (ii) Load factor tariff	penalty related to following tariff structure: (i) M	Iax. demand tariff
Ans:	(i) Max. demand tariff :	(Incentives : 1 Marks and Penalties	: 1 Mark each)
	Incentives :- 1) If consume	er is used M.D. above 75 % to 85 % of saction contra	act demand than,
	consumer	will gate 0.75 % rebeat on the energy bill.	
	2) If consume	er is used M.D. above 85 % to 100 % of saction cont	ract demand than,
	consumer	will gate 1 % rebeat on the energy bill.	
		er is used M.D. above 100 % of saction contract dem	
		has to pay more demand charges 150 % for use of ex	
		er is used M.D. below 50 % of saction contract dema	
		minimum demand charges 50 % of saction contract	
	ii) Load factor :	(Incentives & Penalties :	
		plicable to the consumers where payment of arrears	has been granted
	•	the same is being made as scheduled.	_
	-	load factor above 75% up to 85%: rebate of 0.5% on	the energy
		% increase in load factor.	
	-	load factor over 85% will be entitled to rebate of 1% rease in load factor from 85%	on the energy
	0	e under this head will be subject to a ceiling of 15%	of the energy
	charges for that cor		
	6. The load factor reba	ate is given only if the consumer has no arrears MSE	EDCL
		le within 7 days from the date of bill or within 5 day	ys of the receipt of
	the bill whichever i		
	8. In case the billing d will not be payable	emand exceeds contract demand in any month, then in that month.	the load incentive
	9. The billing demand	definition excludes the demand recorded during the	non peak
	hours ie. 22 hrs to 6	5 hrs & so even if maximum demand exceeds the con	ntract demand in
	that duration, load	factor incentives would be available	
	10. However, the consu	amer would be subjected to the penal charges for exc	ceeding the
	contract demand &	has to pay the applicable penal charges.	

C		Summer – 2017 Examinations	
S	ubject Code: 17506	<u>Model Answer</u>	Page 16 of 2
f)	How the application of tar	riff system helps to reduce energy bill?	
Ans:	Following application of T	Tariff system to reduce the energy bill:	
		(Any four point	expected: 1 Mark each)
		chedule of rates on which charges to be re- nich electrical energy is supplied to consur-	•
	Following are some poi	ints from which energy bills can be reduce	d by proper tariff:-
	1. EC by improvi	ng Reducing Fixed /Demand charges :	
		g unnecessary load, optimization of power , proper load distribution /scheduling.	consumption by
	2. EC by improvin	ng Reducing Energy charges:	
	-	off unwanted load, shifting load to off-peak nps and apparatus.	c period, Using energy
	3. EC by improvin discount.	ng Prompt payment of bills and taking	advantages of incentive /
	duties).	yment discount of 1% on monthly energy b areness of Self discipline among consumer n	-
	4. EC by improvi	ng Power Factor Incentive:	
	monthly bill	ng p.f. and maintaining at > 0.95, (incentive l including energy charges, ASC, FAC & that axes & duty for every 1% improvement in	fixed /demand charges but
	5. EC by improvi	ng Load Factor Incentive:	
	charges for	above 75% up to 85% will be entitled to a every percentage point increase in load fac having a load factor above 85% will be en	ctor from 75% to 85%
	Consumers	will be entitled to a total rebate of 15%.	
	consumption	ad curve which helps to observe energy us n and max. demand) ng of loads, storage of products, shedding o	

Subject C	ode: 17506	Summer– 2017 Examinations <u>Model Answer</u>	Page 17 of 28
	6. EC by Avoid	ling penalty for exceeding contract demand	1:
	the approp at the rate the contra	high tension consumer exceeds his contract de priate demand charges for demand actually rec e of 150% of the prevailing demand charges fo act demand ate and estimate existing connected load and as and.	corded and will be charged or the excess demand over
	7. EC by impro	oving Reactive power compensation:	
	Some utilit	ties charge for reactive power consumption.	
	By providi	ing capacitor bank and maintaining optimum p	p.f.(also reduces max.
	demand)		
		OR	
1.	Energy Bill is de	cided by following points also :	
	Load factor o	of the consumer	
	Maximum de	emand of the consumer	
	Power factor	of the consumer.	
	\succ TOD tariff sy	ystem	
2.7	Гime of use meter	ring:-	
	\succ In this method	d the day, month & year are divided into tariff	f slots.
		igher tariff rates at peak load periods & low ta	uriff rates at off peak load
	periods.Therefore aut	tomatic control on use of energy is done by cu	stomer.
		r's responsibility to control his own use & pay	
3.]	Domestic use mete	er:-	
		riable rate meters normally gives peak & off p	
	In such instal	llation a simple electromechanical time switch	may be used.
4. 0	Getting benefit by	improving energy efficiency:-	
		incentives can be taken by installing power fa	ctor correcting devices at
	Consumer lev		
	> Give discoun	at on the monthly energy bill is available to all	consumer categories if bill
		even days from issue of the bill.	

		Summer-2017 Examinations		
S	ubject Code: 1750	6 <u>Model Answer</u>	Page 18 of 28	
Q.4 (A)	Attempt any TH	HREE of the following :	12 Marks	
a)				
Ans:	advantages of e	lectronic ballast compare to electrical ballast:		
		(Any four Advanta	ges expected: 1 Marks each)	
	1. I	nstant light		
	2. L	ighter in weight		
	3. p	ower saving is up to 35%		
	4. H	leat output is negligible, that reduces load on air c	conditioning.	
	5. Ii	mproved power factor		
	6. C	Operates at low voltage		
	7. E	Enhances life of lamp		
	State the scena	rio of power transmission losses at state level	l national level in developed	
b)	countries and g	lobal level.	· · · -	
Ans:	_	er transmission losses at state level, national le		
	and global level	: (Any four p	ooint expected: 1 Mark each)	
	1) In our n	ation electrical generation for over all country ele	ectrical generation is 253200	
	MW up	to June 2012.		
	2) Out up	this total electrical generation 68% is by thermal I	power station, 16 % is hydro	
	power s	tation, 8 % is gas power station, 4% is due to oil o	consumption, 2 % by nuclear	
	power s	tation and 2 % is non- conventional energy source	e (Solar, wind etc).	
	3) In our c	ountry per capta energy conservation is 733 KWH	H per year but in USA it is	
	13647 H	KWH per year.		
	4) In our c	ountry due to globalization and industrialization e	electrical power demand is	
	continu	ously increases.		
	5) In our c	ountry total T & D losses are 23 % out of total en	ergy generation.	
	6) In the D	elhi and Jammu & Kashmir state there maximum	n T & D losses it is near about	
	40 % to	50 % .		
		* & D Losses are due to improper design of power	r system network, all types of	
		al machines, poor quality of T & D lines etc.	- • • • •	
		sing the proper energy conservation techniques, the	hese losses can be improved	

Subject Code: 17506

Summer– 2017 Examinations <u>Model Answer</u>

Page 19 of 28

c)		ed of cogeneration in present scenario.	
Ans:	Need for a	co-generation in present scenario: (Any four point expecte	d: 1 Mark each)
	2. The	conventional power plant efficiency is only 35% & remaining 659 e conventional system uses energy of fuel to produce Electrical en	nergy or Thermal
		ergy. Where as co-generation system produces both electrical ener ergy from same flues.	rgy & thermal
	3. The	e overall efficiency of energy use in co-generation can be up to 85	5% and above.
		wer volumes of CO_2 emissions compared to the conventional syst oduction of electricity & heat.	tem where separate
	-	co-generation system, heat generated is by-product in electricity g	paparating process
		is heat can be used for other processes. Due to this energy cost are	
		nited need of cooling water in co-generation system therefore red	
		llution.	
	_	OR	
	Need for co-	-generation in present scenario:	
	1. Re	duces energy demand.	
	2. Re	duces rise in energy cost.	
	3. Pro	ovides economical solution to energy shortages.	
	4 Inc	creases financial capital.	
	– , 110	Teases manetal capital.	
		creases environmental value.	
		-	
d)	5. Inc	creases environmental value.	zy use.
d) Ans:	5. Inc	-	
,	5. Inc	creases environmental value.	
,	5. Inc	creases environmental value.	
,	5. Inc	creases environmental value.	(4 Marl
,	5. Inc	creases environmental value.	(4 Marl
,	5. Inc	creases environmental value.	(4 Marl
,	5. Inc	creases environmental value. assification of cogeneration system based on sequence of energy ion of cogeneration system based on sequence of energy use: According to sequence According to use of use technology.	(4 Mark
,	5. Inc	creases environmental value. assification of cogeneration system based on sequence of energy ion of cogeneration system based on sequence of energy use: According to sequence According to use of use technology. Topping cycle Bottoming cycle steam Gas Recip	(4 Mark
,	5. Inc	According to sequence According to use of use technology.	(4 Mark
,	5. Inc	creases environmental value. assification of cogeneration system based on sequence of energy ion of cogeneration system based on sequence of energy use: According to sequence According to use of use technology. Topping cycle Bottoming cycle steam Gas Recip	(4 Mark
,	5. Inc	According to sequence According to use of use technology. Topping cylle Bottoming cycle steam Gas Recip co-generation co-generation Turbine turbine ting system system co-gene turbine	(4 Mark
,	5. Inc	According to sequence According to use assification of cogeneration system based on sequence of energy use: According to sequence According to use of use technology. Topping cylle Bottoming cycle steam Gas Recip (o-generation Co-generation Turbine turbine ting system system Co-gene Cogene turb system System Gas Co-gene Cogene turb	(4 Mark
,	5. Inc	creases environmental value. assification of cogeneration system based on sequence of energy ion of cogeneration system based on sequence of energy use: According to sequence According to use of use technology. Topping cylle Bottoming cycle steam Gas Recip co-generation co-generation Turbine turbine ting system system co-gene co-gene turbine turbine ting system system co-gene turbine tur	(4 Mark
,	5. Inc	creases environmental value. assification of cogeneration system based on sequence of energy use: ion of cogeneration system based on sequence of energy use: According to sequence According to use of use technology. Topping cylle Bottoming cycle steam Gas Recip co-generation co-generation Turbine turbine ting system system. co-gene co-gene turbine system Gas turbined steam Heat energy Gas open closed cycle turbine recovery turbine cycle cycle. as a construction to the cycle open closed cycle turbine recovery turbine cycle cycle. turbined steam Heat energy Gas open closed cycle turbine recovery turbine cycle cycle cycle. turbine turbine turbine cycle cycle cycle cycle. turbined steam Heat energy Gas open closed cycle turbine recovery turbine cycle cycle cycle. turbine turbine turbine cycle cycle cycle cycle. turbine turbine turbine cycle cycle cycle. turbine turbine turbine cycle c	(4 Mark
,	5. Inc	creases environmental value. assification of cogeneration system based on sequence of energy use: ion of cogeneration system based on sequence of energy use: According to sequence According to use of use technology. Topping cylle Bottoming cycle steam Gas Recip co-generation Co-generation Turbine turbine ting system system. Co-gene co-gene turb rumbined Steam Heat energy Gas open closed cycle turbine recovery turbine cycle Cycle Cycle.	(4 Mark
,	5. Inc	creases environmental value. assification of cogeneration system based on sequence of energy ion of cogeneration system based on sequence of energy use: According to sequence According to use of use technology. Topping cylle Bottoming cycle steam Gas Recip co-generation co-generation Turbine turbine ting system system. co-gene co-gene turb system system system system system system system system system system system system system system system system system system system	(4 Mark
,	5. Inc	creases environmental value. assification of cogeneration system based on sequence of energy use: ion of cogeneration system based on sequence of energy use: According to sequence According to use of use technology. According to sequence According to use of use technology. Topping cytle Bottoming cycle steam Gas Recip (o-generation Co-generation Turbine turbine ting system system. System System Co-gene turbine turbine turbine ting system system co-gene co-gene turbine tu	(4 Mark
,	5. Inc	creases environmental value. assification of cogeneration system based on sequence of energy ion of cogeneration system based on sequence of energy use: According to sequence According to use of use technology. According to sequence According to use of use technology. Tapping cytle Bottoming cycle steam Gas Recip co-generation co-generation Turbine turbine ting system system. umbined Steam Heat energy Gas open closed cycle turbine tecovery turbine co-gene. system system system system co-gene. system system system system system. system system system system system. System system system system system system. According to sequence According to use turbine turbine t	(4 Mark

Summer-2017 Examinations

S	ubject Code: 17506 <u>Model Answer</u>	Page 20 of 28
Q.4 (B)	Attempt any ONE of the following :	06 Marks
a)	A 50 kW motor with 86% efficiency is considered to replacement by 89% What will be the energy saving, if operational hours per year is 6000 hr?	efficiency motor.
Ans:	Given data:	
	Motor output : 50 KW, full load efficiency : 84%, No. of $Hrs = 6000 Hrs$	
	Case I : full load efficiency : 86%,	
	Rever drown by motor – KW	
	Power drown by motor $=\frac{KW}{efficiency}$	(1/2 Mark)
	Power drown by motor $=\frac{50}{0.86}$	
	Power drown by motor = 58.1395 <i>KW</i>	(1 Mark)
	Cost of energy consumed = power drown by motor x working hours	
	Cost of energy consumed = 58.1395×6000	
	Cost of energy consumed = Rs. 3,48,837/	(1 Mark)
	Case II : full load efficiency : 89%,	
	Power drown by motor = $\frac{KW}{efficiency}$	(1/2 Mark)
	Power drown by motor $=\frac{50}{0.89}$	
	Power drown by motor = 56.1797 <i>KW</i>	(1 Mark)
	Cost of energy consumed = power drown by motor x working hours	
	Cost of energy consumed = 56.1797×6000	
	Cost of energy consumed = Rs. 3,37,078.20 /	(1 Mark)
	Saving in energy per year = Case I - Case II	
	Saving in energy per year = Rs. 3,48,837– Rs. 3,37,078.20	
	Saving in energy per year $=$ Rs. 11,758.80/	(1 Mark)
b)	State and explain the desirable characteristics of a Tariff.	
Ans:	The desirable characteristics of a Tariff: (Any Six point expected)	I: 1 Mark each)
	1. It should be easy to understand to consumer.	
	2. Easy to calculate.	
	3. Tariff should be attractive i.e. It should not be too high or too lov	w. It should be

S	ubject Code: 17506 Summer– 2017 H	
	 Tariff should be different for different Tariff must be fair, so that different electrical energy charges. 	t types of consumers are satisfied with rate of arts i.e. fixed charges + running charges. load period .
	10. For industrial consumer, in additio to PF and LF should be considered	n to basic tariff incentives and penalty related
Q.5	Attempt any FOUR of the following :	16 Marks
a) Ans:	Draw and label steam turbine cogeneration sys label diagram of steam turbine cogeneration s	
	fuel fuel fuel APr Condensate Steam process Boillerite d Boillerite d Boillerite d Condensate Condensa	Stem generator Fuel generator Boiler Process Brack pressure steam turbine co-generation system.
	Extraction Condensation Turbine co-generation	n: Full for the second

6

Zero Maintenance

Summer-2017 Examinations Subject Code: 17506 **Model Answer** Page 22 of 28 State the advantages of adoption of cogeneration system in an industry. b) The advantages of adoption of cogeneration system in an industry: Ans: (Any four advantages expected: 1 Mark each) 1) Co-generation can meet both power & heat needs. 2) Less costly. 3) Very high efficiency. 4) Reduction in emission of pollutants due to reduced fuel consumption. 5) A much more efficient use of primary energy can be achieved than with a separate production of electricity & heat. 6) In this system heat generated is by-product in electricity generating process. 7) It can maintain grid stability. 8) Due to decentralization of electricity it avoids transmission losses & makes system more efficient. List out the energy conservation equipments related to • Lighting system • Induction motor **c**) Ans: **Energy conservation equipments related to:** 1. Lighting System: (**2 Mark**) 1. Luxmeter 2. Power Analyzer 3. Voltage Stabilizer 4. Electronic Ballast 5. LED Lamp 6. Control gear or Regulators 7. Lighting transformer 2. Induction Motor: (2 Mark) 1. Power factor Meter 2. Power Analyzer 3. Digital Voltmeter 4. Digital Ammeter 5. Wattmeter 6. Different types of starter State the comparison between soft starter and conventional DOL starter. **d**) Ans: (Any four point expected : 1 Mark each) Sr. No. Soft starter **Direct on-line starting (DOL)** Smooth starting Starting with small jerk 1 2 Very high current peak 6.5 to 8.5 x Motor Current Low current peak 3 Variable starting torque Huge mechanical stresses on equipment due to uncontrolled starting torque Voltage dips causes flickering of lights 4 Negligible voltage dip 5 Affects Maximum Demand **Energy Saving**

More Maintenance

S	ubject Code:	Summer-2017 E 17506 Model An	
e)	 All elect. Combust Process t Fuel efficient 	ion of fuel • Lie emperature • Pre- tiency • Ga	mp output quid flow esence of harmonics as leak • Speed of rotating device
Ans:	Name the	energy audit instruments used for mo	easuring following parameters: (4 Mark)
	S.No	Parameters	Name of Instruments
	1	All elect. parameters (V, I, P, Q, P.J)	Power Analyzer, Digital Multimeter
	2	Lamp output	Lux Meter
	3	Combustion of fuel	Electronic Combustion Analyzer,
	4	Liquid flow	Flow meter
	5	Process temperature	Thermometer and Temperature indicator
	6	Presence of harmonics	Power Analyzer
	8	Fuel efficiency Gas leak	Fuel efficiency Monitor Gas leak Detector
	9	Speed of rotating device	Digital Tachometer and Stroboscope
f) Ans:		nergy flow diagram' '? State its signi ow diagram of induction motor: (Flow	
-		ow diagram of induction motor: (Flow Rotor input) = Air-gap power Power Power Pg Hechanical power developed, Pm Power at rotor shaft Stator core loss Rotor Piction Pag Rotor Friction Pag Rotor Friction Rotor Friction Rotor IPA Rotor Friction Pag Rotor Friction Pag Rotor Friction Rotor Friction Rotor Friction Pag Rotor Friction Rotor Friction Ro	ficance. Diagram: 2 Marks & Signification: 2 Marks Net Note: State less State less State less Power stages of 3 ph. I.M.
-	Power flo	ow diagram of induction motor: (Flow Rotor input) Air-gap power Pg Mechanical power developed, Pm Power at rotor shaft Psh	Diagram: 2 Marks & Signification: 2 Mark) Net Net Net Input Shalpe laces Powce stages of 3 ph. I.M. R
-	Power flo	ow diagram of induction motor: (Flow Rotor input) Air-gap power Pg Pg Pg Hechanical power developed, Pm Power at rotor shaft Stator core loss Rotor Rotor Friction, Windage loss Inegligible bearings at small slips) and slip rings (if any)	Diagram : 2 Marks & Signification: 2 Mark) Net Rotor Input Rotor Culsses O/P Mecches O/P
-	Power flo	ow diagram of induction motor: (Flow Rotor input) Air-gap power Pg Hechanical power developed, Pm Power at rotor shaft Stator core loss Rotor I ² R Rotor I ² R Rotor Friction Vindage core loss loss at loss (negligible bearings at small slips) and slip rings (if any) OF	Diagram : 2 Marks & Signification: 2 Mark) Net Rotor Input Rotor Culsses O/P Mecches O/P
-	Power flo	ow diagram of induction motor: (Flow Rotor input) Air-gap power Pg Geveloped, Pm Power at rotor shaft Stator core loss Rotor Pg Rotor Rotor Rotor Par Rotor Rotor Par Rotor Rotor Par Rotor Rotor Par Rotor Rotor Power at Psh Stator Core loss Core los los los los los los los los l	Diagram : 2 Marks & Signification: 2 Mark) Net Rotor Input Rotor Culsses O/P Mecche O/P US475(45) US4 Rotor Culsses O/P Mecche O/P VS475(45) US4 Rotor Culsses of 3 ph. J.M. R R R R
-	Power flo	ow diagram of induction motor: (Flow Rotor input) Air-gap power power Pg developed, Pm Power at rotor shaft Stator core loss Rotor Pg Rotor Rotor Rotor Power at Psh loss (negligible bearings at small slips) and slip rings (if any) OF	Diagram : 2 Marks & Signification: 2 Mark) Wet Robol Input Robol Culses O/P Mechan O/P US475(45) US4 Robol Culses O/P Mechan O/P US475(45) US4 Robol Culses O/P Mechan O/P Power stages of 3 ph. J.M. R R R
-	Power flo	ow diagram of induction motor: (Flow Rotor input) Air-gap power Pg Geveloped, Pm Power at rotor shaft Stator core loss Rotor Pg Rotor Rotor Rotor Power at Psh loss (negligible bearings at small slips) and slip rings (if any) OF Electrical cosses Magnetic entriced	Diagram : 2 Marks & Signification: 2 Marks Net Robot Culsses O/P Mecch O/P Input Stages of 3 ph. J.M. R R R s in corper
-	Power flo	ow diagram of induction motor: (Flow Rotor input) Air-gap power Pg Geveloped, Pm Power at rotor shaft Stator core loss Rotor Psh loss (negligible bearings at small slips) and slip rings (if any) OF Electrical cosses Magnetic cosses Magnetic cosses	Diagram : 2 Marks & Signification: 2 Marks Wet Robol (Culses) Net Net Robol (Culses) Net Net Net Robol (Culses) Net Net Net Net Net Net Net Net Net Net

S	ubject Code: 17506	Summer– 2017 Examinations <u>Model Answer</u>	Page 24 of 28
	Significance of energy flow diag	gram:	
	1. Energy flow diagram also	known as Sankey diagram is a specific t	ype of flow diagram in
	which the width of the arr	row is proportional to quantity of energy.	. Length of the arrows
	has no bearings with the c	uantity of energy.	
	2. These diagrams indicate the	e flow of energy in a process and help id	lentifying the quality
	and quantity of energy.		
	3. The input of energy begins	from left of the diagram. The outputs (u	useful and
	leakages/losses of energy	are shown in diagram.	
Q.6	Attempt any FOUR of the follo		16 Marks
a)	Explain how technical losses of Transmission and Distribution	can be reduced by use of energy eff system.	ficient transformer in
Ans:		by use of energy efficient transformer	r in Transmission and
	Distribution system.	(Any four point exp	pected: 1 Mark each)
	1. The energy efficient tran	sformers have low loss materials (core a	nd winding), and are
	designed optimally to give	ve the best performance.	
	2. Reduction in magnetizing	g current leads to lower losses again.	
	3. Due to the low loss core	(amorphous core) materials the iron loss	es are reduced by
	around 70 % leading to i	ncrease in the all day efficiency.	
	4. Also the resin cast transf	ormers have low losses due to which the	eir efficiency rises to 98
	% even at low loads espe	ecially for distribution transformers.	
	5. It may be higher for pow	er transformer.	
	Thus the overall tran	smission & distribution efficiency impro	oves.
b)	State and explain the factors the industry.	at govern the selection of cogeneration	system for an
Ans:	Ŭ	ection of cogeneration system for an in	dustry: (4 Marks)
	The factors that govern the	he selection of cogeneration systems are ve	ery much site/situation
	specific. The local factors suc	h as the thermal energy requirements etc p	blay an important role.
	Also the availability of the rel	evant opportunities and other related items	s decide the selection.
	They are broadly as follows:		
	1		

S	Summer-2017 ExaminationsJubject Code: 17506Model AnswerPage 25 of 28
	1) Base electrical load matching:
	The co-generation system is designed to meet the minimum electricity demand. The
	remaining power required is purchased from the utility grid.
	2) Base thermal load matching:
	The co-generation system is designed to supply the minimum thermal energy
	requirement. Stand by boilers/ burners are used if the demand for heat is higher.
	3) Electrical load matching:
	This is stand alone system. The co-generation system is designed such that total
	electricity required is generated. Therefore this co-generation system is totally independent of
	the electricity utility grid. Sometimes if energy demand is higher, auxiliary boilers are used.
	4) Thermal load matching:-
	The co-generation system is designed such that the total heat energy require is generated.
	If required energy demand is higher electricity purchased from grid.
c)	State the working principle and operation of Automatic power factor controller used in Transmission and Distribution system.
Ans:	Diagram of Automatic over factor controller: (Figure: 2 Mark & Working : 2 Mark)
	Voltage Voltage Vaveform Waveform Oxelloscope L N Gurrent Waveform Oxelloscope L N Current Waveform Oxelloscope L N Communication Communication Communication Capacitor Bank C, C/2, C/4 Relay Card
	Automatic Power factor control:
	> The pf controller is used to maintain the pf at unity across the lines it is connected.
	> Maintaining the pf at unity leads to reduction in the current through the lines as real
	power = apparent power x pf. The apparent power decides the MD for which the

S	ubject Code: 17506	Summer– 2017 Examinations <u>Model Answer</u>	Page 26 of 28
	consumer is bil	led.	
	For a certain m	otor the current in the lines will depend on its pf wh	nich is lagging. For
	higher pf near u	unity maintained at the motor terminals the line curr	rents are minimized
	leading to lowe	er MD and hence saving in MD charges.	
	Also as the cur	rrent is minimized line voltage drops and power los	ses are reduced leading
	to improvemen	t in the motor power supply system efficiency. The	pf controller does not
	efficiency.		
		OR	
	1. Please check if	required kVAr of capacitors are installed.	
		of capacitor installed is suitable for application or t	he capacitors are de
	3. Check if the ca	pacitors are permanently 'ON'. The Capacitor are n	ot switched off
	4. when the load i be lower side.	s not working, under such condition the average po	wer factor is found to
	5. Check whether operation.	all the capacitors are operated in APFC depending	upon the load
		the APFC installed in the installation is working or aken from the main incomer side of transformer, aft	
	7. Check if the los	ad demand in the system is increased.	
	8. Check if power	transformer compensation is provided.	
d)	Define : (i) Energy A (iv) Energy Audit Ins	udit (ii) Simple payback period (iii) Return on I truments	Investment
Ans:	(i) Energy Audit:-		(1 Mark)
	An energ	gy audit is an inspection, survey and analysis of energy	rgy flows, for <u>energy</u>
	conservation in	a building, process or system to reduce the amount	of energy input into
	the system with	out negatively affecting the output(s).	
	(ii) Simple paybac	k period:-	(1 Mark)
	Payback	period in <u>capital budgeting</u> refers to the period of t	ime required to recoup
	the funds expen	ded in an investment, or to reach the break-even po	<u>int</u> .
		OR	

Subject Code: 17506		Summer-2017 17506 Model And		Page 27 of 28		
		= Capital cost of the pr Net annual	oject/equipment (Rs)			
	(iii) Ret		(1 Mark)			
	ROI measures the amount of return on an investment relative to the investment					
	<u>cost</u> .					
	Т	he return on investment formula:				
		ROI = (Gain from Investmen	t - Cost of Investment)			
	$ROI = \frac{(Gain from Investment - Cost of Investment)}{Cost of Investment} OR$					
	$=\frac{\text{Net Profit due to the project (Rs)}}{\text{Cost of Investment in that project (Rs)}} \times 100$					
	(iv) Ener	(1 Mark)				
	For the energy audit purpose we use different instrument for measurement of					
		rent parameters is called as energy au				
e) S Ans:	State the difference between "Walk Through Audit" & "Detailed Audit". (Any Four point expected: 1 Mark each)					
	S.No	Walk Through Audit	Detailed Au	ıdit		
	1	It is also called as the preliminat audit or screening audit or simp audit		ral audit or site		
	2	It is simplest, quickest and lea expensive way.	st It is nothing but expansion audit	on of the simple		
	3	There are two resources:i) Operation and maintenance sta collects the data.ii) Serving utility provides th information.	form as compared to simp	n more detailed		
	4	Basic information of the energy system in the premises is collect well.				
	5	Only main issues are covered in wa through procedure.	k This type of audit focus a suitable energy conservat for the system.			

		Summer– 2017 Examinations					
S	ubject Code: 17506	Model Answer	Page 28 of 28				
f)	State the use of "Variable Frequency Drive". State its advantages.						
Ans:	Following are the benefits of variable frequency drive:						
	(Any Four benefits expected: 1/2 Mark each)						
	1) Energy saving.						
	2) Better process co	ontrol.					
	3) Cost saving.						
	4) Less maintenance	ce cost.					
	5) Large life for bearing & motors.						
	6) Improved power quality.						
	7) Smooth starting.						
	8) Improved power factor						
	9) Reduced M.D. C	Charges					
	Reason for energy conservation is achieved by using VFDs:(2 Mark)						
	1) Energy saving due to optimum use for applications.						
	2) Smooth starting. Can star avoided.						
	3) Smooth speed control changing operations are avoided as smooth increasing (to 300%) or						
	decrease (to 11%) of the rated speed is possible.						
	4) Better process control, (with Micro controller and IGBT (Insulated Gate Bi-polar						
	transistor) optimization of input variables to get required outputs						
	5) Less maintenance cost due to optimum working.						
	6) Higher life span with very low losses for bearing & motors due to which we have improved optimal output power quality.						
	o Three-phase at power o supply o		aturtion Motor				
		Rectifier Inverter					

-----END------