

Subject Code: 17417

Model Answer

Page 1 of 31

Important suggestions to examiners:

- 1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme.
- 2) The model answer and the answer written by candidate may vary but the examiner may try to assess the understanding level of the candidate.
- 3) The language errors such as grammatical, spelling errors should not be given more importance. (Not applicable for subject English and communication skills)
- 4) While assessing figures, examiner may give credit for principle components indicated in a figure. The figures drawn by candidate and model answer may vary. The examiner may give credit for any equivalent figure drawn.
- 5) Credits may be given step wise for numerical problems. In some cases, the assumed constant values may vary and there may be some difference in the candidate's answers and model answer.
- 6) In case some questions credit may be given by judgment on part of examiner of relevant answer based on candidate understands.
- 7) For programming language papers, credit may be given to any other program based on equivalent concept.

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous) (ISO/IEC-27001-2005 Certified)

SUMMER-2017 Examinations Subject Code: 17417 **Model Answer** Page 2 of 31 OR block diagram of power system. Step-up Step Distributio -ssion renoration down Substatio Substation State any four properties of conductor material used for transmission line or cable. c) Following are requirements of conductor:-Ans: (Any Four Points are Expected : 1/2 Mark each Total 2 Marks) 1. High conductivity :-Material should have high conductivity 2. High mechanical strength:-Material should have sufficiently high mechanical strength Flexibility:-3. Material should be flexible 4. Weight:-Material should be light in weight. High resistance to corrosion:-5. Material should have high resistance to corrosion **Brittleness:-**6. Material should not be brittle. 7. Availability & cost:-Material should be easily available & less costly. 8. Scrap Value:-Material should have high scrap value. 9. Temperature coefficient of resistance:-Material should have low temperature coefficient of resistance.

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous) (ISO/IEC-27001-2005 Certified)

SUMMER- 2017 Examinations Model Answer

Page 3 of 31

d)	State any four names of insulating materials used in manufacturing of cable.		
Ans:	(Any Four Names are Expected : 1/2 Mark each Total 2 Marks)		
	Followings are the names of insulating materials used in manufacturing of cable:-		
	1. PVC (Polyvinyl Chloride)		
	2. Polyethene		
	3. XLPE (Cross- linked polyethylene)		
	4. VIR (Vulcanized Indian Rubber)		
	5. Gutta-Percha (It is similar to rubber)		
	6. Silicon Rubber		
	7. Silk and Cotton		
	8. Enamel insulation		
	9. Impregnated Paper		
	10. Varnished cambric (Empire tape)		
e)	Enlist various types of supports (poles) used for transmission and distribution.		
Ans:	Following are the different types of supporting structure:		
	(Any 1 wo types are Expected . 1 Mark cach 10tal 2 Marks		
	1) Wooden pole		
	2) Cement Pole/ RCC Pole (Re-in forced cement concrete)		
	3) Steel Pole: Following are the different types of steel pole:		
	a) Tubular Steel Pole		
	b) Stepped Tubular Pole		
	c) Rail Pole/ RSJ Pole (Rolled steel Joist) / Girder steel pole		
	d) Lattice Steel Pole		
	e) Lattice Steel Towers (LST)		
f)	Define regulation of transmission line and write formula.		
Ans:	(Definition 1 Mark & formula 1 Mark ,Total 2 Marks) Regulation:		
	Voltage regulation is nothing but voltage drop in transmission line expressed in % of receiving end voltage		

	SUMMER-2017 Examinations			
8	Subject Code: 17417Model AnswerPage 4 of 31			
	% Regulation - Sending End Voltage - Receiving End Voltage × 100			
	Receiving End Voltage			
	% Voltage Regulation = $\frac{V_s - V_R}{V_R} \times 100$			
	Where, V_R = receiving end voltage V_S = Sending end voltage			
g)	Write classification of transmission line according to distance.			
Ans:	(Total 2 Marks)			
	a) Short Distance Transmission Line - (up to 50 KM)			
	b) Medium Distance Transmission Line - (up to 50 to 150 KM)			
	c) Long Distance Transmission Line - (above 150 KM)			
	OR			
	 Short Transmission Line: - The length of Short transmission Line is up to 50KM and its line voltage is less than 20 KV Medium Transmission Line: - The length of Medium transmission Line is up to 50KM-150KM 			
	and its line voltage is between 20KV to 100 KV			
	3) Long Transmission Line: - The length of Long transmission Line is above 150KM and its line			
	voltage is above 100KV .			
h)	State assumption made while calculating performance of transmission line in `T'' network.			
Ans:	Assumptions: (1 Mark each assumption , Total 2 Marks)			
	It is assume that line capacitance is connected at center of transmission line.			
	> It is assume that half of the resistance & reactance per phase are divided in either side of			
	capacitance.			
i)	State any two applications of HVDC transmission system.			
Ans:	(Any Two Applications are Expected : 1 Mark each, Total 2 Marks)			
	Applications of HVDC transmission system:-			
	1) HVDC is economical to transmit bulk amount of power 1000 MW & above. Over a			
	long distance 800 Km & above			

		SUMMER-2017 Examinations	
5	Subject Code: 17417	<u>Model Answer</u>	Page 5 of 31
	2) Inter	connection of two transmission lines having different fre	equencies is possible
	thro	ugh HVDC link.	
	3) HVI	DC is preferred for underground cable when power transr	nission through
	unde	erground cable is greater than 40-50 KM than only HVD0	C uniquely suited.
	4) HVI	DC is preferred for underground cable transmission as inc	coming line in
	meg	acities/ City centre in- feed.	
	5) HVI	DC is preferred for underground cable transmission for cr	ossing long lake, ocean
	etc.		
	6) HVI	DC is preferred for underground cable transmission where	e atmospheric
	conc	litions are too bad for overhead transmission line, e.g. Hi	gh wind pressure,
	raint	fall, icefall etc.	
	7) HVI	DC is preferred for underground cable for long distance u	nderwater power links.
	8) HVI	DC is preferred for underground cable for powering island	d from onshore.
	9) HVI	DC is preferred for underground cable for taking power fi	rom offshore wind
	farm		
	10) HVI	DC is preferred for underground cable for powering oil an	nd gas offshore floating
	platt	form.	
	11) Inte	gration of generation(conventional/non-conventional)	
	12) Incr	easing existing grid utilization.	
	13) Inter	connection of different grids or networks	
j)	State why three-pl	nase four wire supply system is preferred for seconda	ry distribution
Ange	system.		(Total 2 Marks)
Alls:	Keason.		
	3-Ph Fou	r-Wire System (R-Y-B-N) and Voltage level 3-Ph 400 V	olt, are required to
	Three phase con	sumers & for single phase (Between phase & neutral) sup	oply voltage is 230 volt,
	are required to si	ngle phase consumers.	
	Hence three	e-phase four wire supply system is preferred for secondar	ry distribution system.

SUMMER-2017 Examinations Subject Code: 17417 **Model Answer** Page 6 of 31 State main components of distribution system. k) (Any four components are Expected : 1/2 Mark each Total 2 Marks) Ans: Following are the different components of distribution system:-1. Feeder (Primary distribution) 2. Distribution Transformer (DTC) 3. Distributor (Secondary distribution System) 4. Service mains State types of line insulators used in Transmission and distribution. I) (Any four types are Expected : 1/2 Mark each Total 2 Marks) Ans: Types of line insulators used in Transmission and distribution: -Pin type insulator i) Suspension or Disc type insulator. ii) iii) Strain type insulator. Shackle type insulator. iv) Stay or Guy or Egg type insulator. v) vi) Post insulator: These are used for supporting bus bars & switchgear **Q.2** Attempt any FOUR of the following : 16 Marks State any four factors that are considered while designing a distributor. a) (Any four factors are Expected : 1 Mark each, Total 4 Marks) Ans: Factors to be considered while designing a distributor:-While designing the distributor voltage drop calculation is important. 1. 2. Voltage drop in distribution system should be maintained within permissible limit (\pm 6%). 3. Layout should be simple in design. 4. It should have less initial cost 5. Make the distribution system with minimum distribution losses. 6. From safety point of view distribution system should maintain proper clearances. 7. Select the cross section of conductor from the result of load densities present & future.

	SUMMER-2017 Examinations
S	Subject Code: 17417Model AnswerPage 7 of 31
	8. While selecting cross section of conductor P.F. of the load should be consider.
	9. Power should be available to consumers whenever needed.
	10. A steady, non-fluctuating, quality supply (Pure sine wave) should be available to
	consumers.
	11. Distribution system should not be over loaded.
	12. Distribution system lay out should not affect the appearance of locality.
	13. Before installation of distribution system proposed widening of the road in the near future
	are to be kept in mind
	14. Fault on nearest distribution system should not affect stability of existing distribution
	system.
b)	State long form of `ACSR' conductors. State its three advantages.
Ans:	long form ACSR conductor:- (1 Mark)
	Aluminum conductor steel reinforced.
	Advantages of ACSR Conductors:(Any Three Advantages Expected: 1 Mark each)
	1. Due to steel re-enforcement, mechanical strength of conductor increases
	2. As the mechanical strength is more ACSR conductors produces small Sag.
	3. It takes advantages of Skin effect. So skin effect is minimized.
	4. Corona Loss reduces.
	5. It is 50% stronger & 20% Lighter than copper.
	6. It is cheaper than copper.
c)	State any four desirable properties of cable.
Ans:	(Any four properties are Expected : 1 Mark each, Total 4 Marks)
	Following are the main requirement & properties of cables:
	1. The conductor used for cable should be stranded specially for large size of cable because,
	• To increase the flexibility of cable
	• For easy handling of cable
	• For easy storage cable.
	2. Annealed conductor should be used to become conductor soft.

S	ubject Co	ode: 17417	Model Answer	Page 8 of 31	
	3.	Tinned conductor sho	ould be used so that conduc	ctor will not stick with insulation.	
	4. Cross Section Of Conductor should be proportional to magnitude of current				
	5.	To give high degree	of safety and reliability. T	he insulation thickness provided to cable	
		should be proportion	hal to magnitude of voltage	2.	
	6.	Specially undergroun	d cable should be provided	d with mechanical protection (armouring).	
		So that it will withsta	nd against rough handling	and mechanical injury.	
	7.	The material used for	cable should have long lif	Ĩe.	
d)	Compa applica	re RCC pole and station.	eel tubular pole based o	n (i) cost (ii) life (iii) tensile strength (iv)	
Ans:				(1 Mark each point, Total 4 Marks)	
	Sr.No	Parameters	Cement pole	Steel pole	
	1	Cost	Less than steel pole	High	
	2	Life	Long	Longest	
	3	Tensile strength	High	Highest mechanical strength.	
	4	Application	For transmission (up to 11 KV) & distribution purpose i.e. LT line. Used in rural areas.	 Steel Tubular Pole & RSJ Pole: are used for transmission and distribution, maximum up to 33 KV generally used in urban areas. Steel Tubular Pole: Are specially used for street lighting. Lattice Steel pole: are used for distribution purpose in ruler area and maximum11KV transmissions. Steel Tower: are used high voltage transmission lines above 66 KV. 	
e)	State a	ny four reasons of fai	ilure of line insulators.		
Ans:		*	(Any four reasons are l	Expected : 1 Mark each ,Total 4 Marks)	
	The Reasons for the Failure of Insulators: -				
	1. M	anufacturing Defect:	-		
		Insulator may fail d	lue to manufacturing defec	et. So, it must be tested before use.	
	2. Uneven Expansion and Contraction:-				
		Insulator is mar	ufactured by using combined	nation of material. For.eg: porcelain, glass,	

SUMMER- 2017 Examinations Model Answer

Page 9 of 31

cements and also attachment steel is used.

Co-efficient of expansion and contraction of each material is different. So, there is possibility of cracking of insulator, so it may fail.

3. Mechanical Stress:-

Due to mechanical stress of wind insulator may fail.

4. Porous:-

Subject Code: 17417

Porcelain is porous material. So, if insulator is not glazed properly then direct dust will accumulate on insulator and It will absorb moisture from air, so reduces resistance of insulation.

Hence leakage current increase which increases temperature of insulator. It may cause failure of insulator.

5. Flashover due to lightning stroke:-

If lightning stroke directly attacks on insulator than there is flash over and causes failure of insulator.

6. Flash over due to large birds or similar objects:-

Large birds or similar objects causes short circuit resulting in flash over and causes of failure insulator.

7. Flash over caused due to dust deposition:-

Transmission line running over/near dusty area for e.g. coal mine, large stone crusher, cement factory etc.

Dust will deposit on insulator which reduces clearance between two conductors. So, there is possibility of flash over and causes failure of insulator.

8. Wrong Selection:-

If 11 KV insulators are used for 22 KV, then it causes failure of insulator.

9. Rough Handing:-

Due to rough handling of insulator during transportation, construction of line work etc causes failure of insulator.

10. Ageing Effect:-

Due to continuous use of insulator for a long period, its dielectric strength reduces. So, it may fail insulator.

4

Voltage is 11KV/22KV/33KV

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous) (ISO/IEC-27001-2005 Certified)

SUMMER-2017 Examinations Subject Code: 17417 **Model Answer** Page 10 of 31 f) State what is skin effect ? How it can be reduce ? Skin effect:-Ans: ----- (2 Marks) Current concentrating Cross section of near surface conductor inductive reactance is more at center core of conductor When alternating current flows through conductor it has tendency to flow away from center of conductor. i.e. maximum current density is near skin of conductor and goes on reducing towards OR center core is known as skin effect. The tendency of alternating current to concentrate near the surface of a conductor is known as skin effect. How it can be reduce:-(2 Marks) Skin effect can be reduced by: 1. Use stranded conductors instead of solid conductors. 2. Use hollow conductors instead of solid conductor. 3. Use ACSR /AAAC conductors for transmission purpose 4. Use D.C. supply whenever possible as Skin effect is absent (Since frequency 0) instead of A.C. supply. 0.3 Attempt any Four of the following : 16 Marks Compare on any four points primary and secondary distribution system. a) Ans: (Any four points are Expected : 1Mark each ,Total 4 Marks) Sr.No. **Primary distribution system** Secondary distribution system. 1 It is link between receiving substation It is link between distribution & distribution transformer transformer substation & consumer It is also called as a low Tension Line 2 It is also called as a High Tension Line 3 It is a 3-Ph, 3 wire system.(R-Y-B) It is a 3-Ph, 4 wires system. (R-Y-B-N)

Voltage is for 3-ph consumer- 400V

Subject Code: 17417

Model Answer

Page 11 of 31

			demanding upon load	and 1 Dh consumer 220V
	-	5	These are high consists conductors	These are law expective conductors
	-	5	These are high capacity conductors.	These are low capacity conductors
	-	0	It is also called as a Feeder	It is also called as a Distributor.
		/	while designing primary distribution	while designing secondary
			system its current carrying capacity is	distribution system its voltage drop
	-		important.	calculation is important.
		8	Primary distribution system is not	Secondary distribution systems are
			tapped along its length	tapped throughout its length.
		9	Its loading point is at substation only	Its loading point is throughout its
				length.
b)	A th	ree phas	se transmission line system is suspende tage is 13 kV and across the pert is 1	d by a string of three discs. The lowest
0)	effic	iency.	tage is 15 kV and across the next is i	II KV. Find out mit voltage and string
Ans:		$\therefore V_2 = V_1$	(1+m)	(1/2 Mark)
		$\therefore 11 = V_1$	(1+m)e	equation $-I$
		1	11	1
		$\therefore \therefore V_1 = 0$	$1 \pm m$	
	,	V = V (1)	1 + m + $3m + m^2$)	aquation_II
		$v_3 - v_1$ (1	- <i>Sm</i> + <i>m</i>)	$===-equation=11 \qquad $
		$13 = V_1$ (1	$+3m + m^2$)	equation - II
	S	Substitut	e value of V_1 in equation number 2	
			$13 = \left(\frac{11}{1+m}\right)(1+3m+m^2)$	
			$12 11 + 33m + 11m^2$	
			$13 = \frac{1}{1+m}$	
			$13(1+m) = 11 + 33m + 11m^2$	
			$13 + 13m = 11 + 33m + 11m^2$	
			$11m^2 + 33m - 13m + 11 - 13 = 0$	
			$11m^2 + 20m - 2 = 0$	
	(Compari	ng above equation with	
		a	$m^2 + bm + c = 0$	
		a	= 11, b=20 and $c = -2$	
	ι	U sing qu a	adratic equation formula,	
			$m = \frac{-b \pm \sqrt{b^2 - 4ac}}{2}$	
			2a	

	SUMMER-2017 Examinations	
S	Subject Code: 17417Model Answer	Page 12 of 31
	$-20 \pm \sqrt{20^2 - 4(11)(-2)}$	
	$m = \frac{2(11)}{2(11)}$	
	By solving above quadratic equation, we get	
	m = 0.095 or $m = -1.91$	
	Therefore m = 0.095	- (1/2 Mark)
	$\therefore V_1 = \frac{11}{(1+m)}$	
	$V_1 = 10.04 \text{ KV}$	-(1/2 Mark)
	Voltage across string = $V_1 + V_2 + V_3$ = 34.04 KV	-(1/2 Mark)
		(1/2 Mark)
	\therefore Line voltage = $\sqrt{3} \times 34.04$	
	= 58.95 KV	(1/2 Mark)
	String % $\eta = \frac{votage \ across \ whole \ string \ (Vph = V_L/\sqrt{3})}{\times 100}$	
	$n \times voltage$ across disc nearer to conductor	(1/2 Mark)
	$=\frac{34.04}{3.012}$	
	3×13	
	= 87.205%	$(10 \mathbf{M}, 1)$
		(1/2 Mark)
c)	Define string efficiency. What does it indicates? What will be the value of str HVDC transmission line?	ing efficiency of
Ans:	Define string efficiency:-	(2 Marks)
	String Efficiency:-	
	Unequal potential distribution along a string of suspension insu	ulator is usually
	expressed in terms of string efficiency.	
	String % $\eta = \frac{votage \ across \ whole \ string \ (Vph = V_L/\sqrt{3})}{n \times voltage \ across \ disc \ nearer \ to \ conductor)}$	$\frac{1}{r}$ ×100
	OR	

	SUMMER-2017 Examinations	
8	Subject Code: 17417 <u>Model Answer</u>	Page 13 of 31
	String $\eta \% = \frac{Vph}{n \times V_n} \times 100$	
	Where, $n =$ Number of Disc insulators, $Vn =$ Voltage across disc n	earer to conductor
	What does it indicates:-	(1 Marks)
	i) Uniformity of potential distribution along a string of suspension insu	alator.
	ii) Greater string efficiency means more uniform voltage distribution a suspension insulator.	along a string of
	iii) 100 % string efficiency means voltage across each disc of a susper	nsion insulator is equal.
	Value of string efficiency of HVDC transmission line:	(1 Marks)
	String efficiency is 100 % in case of DC transmission line because i	n case of DC frequency
	is zero, so capacitance is ineffective.	
(p	State what is proximity effect ? How it can be reduce ?	
	Proximity effect :-	(2 Marks)
Ans:	AC sup AC	ply do torce freid) hrough buted
	Explanation:	
	Let two alternating current carrying conductors placed near to	each other as shown in
	figure. Due to electro-magnetic action, flux produced by each conducto	or links with each other.
	Due to this super -impose of magnetic field on conductor causes current	in each conductor is re-
	distributed. This is known as proximity effect.	

SUMMER-2017 Examinations Subject Code: 17417 **Model Answer** Page 14 of 31 Proximity effect can be reduced:------ (2 Marks) > By increasing the distance between two conductors i.e. by using longer cross arm > By using overhead transmission system instead of underground. > Effects are negligible for small size, small current carrying conductor > Use DC transmission system instead of AC transmission system to avoid proximity effect, Since frequency of DC supply is Zero (No rate of change of flux linkages) Draw figure of transposition of conductor. Why it is necessary ? **e**) (Figure of transposition 2 Marks and Necessity of transposition 2 Marks, Total 4 Marks) Ans: Figure of transposition of conductor: (2 Mark) Part 1 Part 2 Part 3 С В А С В А С в Necessary for the transposition of conductor: (Any Two points expected) (**2 Mark**) 1. Due transposition of conductor inductance of each line is same $L_A = L_B = L_C$, So drop due to inductive reactance in each line is same so voltage at receiving end between any two line become same. 2. So to obtain same voltage in any two line at receiving end ($V_{RY} = V_{YB} = V_{RB}$) transposition is necessary. 3. Radio interferences are less due to transposition. Draw equivalent circuit of medium transmission line of nominal 'n' network. Draw vector **f**) diagram. Circuit Diagram Nominal π (pi) Network: ------(2 Marks) Ans: I_S I_{C2} I_{C1} Load Vs C/2 C/2 Neutra

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous) (ISO/IEC-27001-2005 Certified)

5	Subject Code: 17417	UMMER– 2017 Examinations Model Answer	Page 16 of 31
	During corona following obser	rvations are noted:	4h
	 Luminous violet glo Hissing or cracking s 	sound will produce.	the conductor.
	Ozone gas will produ	uce.	
	This phenomenon is known as	s "corona" effect.	
	Disadvantages of corona:-	(1 Mark each disadvar	ntage, Total 2 Marks)
	1. There is power loss due to c	corona which reduces transmission efficier	ncy.
	 Ozone gas produced, due to hardware & conductor. 	o chemical action there is possibility of cor	rosion (rusting) of
	3. Harmonics are produced whether the second s	hich will cause radio interference due to co	prona.
	4. There is electromagnetic &	electrostatic interference due to corona.	
b)	State any four possible condition	is when Ferranti effect will occur.	
Ans:		(1 Mark each condi	tion, Total 4 Marks)
	Possible conditions when Ferrant	ti effect will occur:-	
	Suppose transmission line is subject	ected to following Conditions:	
	1. When there is no	load on transmission line ($I_L = 0$) Or	
	2. When There is no	o load at receiving sub-station or Lightly lo	oaded Or
	3. When there is suc	dden load thrown OFF. Or	
	4. When there is suc	dden load shading. Or	
	5. When Transmissi	ion line is open circuited due to load failur	e.
	Under any one of the al	bove mention conditions, it is found that	receiving end voltage
	(V_R) is found to be greater t	than sending end voltage (V _S). This phere	nomenon is known as
	Ferranti effect.		

S	Subject Code: 17417	UMMER– 2017 Examinations <u>Model Answer</u>		Page 17 of 31
c)	An overhead three phase trans factor. The resistance and react Determine sending end voltage a	mission line delivers 5 MV tance of each conductor is nd percentage regulation.	V at 22 kV at 0.8 4 Ohm and 6 Ol	lagging power m respectively.
Ans:	Given Data:- P _R =5 MW= 5000KW V	$_{\rm R} = 22 {\rm KV}$ P.F. = 0.8 lag	$R_{ph} = 4 \text{ ohm}$	$X_{ph} = 6 \text{ ohm}$
	Step 1: To calculate current:			
	Power P = $\sqrt{3} V_L I_L \cos \phi$	for 3 – ph		(1/2 Mark)
	<i>I</i> = -	$\frac{P}{\sqrt{3} V_{LR} \times \cos \phi} , I = \frac{500}{\sqrt{3} \times 22}$	$\frac{00}{2 \times 0.8}$	
	$I \equiv 1$	64.01996 <i>amp</i>		(1/2 Mark)
	Step 2: To calculate value of sin	:		
	$\therefore Cos\phi_R = 0.8; \sin \theta$	$\phi_R = 0.6$		
		$V_{Rph} \equiv \frac{V_{RL}}{\sqrt{3}}$		
		$V_{Rph} \equiv \frac{22}{\sqrt{3}}$		
	$V_{Rph} = 12.7017$	7 KV or $V_{Rph} = 12.7017 \times 10^3$ V	/	(1/2 Mark)
	Step 3: To calculate Sending er	nd voltage:		
	Sending end phase voltage	$(V_{Sph}) =$		
		$= V_{Rph} + I (R_{Ph} \cos \emptyset_R +$ = 12.7017 × 10 ³ + 164.019 = 13817 03573 V	$X_{Ph} \sin \emptyset_R$ 296 (4×0.8 + 6×0.6)	(1/2 Mark)
		=13.81703 KV		(1/2 Mark)
	Sending End Lin	e Voltage =	$\therefore V_{st} = \sqrt{3} \times V_{snh}$	
		$V_{sL} = \sqrt{3} \times 13.81703$	on spir	
		= 23.9317 KV		(1/2 Mark)
	Step 4:To calculate voltage regul	ation:		
	% Voltage Regulation	$=\frac{V_{SPh} - V_{RPh}}{V_{RPh}} \times 100 - $		(1/2 Mark)
		$=\frac{13.81703 - 12.7017}{12.7017} \times 100$)	
		= 8.7809 %		(1/2 Mark)

	SUMMER-2017 Examinations
S	Subject Code: 17417Model AnswerPage 19 of 31
f)	State four advantages and four limitations of EHVAC transmission line.
Ans:	Following are the advantages:-
	(Four advantages are expected 1/2 Mark each advantage, Total 2 Marks)
	1. As Transmission voltage increases, current decreases. (as $I\alpha \frac{1}{V}$)
	2. As current decreases, cross section of conductor decreases. [as c/s of conductor α I]
	3. As cross section of conductor decreases, its weight decreases.
	4. As weight of the conductor decreases, design of tower becomes lighter in weight.
	5. As current decreases, cross section of bus bar and size of switch gear contact etc. reduces.
	6. Due to above advantages, Transmission cost per KM decreases
	7. As transmission voltage increases. A current decreases, so copper losses in transmission line reduces.(as <i>Cu. losses</i> αI^2)
	8. As copper losses reduces, transmission efficiency increases [as Tr. $\eta_T \alpha \frac{1}{Cu.loss}$]
	9. As current reduces; voltage drop in transmission line reduces. [as Voltage drop $\alpha I \alpha \frac{1}{V}$]
	10. As voltage drop in transmission reduces, voltage regulation becomes better (improved).
	11. As efficiency and regulation of transmission line gets improved, so performance of
	transmission line increases
	12. As transmission voltage increases power handling capacity of transmission line increases (as P α V ²)
	13. Due to high voltage transmission line, successful interconnection of transmission line is
	possible than low voltage.
	14. Generating Stations are generally located away from load centre.
	Hence, HVAC transmission line becomes necessary for bulk power to be transmitted
	over a long distance
	Following are the Limitations of EHVAC Transmission:
	(Four limitations are expected 1/2 Mark each limitation , Total 2 Marks)
	1. Insulation cost increases as voltage increases
	2. Skin effect is more
	3. Proximity effect is more.

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous) (ISO/IEC-27001-2005 Certified)

SUMMER- 2017 Examinations Model Answer

Page 20 of 31

	4. Corona loss increases.			
	5 Dadio interference increases			
	5. String officiency is less than 100%			
	7. Created active not necesible			
	7. Ground return not possible.			
	8. Voltage control is not easily possible.			
	9. Power flow cannot be easily controlled.			
	10. Short circuit current level is more			
	11. In case of EHVAC, Intermediate substation is required at every 250 km to improve the			
	performance of transmission line			
	12. If power is to be transmitted of EHVAC through underground cable then there is limitation			
	on the length of cable due to charging current. e.g. for 400 KV line limitation on length of			
	cable is 25 Km			
	13. Asynchronous tie not possible.			
	14. Stability of EHVAC is very low because of presence of inductance.			
	15. Transient performance is poor.			
	16. There is limitation on power transfer due to presence of inductance of transmission line &			
	power angle.			
	17. To improve the performance of transmission line additional equipments such as series &			
	shunt reactor & capacitor are required which increases cost of substation.			
Q.5	Attempt any FOUR of the following : 16 Marks			
a)	State generalized constants A, B,C and D of formula for nominal "I" network.			
Ans:	values of ADCD constants 1-equivalent cheuris of are as benows. (1 Mark each formula, 1 otal 4 Mark)			
	$\therefore A = D = 1 + \frac{YZ}{Z}$			
	2			
	$\therefore \mathbf{B} = \mathbf{Z} \left[1 + \frac{\mathbf{YZ}}{4} \right]$			
	4 ohm			
	C = V mbo			

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous) (ISO/IEC-27001-2005 Certified)

SUMMER- 2017 Examinations Model Answer

Page 21 of 31

Subject Code: 17417

Model Answer

Page 22 of 31

d)	State any four requirements of an ideal distribution system.				
Ans:		(Any Four requirements are expected: 1 Mark each, Total 4 Marks)			
	Ideal di	Ideal distribution system should possess following properties or requirements			
	1. I	1. Layout should be simple in design.			
	2. 1	It should have less initial of	cost		
	3. 1	Make the distribution syst	em with minimum distribution lo	osses.	
	4. V 5. I	Voltage drop in distribution From safety point of view	on system should be less and with distribution system should main	nin permissible limit (±6%). tain proper clearances.	
	6. 5	Select the rating of distrib	oution transformer & cross sectio	on of conductor from the result of	
	1	oad densities present & fu	iture.		
	7. I	Power should be available	to consumers whenever needed.		
	8. 4	A steady, non-fluctuatin	g, quality supply (Pure sine	wave) should be available to	
		Distribution system should	d not he even leaded		
	9. 1	Distribution system should		1	
	10.1	Distribution system should	d have high reliability to maintain	n supply.	
	11.1	Distribution system lay ou	it should not affect the appearance	e of locality.	
	12.1	Before installation of dist	ribution system proposed widen	ing of the road in the near future	
	8	are to be kept in mind			
	13. It should have low, easy, less costly & less time consuming maintenance.				
	14. Fault on nearest distribution system should not affect stability of existing distribution				
	S	system.			
	15.	Fime required for complet	tion of work should be less.		
	C		hadadha an Caracadada		
e)	Compa	re indoor and outdoor s	Any Four points are expected:	1 Mark each Total 4 Marks)	
	Sr	Points	Indoor substation	outdoor substation	
	No.	1 Units	indoor substation	outdoor substation	
	1	Capital cost	High, as construction work	Less, as construction work	
			cost is more.	cost is less.	
	2	Time required for	More, as construction work is	Less, as construction work is	
		completion	more.	less.	
	3	Distance between two	Less, this will increase	More, this will reduce	
		equipment	possibility of fault & safety reduces	possibility of fault & safety increases	

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous) (ISO/IEC-27001-2005 Certified)

SUMMER- 2017 Examinations Model Answer

Page 23 of 31

4	Access for incoming	Difficult access for incoming	Easy access for incoming &
	& outgoing line	& outgoing lines because of	outgoing lines because of
		Indoor installation.	Network and the line is and itable
5	Cooling arrangement	Natural cooling is not	Natural cooling is available
		available so artificial cooling	due to outdoor installation.
		arrangement is required This	This <u>reduces energy</u>
		increases energy consumption	<u>consumption charges</u> due to
		charges due to indoor	outdoor installation.
	A	Instantion.	Natural light is available in
0	Availability of	Natural light is not available	And time as there is no need
	natural light	even in day time, so there is	of illumination during day
		during a day time. This	time So it saves electrical
		increases energy consumption	energy & its cost
		charges due to indoor	<u>energy & ns cost</u>
		installation	
7	Detection of fault	Difficult as all equipments	Fasy as all equipments are
/	Detection of fault	are not easily viewed	easily viewed
8	Replacement of	Difficult due to indoor	Easy due to outdoor
0	equipment	installation.	installation.
9	Future expansion	Expansion of substation is not	Expansion of substation is
	r utur e enpunsion	easily possible whenever	easily possible whenever
		needed because of	needed & can be completed in
		construction work. Also it	less time & cost.
		require more time & cost.	
10	In case of accident	In case of accident there is	In case of accident there is less
		more risk & damage to other	risk & damage to other
		equipments than outdoor	equipments than indoor
		substation.	substation.
11	Space Require	Less	More
12	Effect of	Switching operation is <u>not</u>	Switching operation is difficult
	Atmospheric	difficult in rainy season & it is	in rainy season & it is less safe
	condition	more safe due to indoor	
		installation	
13	Chances of leakage	Less due to indoor installation	More due to outdoor
	current		installation
14	Maintenance cost	Less due to indoor installation	More due to outdoor
			installation.
15.	Applications	In places where heavy	Where atmospheric conditions
		rainfall, snow fall occurs or	are clean and dry also where
		there is humidity in	space available is more then
		atmosphere also where	subs stations are installed
		availability of space is less	outdoor.
		then under such situations sub	
		stations are installed indoor.	

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous) (ISO/IEC-27001-2005 Certified)

SUMMER-2017 Examinations

Subject Code: 17417

Model Answer

Page 24 of 31

		SUMMER-2017 Examinations	
8	Subject Code: 17417	Model Answer	Page 25 of 31
	Step 2: To calculate Se	nding end voltage:	
		$\mathbf{Vs} = V_R + I(R_T \cos\phi_R - X_T \sin\phi_R) \dots \dots$	(1 Mark)
		$= 11 \times 10^3 + 113.6363 (5 \times 0.8 - 5.6 \times 0.6)$	
		= 11000 +836.3631	
		= 11836.3631 volt	
		Vs = 11.836 KV	(1/2 Mark)
	Step 4:To calculate vol	tage regulation:	
		% Voltage Regulation = $\frac{V_s - V_R}{V_R} \times 100$	(1 Mark)
		$=\frac{11836.3631-11000}{11000}\times100$	
		= 7.6033 %	(1 /2 Mark)
b)	Write sequence of ope and closing.	eration of isolator, earthing switch and circ	uit breaker while opening
Ans:	Sequence of operation below:	of Isolator, C.B. and Earthing switch while o	pening & closing is as
	While Opening:		(2 Marks)
	1. Open circui	t breaker	
	2. Open Isolato	pr	
	3. Close earthin	ng switch	
	> While Closing:	-	(2 Marks)
	1. Open earthin	g switch	
	2. Close isolato	r	
	3. Close circuit	breaker	

SUMMER-2017 Examinations Subject Code: 17417 **Model Answer** Page 26 of 31 State the factors to be considered while selecting site for sub-station. c) Following factors should be considered while deciding location of site for sub-station:-Ans: (Any Four factors are expected: 1 Mark each, Total 4 Marks) Near load center : Sub-station should be located near load center to reduce cost of Transmission and distribution lines and to reduce losses in it. Easy access for transmission Line : 1. There should be easy access for incoming and outgoing line. Easy access towards sub-station :-2. There should be easy access towards sub-station for transportation of equipments and manpower etc. 3. **Space(Land) available :** The land proposed for a substation should be normally level and open from all sides & sufficient land should be available for installation of sub-station and future expansion. 4. **Atmospheric conditions :** Atmospheric condition in the area of sub-station should be clean and dry also There should be less atmospheric pollution. 5. **Cost of land :** Cost of land should be less to reduce capital cost of sub-station. 6. **Municipal restriction :** Where municipal restriction will not take any objection for required type building of substation. 7. **Staff amenities :** The site should be such that essential amenities must be available to staff like residential quarters, drinking water, school, hospital, public transportation, communication. 8. Bearing capacity of land (Hard land): To reduce construction cost of building and for better foundation of equipments land should have high bearing capacity. 9. Area free from earthquake : To avoid damage to sub-station area should be free earth quake.

Subject Code: 17417

Model Answer

Page 27 of 31

(Any Four Point Expected : 1 Mark					
Sr.N o	Nominal T Method	Nominal π Method			
1	It is assume that line capacitance is connected at centre of transmission line	It is assumed that capacitance of transmission line is divided into half of the line capacitance is connected at receiving end & half o capacitance is connected at sending end.			
2	It is assume that half of the resistance & reactance per phase are divided in either side of capacitance.	It is assumed that transmission line resistance & reactance per phase is connected in between two half transmission line capacitance			
3	Shape of equivalent circuit is like letter 'T' hence its name is nominal 'T' method	Shape of equivalent circuit is like letter ' π hence its name is nominal ' π ' method			
4	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			
5	Values of ABCD constants T- equivalent circuits of are as bellows: $\therefore A = D = 1 + \frac{YZ}{2}$ $\therefore B = Z \left[1 + \frac{YZ}{4} \right]_{ohm}$ $\therefore C = Y \text{ mho}$	Values of ABCD constants π equivalent circuits of are as bellows: $\therefore A = D = 1 + \frac{YZ}{2}$ $\therefore B = Z$ ohm $\therefore C = Y \left[1 + \frac{YZ}{4} \right]$ mho			

SUMMER-2017 Examinations Subject Code: 17417 **Model Answer** Page 28 of 31 Name four important protective devices used in sub-station and mention their function. e) (Any Four protective devices are expected: 1 Mark each, Total 4 Marks) Ans: 1) Lightning Arrester: -It is provided for protection of substation; transformer against lightning stroke. It is connected in between line and ground at the starting point of substation. Under normal condition it acts as an insulator. 2) Earth switch: -Its function is to discharge the ground capacitance when line is open circuited for maintenance purpose. 3) Isolator (No load Switch): -Its function is to connect or disconnect the circuit only when there is no load. 4) Circuit Breaker: -It is protective device. It open or break the circuit whenever there is fault & protect the equipment. It can be operated manually or remote control whenever required. 5) Relay: It sense the faults & gives signal to trip circuit of C.B. to open. There are different types of relay e.g. Earth fault relay, Phase to Phase fault relay, Thermal relay etc. 6) Instrumental Transformer (CT & PT):-C.T & P.T are used for measurement of electrical quantities (Current, voltage, power & energy) also C.T. is used for protection purpose as a part of tripping circuit of C.B. 7) Horn Gap Fuse: -It is provided to primary side of transformer for protection against over current.If C.B. is installed on primary side of transformer than Horn gap fuse is not provided.

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous) (ISO/IEC-27001-2005 Certified)

SUMMER-2017 Examinations

Subject Code: 17417

Model Answer

Page 29 of 31

f)	Compare pin type and suspension type insulator on any four points.				
ns:	(Any Four points are expected: 1 Mark each, Total 4 Marks)				
	S.No	Points	Pin Type insulator	Suspension or Disc Type insulator	
	1	Shape	It is vertical in Shape	It has Disc / Round in Shape	
	2	Size	Its size depends on voltage level. As voltage level increases size increases.	Its size is fixed and is design for 11 Kv.	
	3	Construction	It is so designed that even if top surface of insulator is wet, lower	It is so designed that even if top surface of insulator is	
			portion remains dry due to rain	wet, lower portion remains	
			shades.	dry due to rain shades.	
			Surface of insulator is well	Surface of insulator is well	
			finished (glazed) to reduce	finished (glazed) to reduce	
			moisture holding capacity.	moisture holding capacity.	
	4	Position of insulator on cross arm	It is fixed on top of cross arm by using galvanized steel pin. So it is called as pin type insulator.	These insulators are hanging below the cross arm hence its name is suspension type insulator.	
	5	Position of conductor on insulator	On the top of the insulator	Conductor is clamped at the bottom of the insulator in a string	
	6	Protection against lighting stroke	As conductor is fixed on top of insulator there is no protection to the conductor against lighting stroke.	As conductor is below the suspension insulator the conductor is protected against lighting stroke.	
	7	Possibility of flash over	Due to large birds, flash over is possible because distance between two insulators is less than suspension insulator	As insulators are suspended & distance between two conductors is more than pin type insulator so there is no possibility of flash over due to large birds or similar object.	
	8	Flexibility/Wind Pressure	As it is permanently fixed on the cross arm so it is not flexible So effect of wind pressure is more.	It is provides flexibility as string of insulator is free to swing & take position where mechanical stresses are less. So effect of wind pressure is less	

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous) (ISO/IEC-27001-2005 Certified)

SUMMER- 2017 Examinations Model Answer

Page 30 of 31

9	Reaction on cross	More	Less
10	Maintenance / replacement cost	If pin type insulator of existing line break down (failure) by any reason. Then it should be replaced by new one	If any insulator in the string of suspension insulator break down/fails then only that insulator/disc in the string require to be replace by new one instead of replacement of whole string unit.
11	Improvement of voltage level in existing line	Old pin type insulator (e.g. suppose11 KV) should be replaced by new pin type insulator (of 22 KV)	If operating voltage of existing line has to be increased than we can add required number of disc insulators in existing string instead of replacing whole unit hence it is economical
12	Design/Limitation	Pin type insulator are designed & manufactured up to 33 KV	Can be used For Any Higher Voltages by adding number of disc in a string of suspension insulator
13	Life	Less	More
14	Effect on height	Conductor is fixed on the top of	As insulators are suspended
	of pole	insulator so to maintain minimum ground clearance height of pole required as compared to suspension type insulator is less	below the cross arm & conductor is clamped below the insulator so to maintain minimum ground clearance height of pole increase.
15	Weight	Weight of 11 KV pin type insulator is less than weight of 11 KV suspension type insulator	Weight of single suspension type insulator is more as compared to 11 KV pin type insulator.
16	Types	 Single shed Pin insulator: Double shed pin insulator: Triple shed pin insulator: 	 Hewlett or interlinking type Cemented Cap type Core & link type

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous) (ISO/IEC-27001-2005 Certified)

SUMMER- 2017 Examinations Model Answer

Page 31 of 31

17	Application	Used for voltage level up to 33	Here one disc is designed for
		KV maximum. &	11 KV so by connecting
		When Line is running straight.	number of discs in a string of
		but in case of horizontal	suspension insulators it can
		conductor configuration only	be used for 66/110/ 132 /220/
			400/765 KV & even for
			more voltages. or above
			33Kv & When Line is
			running straight

-----END-----