

(Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

#### MODEL ANSWER Summer – 17 EXAMINATION

Subject Title: Automobile Engines

Subject Code:

17408

Important Instructions to examiners:

1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme.

2) The model answer and the answer written by candidate may vary but the examiner may try to assess the understanding level of the candidate.

3) The language errors such as grammatical, spelling errors should not be given more importance. (Not applicable for subject English and Communication Skills).

4) While assessing figures, examiner may give credit for principal components indicated in the figure. The figures drawn by candidate and model answer may vary. The examiner may give credit for any equivalent figure drawn.

5) Credits may be given step wise for numerical problems. In some cases, the assumed constant values may vary and there may be some difference in the candidate's answers and model answer.

6) In case of some questions credit may be given by judgment on part of examiner of relevant answer based on candidate's understanding.

7) For programming language papers, credit may be given to any other program based on equivalent concept.

.....

| Que.<br>No. | Sub<br>Que | Answer                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Marking<br>Scheme |
|-------------|------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
| 1           | A)         | Attempt any SIX of the following:                                                                                                                                                                                                                                                                                                                                                                                                                                      | 12                |
|             | a)         | Define Stroke                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2                 |
|             |            | Answer:<br>Stroke: Distance travelled by the piston moving from T.D.C. t to the B.D.C. is called stroke.                                                                                                                                                                                                                                                                                                                                                               |                   |
|             | b)         | State any two demerits of horizontal I. C. Engine.                                                                                                                                                                                                                                                                                                                                                                                                                     | 2                 |
|             |            | <ul> <li>Answer: (Any two)</li> <li>Demerits of the Horizontal engine : <ol> <li>The crank case cannot be used for storing lubricating oil for splash lubrication.</li> <li>The weight of the piston is carried by the cylinder liner causes excessive wear at the lower side of the piston.</li> <li>The lubricating oil, which dribbles from the bearings does not return to the crank case. This causes more consumption of lubricating oil.</li> </ol> </li> </ul> |                   |
|             | <b>c</b> ) | List any two applications of two stroke petrol engine                                                                                                                                                                                                                                                                                                                                                                                                                  | 2                 |
|             |            | <ul> <li>Answer: (Any two)</li> <li>1. Scooters, Mopeds</li> <li>2. Motor Cycles</li> <li>3. Small Electric Generating Sets</li> <li>4. Pumping Sets</li> <li>5. Out board Motor Boats</li> </ul>                                                                                                                                                                                                                                                                      |                   |
|             | <b>d</b> ) | State any four specifications of two wheeler                                                                                                                                                                                                                                                                                                                                                                                                                           | 2                 |
|             |            | Answer: (Any four. Credit should be given to an equivalent answer)<br>Length: 2012mm, Height: 1090mm, Width: 762mm, Type: Air cooled, Displacement:<br>124.73cc, Max. net torque: 10.30Nm, Bore: 57.8mm, Compression ratio: 9.2:1, Stroke:                                                                                                                                                                                                                             |                   |

(Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

### **MODEL ANSWER**

Summer – 17 EXAMINATION

Subject Title: Automobile Engines

Subject Code: 1

|   |            | 57.8mm, Max. net power: 7.58KW                                                                                                                                     |   |
|---|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|
|   | <b>e</b> ) | State any two advantages of water cooling system.                                                                                                                  | 2 |
|   |            | Answer: (Any two)                                                                                                                                                  |   |
|   |            | Advantages of water cooling system                                                                                                                                 |   |
|   |            | 1. Engine can be installed anywhere on the vehicle                                                                                                                 |   |
|   |            | 2. Volumetric Efficiency of water cooled engine is more than air cooled engine                                                                                     |   |
|   |            | <ul><li>3. Uniform cooling of cylinder, cylinder head and valves.</li><li>4. Specific fuel consumption of engine improves by using water cooling system.</li></ul> |   |
|   |            | 5. Engine is less noisy as compared with air cooled engines, as it has water for                                                                                   |   |
|   |            | damping noise.                                                                                                                                                     |   |
|   | <b>f</b> ) | Define Brake Thermal Efficiency and Volumetric Efficiency.                                                                                                         | 2 |
|   |            | Answer: (Definition = 01 Mark Each)                                                                                                                                |   |
|   |            | Brake Thermal Efficiency:                                                                                                                                          |   |
|   |            | It is the ratio of energy in the brake power to the input fuel energy i.e.                                                                                         |   |
|   |            | B.P.                                                                                                                                                               |   |
|   |            | $\eta_{Bth} = \frac{B.P.}{m_f \times c.v.} \times 100\%$                                                                                                           |   |
|   |            | Volumetric Efficiency:                                                                                                                                             |   |
|   |            | Volumetric efficiency is an indication of the breathing ability of the engine and is                                                                               |   |
|   |            | defined as the ratio of the air actually induced at ambient condition to the swept volume                                                                          |   |
|   |            | of the engine.                                                                                                                                                     |   |
|   |            | Volume flow rate of air intake system V <sub>actual</sub>                                                                                                          |   |
|   |            | $\eta_{v} = \frac{\text{Volume flow rate of air intake system}}{\text{Rate at which volume displaced by the piston}} = \frac{V_{\text{actual}}}{V_{\text{swept}}}$ |   |
|   | <b>g</b> ) | State the function of piston ring and compression ring.                                                                                                            | 2 |
|   |            | Answer:                                                                                                                                                            |   |
|   |            | Function of Piston rings:                                                                                                                                          |   |
|   |            | 1. To provide a pressure seal to prevent blow-by of burnt gases.                                                                                                   | 1 |
|   |            | 2. To form the main path for conduction of heat from the piston crown to the cylinder                                                                              |   |
|   |            | walls.                                                                                                                                                             |   |
|   |            | Function of Compression Ring:                                                                                                                                      |   |
|   |            | To control the flow of oil to the skirt and rings themselves in adequate quantity while                                                                            | 1 |
|   |            | preventing an excessive amount reaching the combustion chamber with consequent waste and carbonization.                                                            |   |
|   | h)         | State function of carburettor.                                                                                                                                     | 2 |
|   |            | Answer: (Any two)                                                                                                                                                  |   |
|   |            | The main functions of the carburettor are:                                                                                                                         |   |
|   |            | 1) To keep a small reserve of fuel at a constant head.                                                                                                             |   |
|   |            |                                                                                                                                                                    |   |
|   |            | 2) To vaporize the fuel to prepare a homogeneous air fuel mixture.                                                                                                 |   |
|   |            | 3) To supply correct amount of the air fuel mixture at the correct strength under all                                                                              |   |
|   |            | conditions of load and speed.                                                                                                                                      |   |
| 1 |            |                                                                                                                                                                    |   |



e: 17408



(Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

## MODEL ANSWER

Summer – 17 EXAMINATION

Subject Title: Automobile Engines

|   | Compare two stroke and four stroke en   | gine.                                                |
|---|-----------------------------------------|------------------------------------------------------|
| A | Answer: (Any two)                       |                                                      |
|   | S TWO STROKE ENGINE                     | FOUR STROKE ENGINE                                   |
|   | N                                       |                                                      |
|   | 1 One Working Stroke for each           | ch One Working Stroke for every two                  |
|   | revolution of crank shaft.              | revolution of crank shaft.                           |
|   | 2 Turning moment on the crank shaft     | is Turning moment on the crankshaft is not           |
|   | more even due to working stroke         | of even due to one working stroke for every          |
|   | each revolution of the crank sha        | ft, revolution of the crank shaft, heavy             |
|   | lighter flywheel is required an         | nd <b>flywheel</b> is required and <b>engine run</b> |
|   | engine run balanced                     | unbalanced                                           |
|   | 3 Engine is light.                      | Engine is heavy.                                     |
|   | 4 <b>Thermodynamic cycle</b> is complet |                                                      |
|   | in two stroke of piston or o            | -                                                    |
|   | revolution of crank shaft.              | of crank shaft.                                      |
|   | 5 Volumetric efficiency is <b>less</b>  | Volumetric efficiency is more                        |
|   | 6 Engine design is <b>simple</b>        | Engine design is <b>Complicated</b>                  |
|   | 7 More mechanical efficiency due        | to Less mechanical efficiency due to less            |
|   | less friction on few parts              | friction on many parts                               |
|   | 8 Less output due to mixing of fre      |                                                      |
|   | charge with burnt gases.                | charge intake and full burnt gases Exhaust           |
|   | 9 Thermal efficiency is <b>less</b> .   | Thermal efficiency is <b>more.</b>                   |
|   | 10 Engine runs hotter.                  | Engine runs <b>cooler</b> .                          |
|   | 11   Engine requires less space.        | Engine requires <b>more space</b> .                  |
|   | Classify the IC engine on the basis of: |                                                      |
|   |                                         |                                                      |
|   | 1) Cooling<br>2) Calindar Amongoment    |                                                      |
| 1 | 2) Cylinder Arrangement                 |                                                      |

(ISO/IEC - 27001 - 2005 Certified)

### **MODEL ANSWER**

Summer – 17 EXAMINATION

Subject Title: Automobile Engines

|    | Answer: (01 Mark each)                                                                                                                                                 |   |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|
|    | 1. Cooling Method:                                                                                                                                                     |   |
|    | a) Air cooled engine                                                                                                                                                   | 1 |
|    | b) Water cooled engine                                                                                                                                                 |   |
|    | 2. Cylinder Arrangement:                                                                                                                                               | 1 |
|    | a) Vertical engine                                                                                                                                                     | 1 |
|    | b) Horizontal engine                                                                                                                                                   |   |
|    | c) Radial engine                                                                                                                                                       |   |
|    | d) V-engine                                                                                                                                                            |   |
|    | e) Opposed cylinder engine                                                                                                                                             |   |
|    | 3. Camshaft Layout:                                                                                                                                                    |   |
|    | a) Overhead Valve camshaft arrangement engine                                                                                                                          | 1 |
|    | b) Under head Camshaft arrangement engine                                                                                                                              |   |
|    | c) Double overhead camshaft arrangement engine                                                                                                                         |   |
|    | 4. Fuel Used:                                                                                                                                                          |   |
|    | a) Petrol engine (or Gasoline engine)                                                                                                                                  | 1 |
|    | b) Diesel engine                                                                                                                                                       |   |
|    | c) Gas engine                                                                                                                                                          |   |
| c) | List the different efficiencies of engine and write down the relationship between                                                                                      | 4 |
|    | them.                                                                                                                                                                  |   |
|    | Answer: (01 Mark each)                                                                                                                                                 |   |
|    | Following are the different types of efficiencies of engine:                                                                                                           |   |
|    |                                                                                                                                                                        |   |
|    | 1. Mechanical Efficiency:                                                                                                                                              |   |
|    | It is the ratio of brake power to indicated power. It is measured in percentage.                                                                                       |   |
|    | Mechanical efficiency, $\eta_{mech} = \frac{B.P.}{IP} \times 100$                                                                                                      |   |
|    | $\eta_{mech} = \frac{1}{I.P} \times 100$                                                                                                                               |   |
|    | 2. Brake Thermal Efficiency:                                                                                                                                           |   |
|    |                                                                                                                                                                        |   |
|    | $\eta_{Bth} = \frac{B.P.}{m_f \times c.v.} \times 100\%$                                                                                                               |   |
|    |                                                                                                                                                                        |   |
|    | 3. Volumetric Efficiency:                                                                                                                                              |   |
|    | Volumetric efficiency is an indication of the breathing ability of the engine and is                                                                                   |   |
|    | defined as the ratio of the air actually induced at ambient condition to the swept                                                                                     |   |
|    | volume of the engine.                                                                                                                                                  |   |
|    | 4.                                                                                                                                                                     |   |
|    | Volume flow rate of air intake system V <sub>actual</sub>                                                                                                              |   |
|    | $\eta_{\rm v} = \frac{\text{Volume flow rate of air intake system}}{\text{Rate at which volume displaced by the piston}} = \frac{V_{\text{actual}}}{V_{\text{swept}}}$ |   |
|    | swept                                                                                                                                                                  |   |
|    | 5. Overall Efficiency:                                                                                                                                                 |   |
|    | It is the ratio of work obtained at the crank shaft in a given time to the energy                                                                                      |   |
| 1  | It is the futto of work obtained at the crank shart in a given time to the chergy                                                                                      | 1 |



(Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

#### MODEL ANSWER Summer – 17 EXAMINATION

Subject Code: 17408

|   |    | supplied by the fuel during the same time                                                                                                                                                                                                                                |    |
|---|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
|   |    | $\eta_{Bth} = \frac{B.P.}{m_f \times c.v.} \times 100\%$                                                                                                                                                                                                                 |    |
|   |    | 6. Indicated Thermal Efficiency:<br>It is the ratio of indicated power to input fuel energy (i.e. product of mass of fuel<br>and calorific value of fuel)<br>$\eta_{ith} = \frac{I.P.}{m_f \times c.v.} \times 100\%$                                                    |    |
|   |    | 7. Air standard efficiency:<br>It is a thermodynamic efficiency which is mainly a function of compression<br>ratio. It gives the upper limit of the efficiency obtainable from an engine.<br>$\eta_{\text{air stand}} = 1 - \frac{1}{R_{\circ}^{\gamma-1}} \times 100\%$ |    |
|   |    | <ul> <li>8. Relative Efficiency:<br/>It is the ratio of thermal efficiency to the air standard efficiency.</li> </ul>                                                                                                                                                    |    |
|   |    | $\eta_{rel} = \frac{\eta_{ith}}{\eta_{air stand}} \times 100\%$                                                                                                                                                                                                          |    |
| 2 |    | Attempt any FOUR of the following                                                                                                                                                                                                                                        | 16 |
|   | a) | Draw a labelled sketch showing engine nomenclature.                                                                                                                                                                                                                      | 4  |
|   |    | Answer:                                                                                                                                                                                                                                                                  |    |
|   |    |                                                                                                                                                                                                                                                                          |    |
|   |    |                                                                                                                                                                                                                                                                          |    |
|   |    |                                                                                                                                                                                                                                                                          |    |
|   |    |                                                                                                                                                                                                                                                                          |    |
|   |    |                                                                                                                                                                                                                                                                          |    |
|   |    |                                                                                                                                                                                                                                                                          |    |
|   |    |                                                                                                                                                                                                                                                                          |    |
|   |    |                                                                                                                                                                                                                                                                          |    |
|   |    |                                                                                                                                                                                                                                                                          |    |
|   |    |                                                                                                                                                                                                                                                                          |    |
|   |    |                                                                                                                                                                                                                                                                          |    |
|   |    |                                                                                                                                                                                                                                                                          |    |
|   |    |                                                                                                                                                                                                                                                                          |    |



(ISO/IEC - 27001 - 2005 Certified)

#### MODEL ANSWER Summer – 17 EXAMINATION

Subject Code:

17408





(Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

## MODEL ANSWER

Summer – 17 EXAMINATION

Subject Title: Automobile Engines

| <b>c</b> ) |                      | erentiate between dry and wet liners.                                                                                                                                                                   |                                                                                                            | 4 |
|------------|----------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|---|
|            | S.<br>N.             | wer: (Any four) DRY LINERS                                                                                                                                                                              | WET LINERS                                                                                                 |   |
|            | 1                    | Dry liners are <b>not in direct contact</b><br>with cooling water hence it is<br>known as dry liners.                                                                                                   | Wet liners are <b>in direct contact</b> with cooling water on the outside hence it is known as dry liners. |   |
|            | 2                    | It is <b>difficult to replace</b>                                                                                                                                                                       | It is easy to replace                                                                                      |   |
|            | 3                    | <b>No leak proof joint</b> is provided in case of dry liners.                                                                                                                                           | A leak proof joint are provided in case of wet liners.                                                     |   |
|            | 4                    | In dry liners the casting of cylinder<br>block is <b>complicated</b>                                                                                                                                    | In wet liners the casting of cylinder block is <b>very simple.</b>                                         |   |
|            | 5                    | A cylinder block with dry liners is generally <b>more robust</b>                                                                                                                                        | A cylinder block with wet liners is generally <b>less robust compare to dry liner</b>                      |   |
|            | 6                    | For perfect contact between liner<br>and the block casting, <b>very</b><br><b>accurate machining</b> of block and<br>outer liner surface is required                                                    | No such necessity in case of wet liners.                                                                   |   |
|            | 7                    | A dry liner <b>cannot be finished</b><br><b>correctly</b> , before fitting, because of<br>the <b>shrinkage stress</b> produced.                                                                         | A wet liner <b>can be finished accurately</b> , before fitting.                                            |   |
| d)         | 1) C<br>2) C<br>3) C | e the manufacturing method for foll<br>ylinder Block<br>ylinder Head<br>rank shaft<br>il Sump                                                                                                           | owing:                                                                                                     | 4 |
|            |                      | <ul> <li>wer: (One mark each)</li> <li>Cylinder Block :- Casting</li> <li>Cylinder Head: - Pressure Die Cast</li> <li>Crank shaft:- Forging</li> <li>Oil Sump: - Steel (Pressed steel sheet)</li> </ul> |                                                                                                            |   |



(ISO/IEC - 27001 - 2005 Certified)

## MODEL ANSWER

Summer – 17 EXAMINATION

Subject Code: 17408





(Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

#### MODEL ANSWER Summer – 17 EXAMINATION

Subject Title: Automobile Engines





(Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

#### MODEL ANSWER Summer – 17 EXAMINATION

Subject Title: Automobile Engines

Subject Code:

17408





(Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

### **MODEL ANSWER**

#### Summer – 17 EXAMINATION

Subject Title: Automobile Engines

| b)             | List any four needs and requirements of fuel injection system and explain.                                                  | 4 |
|----------------|-----------------------------------------------------------------------------------------------------------------------------|---|
|                | Answer: (Any four)                                                                                                          |   |
|                | Needs and Requirements of fuel injection system                                                                             |   |
|                | 1) <b>Metering</b> – The fuel injection system must measure the fuel supplied to the engine                                 |   |
|                | very accurately as fuel requirements vary from low to high engine speeds.                                                   |   |
|                | 2) <b>Time</b> - Fuel injection system must supply the fuel at the proper time according to                                 |   |
|                | engine requirement                                                                                                          |   |
|                | 3) <b>Pressure</b> - The fuel injection system must pressurize the fuel to open the injection                               |   |
|                | nozzle to inject fuel into the combustion chamber.                                                                          |   |
|                | 4) <b>Atomize</b> - The fuel must be atomized when it is supplied to the combustion chamber                                 |   |
|                | since atomized fuel will burn easily.                                                                                       |   |
|                | 5) <b>Distribution</b> - In case of multi cylinder engine the distribution of metered fuel should be some to all cylinders. |   |
|                | be same to all cylinders.                                                                                                   |   |
|                | 6) <b>Control, start and stop injection-</b> The injection fuel must start and end quickly.                                 | 4 |
| <br><b>c</b> ) | Explain construction and working of fuel injector in C.I. Engine.                                                           | 4 |
|                | Answer: (Diagram-2 marks, explanation-2 marks)                                                                              |   |
|                | Diesel Fuel Injector: The injector assembly consists of - i) a needle valve ii) a                                           |   |
|                | compression spring iii) a nozzle iv) an injector body. When the fuel is supplied to lift                                    |   |
|                | the injection pump it exerts sufficient force against the spring to lift the nozzle valve,                                  | 2 |
|                | fuel is sprayed into the combustion chamber in a finely atomized particles. After, fuel                                     |   |
|                | from the delivery pump gets exhausted; the spring pressure pushes the nozzle valve                                          |   |
|                | back on its seat. For proper lubrication between nozzle valve and its guide a small                                         |   |
|                | quantity of fuel is allowed to leak through the clearance between them and then drained                                     |   |
|                | back to fuel tank through leak off connection. The spring tension and hence the valve                                       |   |
|                | opening pressure is controlled by adjusting the screw provided at the top.                                                  |   |
|                | End cap                                                                                                                     |   |
|                | Lock nut Adjusting screw                                                                                                    |   |
|                |                                                                                                                             |   |
|                |                                                                                                                             |   |
|                | Leak off Spring                                                                                                             | 2 |
|                |                                                                                                                             |   |
|                |                                                                                                                             |   |
|                |                                                                                                                             |   |
|                |                                                                                                                             |   |
|                | Spindle                                                                                                                     |   |
|                | Budialat SAF                                                                                                                |   |
|                | Fuel inlet                                                                                                                  |   |
|                | Injector body Nozzle cap                                                                                                    |   |
|                |                                                                                                                             |   |
|                | Nozzle valve                                                                                                                |   |
|                | Fuel passage                                                                                                                |   |
|                | Nozzle body                                                                                                                 |   |
|                |                                                                                                                             |   |
|                | Figures Discol Fuel Injector                                                                                                |   |
|                | Figure: Diesel Fuel Injector                                                                                                |   |



(Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

# MODEL ANSWER

Summer – 17 EXAMINATION

Subject Code: 17408





(Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

## MODEL ANSWER

Summer – 17 EXAMINATION

Subject Code: 17408





(ISO/IEC - 27001 - 2005 Certified)

### MODEL ANSWER Summer – 17 EXAMINATION

Subject Code:

17408

|    | OR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |    |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
|    | COMMON<br>RELIEF<br>VALVE<br>FILTER<br>FILTER<br>FILTER<br>FILTER<br>FILTER<br>FILTER<br>FILTER<br>FILTER<br>FILTER<br>FILTER<br>FILTER<br>FILTER<br>FILTER<br>FILTER<br>FILTER<br>FILTER<br>FILTER<br>FILTER<br>FILTER<br>FILTER<br>FILTER<br>FILTER<br>FILTER<br>FILTER<br>FILTER<br>FILTER<br>FILTER<br>FILTER<br>FILTER<br>FILTER<br>FILTER<br>FILTER<br>FILTER<br>FILTER<br>FILTER<br>FILTER<br>FILTER<br>FILTER<br>FILTER<br>FILTER<br>FILTER<br>FILTER<br>FILTER<br>FILTER<br>FILTER<br>FILTER<br>FILTER<br>FILTER<br>FILTER<br>FILTER<br>FILTER<br>FILTER<br>FILTER<br>FILTER<br>FILTER<br>FILTER<br>FILTER<br>FILTER<br>FILTER<br>FILTER<br>FILTER<br>FILTER<br>FILTER<br>FILTER<br>FILTER<br>FILTER<br>FILTER<br>FILTER<br>FILTER<br>FILTER<br>FILTER<br>FILTER<br>FILTER<br>FILTER<br>FILTER<br>FILTER<br>FILTER<br>FILTER<br>FILTER<br>FILTER<br>FILTER<br>FILTER<br>FILTER<br>FILTER<br>FILTER<br>FILTER<br>FILTER<br>FILTER<br>FILTER<br>FILTER<br>FILTER<br>FILTER<br>FILTER<br>FILTER<br>FILTER<br>FILTER<br>FILTER<br>FILTER<br>FILTER<br>FILTER<br>FILTER<br>FILTER<br>FILTER<br>FILTER<br>FILTER<br>FILTER<br>FILTER<br>FILTER<br>FILTER<br>FILTER<br>FILTER<br>FILTER<br>FILTER<br>FILTER<br>FILTER<br>FILTER<br>FILTER<br>FILTER<br>FILTER<br>FILTER<br>FILTER<br>FILTER<br>FILTER<br>FILTER<br>FILTER<br>FILTER<br>FILTER<br>FILTER<br>FILTER<br>FILTER<br>FILTER<br>FILTER<br>FILTER<br>FILTER<br>FILTER<br>FILTER<br>FILTER<br>FILTER<br>FILTER<br>FILTER<br>FILTER<br>FILTER<br>FILTER<br>FILTER<br>FILTER<br>FILTER<br>FILTER<br>FILTER<br>FILTER<br>FILTER<br>FILTER<br>FILTER<br>FILTER<br>FILTER<br>FILTER<br>FILTER<br>FILTER<br>FILTER<br>FILTER<br>FILTER<br>FILTER<br>FILTER<br>FILTER<br>FILTER<br>FILTER<br>FILTER<br>FILTER<br>FILTER<br>FILTER<br>FILTER<br>FILTER<br>FILTER<br>FILTER<br>FILTER<br>FILTER<br>FILTER<br>FILTER<br>FILTER<br>FILTER<br>FILTER<br>FILTER<br>FILTER<br>FILTER<br>FILTER<br>FILTER<br>FILTER<br>FILTER<br>FILTER<br>FILTER<br>FILTER<br>FILTER<br>FILTER<br>FILTER<br>FILTER<br>FILTER<br>FILTER<br>FILTER<br>FILTER<br>FILTER<br>FILTER<br>FILTER<br>FILTER<br>FILTER<br>FILTER<br>FILTER<br>FILTER<br>FILTER<br>FILTER<br>FILTER<br>FILTER<br>FILTER<br>FILTER<br>FILTER<br>FILTER<br>FILTER<br>FILTER<br>FILTER<br>FILTER<br>FILTER<br>FILTER<br>FILTER<br>FILTER<br>FILTER<br>FILTER<br>FILTER<br>FILTER<br>FILTER<br>FILTER<br>FILTER<br>FILTER<br>FILTER<br>FILTER<br>FILTER<br>FILTER<br>FILTER<br>FILTER<br>FILTER<br>FILTER<br>FILTER<br>FILTER<br>FILTER<br>FILTER<br>FILTER<br>FILTER<br>FILTER<br>FILTER<br>FILTER<br>FILTER<br>FILTER<br>FILTER<br>FILTER<br>FILTER<br>FILTER<br>FILTER<br>FILTER<br>FILTER<br>FILTER<br>FILTER<br>FILTER<br>FILTER<br>FILTER<br>FILTER<br>FILTER<br>FILTER<br>FILTER<br>FILTER<br>FILTER<br>FILTER<br>FILTER<br>FILTER<br>FILTER<br>FILTER<br>FILTER<br>FILTER<br>FILTER<br>FILTER<br>FILTER<br>FILTER<br>FILTER<br>FILTER<br>FILTER<br>FILTER<br>FILTER<br>FILTER<br>FILTER<br>FILTER<br>FILTER<br>FILTER<br>FILTER<br>FIL |    |
| 4  | Attempt any FOUR of the following:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 16 |
| a) | Explain working of Magneto ignition system with suitable sketch.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 4  |
|    | <ul> <li>Answer: (Explanation 2 marks, figure 2 marks )</li> <li>Magneto ignition system: (Note: Credit shall be given to any other suitable sketch)</li> <li>Magneto is mounted on the engine and replaces all the components of the coil ignition system except the spark plug. A magneto when rotated by the engine is capable of producing a very High voltage and does not need a battery as a source of external energy.</li> <li>A schematic diagram of a high tension magneto ignition system is shown Figure.</li> <li>The high tension magneto incorporates the windings to gen-rate the primary voltage as well as to step up the voltage and thus does not require a separate coil to boost up the voltage required to operate the spark plug. Magneto can be either rotating armature type or rotating magnet type. In this type, the armature consisting of the primary and secondary windings all rotate between the poles of a stationary magnet. With the help of a cam, the primary circuit flux is changed and a high voltage is produced in the secondary circuit. At start the cranking speed is low the current generated by the magneto is quite small. As the engine speed increases the flow of current also increases.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    |



(Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

#### MODEL ANSWER Summer – 17 EXAMINATION

Subject Code: 17408





(Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

#### MODEL ANSWER Summer – 17 EXAMINATION

Subject Title: Automobile Engines

Subject Code:

17408





(Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

#### MODEL ANSWER Summer – 17 EXAMINATION

Subject Code:

17408





(Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

# MODEL ANSWER

Summer – 17 EXAMINATION

Subject Code:

e: 17408

|  |                                                                                                                                                                          |         | speed rises                                                          | speed rises                                   |   |
|--|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|----------------------------------------------------------------------|-----------------------------------------------|---|
|  |                                                                                                                                                                          | 9       | Used in cars, Buses, Trucks                                          | Used in Motorcycles, Scooters, racing         |   |
|  |                                                                                                                                                                          |         | o see in curs, Duses, Trucks                                         | cars                                          |   |
|  | d)                                                                                                                                                                       | Explai  | n electrically driven fan circuit wi                                 |                                               | 4 |
|  |                                                                                                                                                                          | Answe   | er:(Description 2 marks, circuit diag                                | ram 2 marks)                                  |   |
|  |                                                                                                                                                                          | T       | he fan is driven by a separate electric                              | e motor which is supplied with power directly |   |
|  |                                                                                                                                                                          |         |                                                                      | thermostat switch is placed at an appropriate |   |
|  | place in the cooling system and depending upon the cooling system temperature it<br>operates to switch to On or OFF the fan motor. It has been found that under ordinary |         |                                                                      |                                               |   |
|  |                                                                                                                                                                          |         |                                                                      |                                               |   |
|  |                                                                                                                                                                          |         | on only about 5 % of the time the fatime it is off.                  | an motor remains in ON position, while 95%    |   |
|  |                                                                                                                                                                          | of the  |                                                                      |                                               |   |
|  |                                                                                                                                                                          |         | FAN MOTOR<br>FAN MOTOR<br>FAN MOTOR<br>RADIATOR FAN<br>THERMO SWITCH | FUSE BOX                                      |   |
|  |                                                                                                                                                                          |         | Fig. Electrically                                                    | driven fan circuit                            |   |
|  | e)                                                                                                                                                                       | Overc   | ooling and under cooling of engine                                   |                                               | 4 |
|  | /                                                                                                                                                                        | Answe   | · · · ·                                                              |                                               |   |
|  |                                                                                                                                                                          |         |                                                                      | ep the engine from not getting so hot as to   |   |
|  |                                                                                                                                                                          | cause 1 | problems and yet to permit it to run                                 | hot enough to ensure maximum efficiency of    |   |
|  |                                                                                                                                                                          | the eng | gine. During the process of converting                               | ng the thermal energy to mechanical energy,   |   |
|  |                                                                                                                                                                          | -       |                                                                      | nders because of combustion process. A large  |   |
|  |                                                                                                                                                                          | _       |                                                                      | cylinder head and walls, piston and valves.   |   |
|  |                                                                                                                                                                          | -       |                                                                      | these parts are adequately cooled, the engine |   |
|  |                                                                                                                                                                          |         | •                                                                    | g system must be provided to prevent the      |   |
|  |                                                                                                                                                                          |         |                                                                      | to obtain maximum performance of the          |   |
|  |                                                                                                                                                                          | engine  | _                                                                    |                                               |   |
|  |                                                                                                                                                                          |         | -                                                                    |                                               |   |
|  |                                                                                                                                                                          |         |                                                                      |                                               |   |
|  |                                                                                                                                                                          |         |                                                                      |                                               |   |



Subject Title: Automobile Engines

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION

(Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

# MODEL ANSWER

Summer – 17 EXAMINATION

|   | <b>f</b> ) | Explain construction and working of pressure cap used in cooling system                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 4              |
|---|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|
|   |            | Answer:(Description 2 marks, figure2 marks)<br>Pressure cap contains a pressure valve and a vacuum valve. When due to severe<br>working conditions, the coolant starts boiling and vaporizes the pressure in the system<br>exceeds a certain predetermined (50-100kPa) value, the pressure blow off valve opens<br>releasing the excess pressure to the atmosphere through the overflow pipe.<br>If due to any reason vacuum is created inside, the vacuum valve operates to avoid<br>collapse of the radiator. This value is usually set to operate when vacuum exceeds 5kPa. | 2              |
|   |            | VACUUM<br>VALVE<br>GASKET<br>BLOW OFF<br>VALVE<br>RADIATOR UPPER TANK<br>CORE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2              |
| 5 | a)         | Fig. 5.9. Pressure cap.       Fig. 5.10. Pressure cap.         Attempt any FOUR of the following       Draw neat labelled sketch of dry sump lubrication system for multi cylinder and describe its working                                                                                                                                                                                                                                                                                                                                                                    | <u>16</u><br>4 |
|   |            | describe its working.         Answer: (Working 2 marks, Sketch 2 marks)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | . <u></u>      |
|   |            | In this system the lubricating oil is not stored in the oil sump.<br>This system is employed in some racing car engines for situations where the<br>vehicle has to be operated at very steep angles.                                                                                                                                                                                                                                                                                                                                                                           | 2              |
|   |            | If ordinary pressure system of lubrication is used in such a case, the situation<br>may arise when there is no oil at the place where oil pump is installed. To avoid<br>such situation dry sump system is used.<br>Two pumps are used instead of single oil pump                                                                                                                                                                                                                                                                                                              |                |
|   |            | The scavenge pump A is installed in the crankcase portion which is the lowest.<br>It pumps oil to a separate reservoir B, from where the pressure pump C pimps<br>the oil through filter D, to the cylinder bearings.<br>Oil pressure is @ 400-500 kpa at main & big end bearing                                                                                                                                                                                                                                                                                               | 1              |
|   |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2              |



(Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

# MODEL ANSWER

Summer – 17 EXAMINATION

Subject Code: 17408



(ISO/IEC - 27001 - 2005 Certified)

#### MODEL ANSWER Summer – 17 EXAMINATION

Subject Code: 17408





(Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

#### MODEL ANSWER Summer – 17 EXAMINATION

Summer – 17 I Subject Title: Automobile Engines





(Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

#### MODEL ANSWER Summer – 17 EXAMINATION

Subject Title: Automobile Engines

Subject Code:

17408





(Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

#### MODEL ANSWER Summer – 17 EXAMINATION

Subject Code:

17408



AND OF TREATION

(ISO/IEC - 27001 - 2005 Certified)

### MODEL ANSWER

Summer – 17 EXAMINATION

Subject Title: Automobile Engines

| <b></b>    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |    |
|------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
|            | the total IP of the engine.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |    |
|            | Where BP = Brake power                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |    |
|            | IP = Indicated power                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 4  |
|            | FP = Frictional power                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |    |
|            | Let F.P. of cylinder 1,2,3,4 be F1, F2, F3, F4 respectively.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |    |
|            | Then total FP of engine = $F1+F2+F3+F4$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |    |
|            | Let IP of cylinder 1 2 3 and 4 be 11, I2 I3 & I4 respectively.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |    |
|            | The total IP of engine is given by,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |    |
|            | = I1 + , I2 + I3 + I4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |    |
|            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |    |
|            | The total BP of engine when all cylinders are working                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |    |
|            | BP= Total IP – Total FP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |    |
|            | B = (I1 + I3 + I4) - (F1 + F2 + F3 + F4) - (F1 + F3 + F3) - (F1 + F3) - ( |    |
|            | When cylinder 1 is cut off, the BP developed by the remaining three cylinders,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |    |
|            | B1 = (0 + I2 + I3 + I4) - (F1 + F2 + F3 + F4)2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |    |
|            | Subtracting (2) from (1) we get                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |    |
|            | B-B1=I1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |    |
|            | Therefore IP of cylinder 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |    |
|            | II = B - BI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |    |
|            | Similarly,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |    |
|            | IP of cylinder 2, $I2 = B-B2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4  |
|            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -+ |
|            | IP of cylinder 3, I3= B-B3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |    |
|            | IP of cylinder 4, $I4 = B-B4$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    |
|            | Total IP of Engine = $I1 + I2 + I3 + I4$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |    |
|            | Friction Power = I.P – B.P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |    |
| <b>b</b> ) | Following readings were noted during a test on a single cylinder of two stroke                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 8  |
| ~,         | petrol engine. Engine is motored by a electric motor and frictional power recorded                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Ŭ  |
|            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |    |
|            | on wattmeter is 1.5 KW.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |    |
|            | Net brake load = 2.0 N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |    |
|            | Dia of brake wheel =110 cm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |    |
|            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |    |
|            | Engine speed = 595 rpm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |    |
|            | Fuel consumption = 2.01 Kg/hr.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |    |
|            | C. V of fuel =44000 KJ/Kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |    |
|            | Find mechanical efficiency and brake thermal efficiency.           Solution:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |    |
|            | Given data :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |    |
|            | No of stroke = 2 $F.P. = 1.5 \text{ kW}$ Net Brake load = w = 2.0 N $C.V=44000$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |    |
|            | No of stroke = 2 $F.P. = 1.5 \text{ kW}$ Net Brake load = $W = 2.0 \text{ N}$ $C.V = 44000$<br>KJ/Kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |    |
|            | e                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |    |
|            | Dia of brake wheel= $110$ cm = $1.1$ m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |    |
|            | Radius of Drum = $R=1.1/2 = 0.55 \text{ m}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |    |
|            | Speed = N= 595rpm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |    |
|            | Fuel Consumption = $Mf = 2.01Kg/Hr = 2.01/36000 = 5.58X10^{-4}Kg/Sec$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |    |
|            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |    |



Subject Title: Automobile Engines

(Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

## MODEL ANSWER

Summer – 17 EXAMINATION

Subject Code:

17408

|            | (i) Mechanical efficiency<br>B.P = $2\pi NT/60000$ KW                                                                                                                                                                                                                                                                                                                                                                     |   |
|------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|
|            | Torque = brake Net load x Drum of Radius<br>T= W X R = $2.0 * 0.55 = 1.1$ Nm                                                                                                                                                                                                                                                                                                                                              |   |
|            | B.P = $2\pi X595X1.1/60000$ KW = 0.0685 KW.                                                                                                                                                                                                                                                                                                                                                                               |   |
|            | I.P = B.P + F.P = 0.0685 + 1.5 = 1.5685 KW                                                                                                                                                                                                                                                                                                                                                                                |   |
|            | <b>Mechanical efficiency</b> =( $B.P/I.P$ ) X100 = ( $0.0685/1.5685$ )X100 = 1.430 % ii) Brake thermal efficiency                                                                                                                                                                                                                                                                                                         |   |
|            | $\eta_{Bth} = \frac{B.P.}{m_f \times c.v.} \times 100\%$                                                                                                                                                                                                                                                                                                                                                                  |   |
|            | $\eta_{\text{bth}} = (0.0685/5.58X10^{-4}X44000)X100$                                                                                                                                                                                                                                                                                                                                                                     |   |
|            | = 0.278 %                                                                                                                                                                                                                                                                                                                                                                                                                 |   |
|            | Note – Given data of Brake load is not suitable or wrong value therefore results are deviated.                                                                                                                                                                                                                                                                                                                            |   |
| <b>c</b> ) | An I.C. engine uses 6 kg fuel having calorific value 44000 kJ/kg. in one hour. The brake power developed is 18kW. The temperature of 11.5 kg of cooling water found to rise through 25 <sup>0C</sup> per minute. The temperature of 4.2 kg of exhaust gas with specific heat 1 kJ/kg K was found to rise though 220 <sup>0C</sup> . Draw heat balance sheet for the engine.                                               | 4 |
|            | Solution:                                                                                                                                                                                                                                                                                                                                                                                                                 |   |
|            | Given data :<br>Mass of Fuel = 6 Kg/hr = 6/60 = 0.1 Kg/min. BP = 18 KW $CV = 44000 \text{ kJ/kg}$<br>Mass of cooling water Mw = 11.5 Kg/min Cpw = 4.187 kJ/kg K<br>Temp rise of cooling water $\Delta tw = 25^{0C}$<br>Mass of exhaust gas Meg = 4.2 Kg/hr =4.2/60 Kg/min = 0.7 Kg/min<br>Temp rise of gas $\Delta tg = 220^{0C}$ Cpg = 1 kJ/kg K<br>i) Heat equivalent in Fuel Hf = Mf x C V = 0.1 x 44000 = 4400 Kg/min |   |
|            | <sup>ii)</sup> Heat converted in B P Hb = B P x $60 = 18 x 60 = 1080 $ Kg/min                                                                                                                                                                                                                                                                                                                                             |   |
|            | <sup>iii)</sup> Heat carried by cooling water $Hw = Mw \times Cpw \times \Delta tw$                                                                                                                                                                                                                                                                                                                                       |   |
|            | Hw = 11.5 x 4.187 x 25 = 1203.76 Kg/min                                                                                                                                                                                                                                                                                                                                                                                   |   |
|            | iv) Heat in Exhaust Gas $Hg = Mg \times Cpg \times \Delta tg$                                                                                                                                                                                                                                                                                                                                                             |   |
|            | Hg = 0.7 x 1 x 220 = 154 Kg/min                                                                                                                                                                                                                                                                                                                                                                                           |   |
|            | v) Heat lost as Unaccounted Ha = Hf- (Hb+Hw+Hg)                                                                                                                                                                                                                                                                                                                                                                           |   |



(Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

#### MODEL ANSWER Summer – 17 EXAMINATION

Subject Title: Automobile Engines

Subject Code:

17408

| Ha = 4400 – (1080+1203.76+154) = 1962.24 Kg/min |                   |                                     |                |
|-------------------------------------------------|-------------------|-------------------------------------|----------------|
| Parameter                                       | Value<br>(Kg/min) | Parameter                           | Value (Kg/min) |
| Heat<br>equivalent<br>in Fuel Hf                | 4400 Kg/min       | Heat converted in B P Hb            | 1080 Kg/min    |
|                                                 |                   | Heat carried by cooling<br>water Hw | 1203.76 Kg/min |
|                                                 |                   | Heat in Exhaust Gas Hg              | 154 Kg/min     |
|                                                 |                   | Heat lost as Unaccounted Ha         | 1962.24 Kg/min |
| Hf                                              | 4400 KJ/min       | Total                               | 4400 KJ/min    |