

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

SUMMER-17 EXAMINATION

Model Answer

Subject Title: Fundamentals of Chemical Engineering

Subject code : 17206

Page **1** of **18**

Important Instructions to examiners:

1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme.

2) The model answer and the answer written by candidate may vary but the examiner may try to assess the understanding level of the candidate.

3) The language errors such as grammatical, spelling errors should not be given more

Importance (Not applicable for subject English and Communication Skills.

4) While assessing figures, examiner may give credit for principal components indicated in the

figure. The figures drawn by candidate and model answer may vary. The examiner may give credit for any equivalent figure drawn.

5) Credits may be given step wise for numerical problems. In some cases, the assumed constant values may vary and there may be some difference in the candidate's answers and model answer.

6) In case of some questions credit may be given by judgement on part of examiner of relevant answer based on candidate's understanding.

7) For programming language papers, credit may be given to any other program based on equivalent concept.

Q No.	Answer	mark
1	Any ten	20
1-a	Density:	
	Unit: Kg/m ³	
	Force:	
	Unit: Newton(N)	
1-b	Molecular weight of Na ₂ CO ₃	
	=(23*2)+12+(16*3)	
	=106	
1-c	Unit operations used for separation of solid-liquid mixture:	1 mar
	1. Sedimentation	each fo
	2. Filtration	any
	3. Centrifuging	
1-d	Volumetric flow rate: It is the volume flowing per unit time	
	Volumetric flow rate = Volume/ time	
	Instrument used to measure volumetric flow rate(any one)	
	1. Rotameter	
	2. Venturi meter	
	3. Orifice meter	
1-e	(i) Density:	-
	Density is mass/ volume	
	(ii) Specific gravity:	
	It is the ratio of density of a liquid to density of water at $4^{0}C$	
1-f	1kg/m ³	
	$1m^3 = 1000 \text{ lit}$	
	$1 \text{kg/m}^3 = 1/1000$	

ct Title: Fu	undamentals of Chemical Engineering	Subject code :	17206	Page 3 o	
	= 0.001 Kg / lit			1	
1-g	Oxidation: It is defined as the addition	of oxygen or removal o	of hydrogenat	tion 1	
	from organic compounds.				
	- Oxidation reaction may involve the int	roduction of oxygen in	the molecule	e of	
	a compound.				
	Oxidation of acetaldehyde:			1	
	$CH_{3}CHO + \frac{1}{2}O_{2} - \cdots - \frac{1}{2}O_{2}$	→ CH ₃ COOH			
	Acetaldehyde	acetic acid			
	- Oxidation reaction may involve the ren	noval of hydrogen from	n the molecu	le of	
	a compound.				
1-h	Uses of Sulfuric acid(any 2)			1 mark	
	a) It is used as a dehydrating agent drying agent acidifying agent and			d each	
	neutralizing agent.				
	b) It is used in the manufacture of fertilizer.				
	c) Sulphuric acid is used for pick	kling iron and steel befor	ore galvanizi	ng.	
	d) It is used in processing metals	5.			
	e) It is used in the manufacture of	of lead acid batteries.			
1-i	Unit Process and unit operation:			1 mark	
	Unit process	Unit operation		each for	
	Chemical changes takes place	Physical changes take	es place,	any 2	
	Chemical reactions involved	no chemical reactions	involved		
	Eg; oxidation, reduction, nitration,	Eg; drying, distillati	on, mechani	ical	
	sulphonation	separation			
		<u> </u>]	

1-jBall mill:1Jaw CrusherJaw CrusherJaw Crusher1Jaw Crusher11-k $\cdot^9F=1.8\ ^9C+32$ $= 68\ ^9F$ 1 $\circ^6K=\ ^9C+273$ 1 $= 20\ +273$ 20 + 273 $= 20\ +273$ 20 + 273 $= 20\ 3\ K$ 11-1Principles of size reduction:1. Compression (Crushing)2.2. Impact (Grinding)2.3. Attrition/Rubbing(Ultra fine grinding)4.4. Cutting162-aDalton's law:2Dalton slaw states that total pressure of a gas mixture is equal to the sum of crustic pressure	bject Title: Fu	ndamentals of Chemical Engineering Subject code : 17206	Page 4 of	18
111-k ${}^{0}F=1.8 \ {}^{0}C+32$ $=1.8 \ {}^{2}O+32$ $=68 \ {}^{0}F$ 1 ${}^{0}K=\ {}^{0}C+273$ $=20 \ {}+273$ $=20 \ {}+273$ $=293 \ K$ 11-1 Principles of size reduction : 1. Compression (Crushing) 2. Impact (Grinding) 3. Attrition/Rubbing(Ultra fine grinding) 4. Cutting½ mark each2 Any four 162-a Dalton's law: Daltons law states that total pressure of a gas mixture is equal to the sum of	1-j	Ball mill:	1	
111-k ${}^{0}F=1.8 \ {}^{0}C+32$ $=1.8 \ {}^{2}O+32$ $=68 \ {}^{0}F$ 1 ${}^{0}K=\ {}^{0}C+273$ $=20 \ {}+273$ $=20 \ {}+273$ $=293 \ K$ 11-1 Principles of size reduction : 1. Compression (Crushing) 2. Impact (Grinding) 3. Attrition/Rubbing(Ultra fine grinding) 4. Cutting½ mark each2 Any four 162-a Dalton's law: Daltons law states that total pressure of a gas mixture is equal to the sum of				
I-k.°F= $1.8 \ ^{\circ}C + 32$ = $1.8 \ ^{\circ}20 + 32$ = $68 \ ^{\circ}F$ 1 $^{\circ}K= \ ^{\circ}C + 273$ = $20 + 273$ = $293 \ K$ 1I-1 Principles of size reduction: $2 \ \text{Impact (Grinding)}$ ½ mark each2Any four162-a Dalton's law: Daltons law states that total pressure of a gas mixture is equal to the sum of		Jaw Crusher		
$ \begin{vmatrix} = 1.8 * 20 + 32 \\ = 68 {}^{0}F \\ 0 \\ K = {}^{0}C + 273 \\ = 20 + 273 \\ = 293 K 1 \end{vmatrix} $ $ \begin{vmatrix} 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1$		$\downarrow \downarrow /$	1	
$ \begin{vmatrix} = 68 \ ^{0}F \\ ^{0}K = \ ^{0}C + 273 \\ = 20 + 273 \\ = 293 \ K $ 1 $ \begin{vmatrix} 1 - 1 \\ 1 $	1-k	$.^{0}$ F= 1.8 0 C +32		
$^{0}K = \ ^{0}C + 273$ $= 20 + 273$ $= 293 K11-1Principles of size reduction:1. Compression (Crushing)2. Impact (Grinding)3. Attrition/Rubbing(Ultra fine grinding)4. Cutting½ markeach2Any four162-aDalton's law:Daltons law states that total pressure of a gas mixture is equal to the sum of$		= 1.8 * 20 + 32		
$ \begin{vmatrix} = 20 + 273 \\ = 293 \text{ K} & 1 \\ \hline 1-1 & Principles of size reduction: 1/2 mark \\ = 1. Compression (Crushing) & each \\ 2. Impact (Grinding) \\ 3. Attrition/ Rubbing(Ultra fine grinding) \\ 4. Cutting & 16 \\ \hline 2-a & Dalton's law: 2 \\ Daltons law states that total pressure of a gas mixture is equal to the sum of \\ \end{vmatrix} $		$= 68 {}^{0}F$	1	
= 293 K 1 1-1 Principles of size reduction: ½ mark 1. Compression (Crushing) each 2. Impact (Grinding) strition/ Rubbing(Ultra fine grinding) 4. Cutting 16 2 Any four 16 2-a Dalton's law: 2 Daltons law states that total pressure of a gas mixture is equal to the sum of 2		${}^{0}\mathrm{K}={}^{0}\mathrm{C}+273$		
1-1Principles of size reduction:½ mark1. Compression (Crushing)each2. Impact (Grinding)impact (Grinding)3. Attrition/ Rubbing(Ultra fine grinding)impact4. Cuttingimpact2Any four162-aDalton's law:2Daltons law states that total pressure of a gas mixture is equal to the sum of		= 20 + 273		
1. Compression (Crushing)each2. Impact (Grinding). Attrition/ Rubbing(Ultra fine grinding)3. Attrition/ Rubbing(Ultra fine grinding)4. Cutting2Any four2-aDalton's law:Daltons law states that total pressure of a gas mixture is equal to the sum of		= 293 K	1	
2. Impact (Grinding) 3. Attrition/ Rubbing(Ultra fine grinding) 4. Cutting2Any four2Dalton's law: Daltons law states that total pressure of a gas mixture is equal to the sum of	1-1	Principles of size reduction:	¹∕₂ mark	
3. Attrition/Rubbing(Ultra fine grinding) 4. Cutting2Any four2-aDalton's law: Daltons law states that total pressure of a gas mixture is equal to the sum of		1. Compression (Crushing)	each	
4. Cutting2Any four2-aDalton's law: Daltons law states that total pressure of a gas mixture is equal to the sum of		2. Impact (Grinding)		
2 Any four 16 2-a Dalton's law: 2 Daltons law states that total pressure of a gas mixture is equal to the sum of 2		3. Attrition/ Rubbing(Ultra fine grinding)		
2-a Dalton's law: 2 Daltons law states that total pressure of a gas mixture is equal to the sum of 2		4. Cutting		
Daltons law states that total pressure of a gas mixture is equal to the sum of	2	Any four	16	
	2-a	Dalton's law:	2	
nortial processing		Daltons law states that total pressure of a gas mixture is equal to the sum of		
partial pressures		partial pressures		
$P = P_1 + P_2 + P_3$		$P=P_1+P_2+P_3$		

Fitle: Fu	undamentals of Chemical Engineering Subject code : 17206	Page 5 of 1
	where P is total pressure of gas mixture and P_1, P_2, P_3 are partial pressures	
	Amagat's law:	2
	Amagats law states that total volume of a gas mixture is equal to the sum of	
	pure component volumes	
	$V = V_1 + V_2 + V_3$	
	where V is total volume of gas mixture and V_1, V_2, V_3 are pure component	
	volumes.	
2-b	Weight of NaOH = 100 kg	1
	Molecular weight of $NaOH = 40$	1
	k moles of NaOH = weight / mol;.wt	1
	= 100/40 = 2.5	1
2-c	Rotameter:	4
	() Scale Float	
2-d	Unit operation used for Size separation is screening.	1
	Screening: It is a method of separating solid particles according to size alone	
	by means of screens of known aperture. Sieves and screens are used industrially	

t Title: Fu	Indamentals of Chemical Engineering Subject code : 17206	Page 6 of 1
	for the separation of solid particles according to their sizes, for production of	
	closely graded materials and for carrying out size analysis. In industrial	3
	screening, solids are dropped on a screening surface. The material retained on	
	the screen surface are called oversize material, while materials passing through	
	screen are called undersize particle. A single screen can make the separation of	
	material into two fractions.	
	Importance of screening:	
	i) Separation of fine from feed material.	
	ii) To produce material of specific size limits.	
2-e	Gas Absorption:	4
	-This operation is used to separate the components of gas mixture .	
	-It is carried out for the recovery or the removal of a soluble components of a	
	gas mixture depending upon the situation.	
	-Absorption is an operation in which a gas mixture is contacted with a liquid	
	solvent for the purpose of dissolving a definite component of the gas mixture in	
	the liquid.	
	Example:	
	1) Absorption of ammonia from an air- ammonia mixture by water	
	2) Removal of hydrogen sulfide from naturally occurring hydrocarbon gases.	
2-f	Modes of heat transfer are:	1
	Conduction	
	Convection	
	Radiation	
	1. Conduction: It is the transfer of heat without the movement of particles.	1
	Eg: heating of a metal rod	
	2. Convection: It is the transfer of heat within a fluid by the actual	1

migration of particles of hot fluid with cold fluid because of change of density of molecules of fluid by application of heat. Eg. Boiling of liquid3. Radiation: It is the transfer of heat through space by electromagnetic waves. When radiation passes through matter, it is transmitted, reflected or absorbed. Eg. Transport of energy from the sun to earth.163. Any 4163-a(i) Molality: Molality = gmmole of solute/ weight of solvent in kilogram (ii) Normality: N = gmequivalent of solute/ volume of solution in liter23-bWeight of NaOH = 100 kg Weight of Na2CO ₃ = 200 kg13-bWeight of NaOH = (100/ 300) * 100 = 33.33% Molecular weight of Na2OH = 40 Gram moles of NaOH = 40 Gram moles of NaOH = 100/40 = 2.5 Molecular weight of Na2CO ₃ = 200/106 = 1.89 Total moles of Na2CO ₃ = 200/106 = 1.89 Total moles of Na2CO ₃ = 200/106 = 1.89 Mol % of NaOH = (moles of NaOH / Total moles)*100 $= (2.5/ 4.39) * 100 = 56.95\%$ Mol % of NaOH = (moles of Na ₂ CO ₃ = (moles of Na ₂ CO ₃ / Total moles)*100 $= (2.5/ 4.39) * 100 = 56.95\%$ 1	Subject Title: Fu	Indamentals of Chemical Engineering Subject code : 17206	Page 7 of 18
Eg. Boiling of liquid3. Radiation: It is the transfer of heat through space by electromagnetic waves. When radiation passes through matter, it is transmitted, reflected or absorbed. Eg. Transport of energy from the sun to earth.3Any 4163-a(i) Molality: Normality:2Molality = gmmole of solute/ weight of solvent in kilogram (ii) Normality:3-bWeight of NaOH = 100 kg Weight of NaOH = 100 kg Weight of Na ₂ CO ₃ = 200 kg Total weight = 300 kg Weight % of Na ₂ CO ₃ = (200/300) * 100 = 33.33% 4103-bWeight of Na ₂ CO ₃ = 200/100 = 1.89 Total moles of Na ₂ CO ₃ = 200/106 = 1.89 Total moles of NaOH = (moles of NaOH / Total moles)*100 = (2.5/ 4.39)*100 = 56.95%		migration of particles of hot fluid with cold fluid because of change of	
3. Radiation: It is the transfer of heat through space by electromagnetic waves. When radiation passes through matter, it is transmitted, reflected or absorbed. Eg. Transport of energy from the sun to earth.13Any 4163-a(i) Molality: Molality = gmmole of solute/ weight of solvent in kilogram (ii) Normality: N = gmequivalent of solute/ volume of solution in liter23-bWeight of NaOH = 100 kg Weight of Na ₂ CO ₃ = 200 kg Total weight = 300 kg Weight % of Na ₂ CO ₃ = (200/300) * 100 =33.33% Molecular weight of NaOH = 100/40 = 2.5 Molecular weight of Na ₂ CO ₃ = 200/106 = 1.89 Total moles of Na ₂ CO ₃ = 200/106 = 1.89 Total moles = 2.5+1.89 = 4.39 Mol % of NaOH = (moles of NaOH / Total moles)*100 = (2.5/4.39)*100 = 56.95%1		density of molecules of fluid by application of heat.	
waves. When radiation passes through matter, it is transmitted, reflected or absorbed.13Any 4163-a(i)Molality: mole of solute/ weight of solvent in kilogram (ii)2Molality = gmmole of solute/ weight of solvent in kilogram (ii)2N = gmequivalent of solute/ volume of solution in liter23-bWeight of NaOH = 100 kg Weight of Na ₂ CO ₃ = 200 kg Total weight = 300 kg1Weight % of NaOH = (100/ 300) * 100 = 33.33% Weight % of NaOH = (100/ 300) * 100 = 66.67% Molecular weight of NaOH = 40 Gram moles of NaOH = 100/40 = 2.5 Molecular weight of Na ₂ CO ₃ = 200/106 = 1.89 Total moles = 2.5+1.89 = 4.39 Mol % of NaOH = (moles of NaOH / Total moles)*100 = (2.5/4.39)*100 = 56.95%1		Eg. Boiling of liquid	
or absorbed. Eg. Transport of energy from the sun to earth.163Any 4163-a(i) Molality: Molality = gmmole of solute/ weight of solvent in kilogram (ii) Normality: N = gmequivalent of solute/ volume of solution in liter23-bWeight of NaOH = 100 kg Weight of Na ₂ CO ₃ = 200 kg1Total weight = 300 kg Weight % of NaOH = (100/ 300) * 100 =33.33%1Weight % of NaOH = (100/ 300) * 100 = 66.67% Molecular weight of NaOH = 40 Gram moles of NaOH = 100/40 = 2.5 Molecular weight of Na ₂ CO ₃ = 200/106 = 1.89 Total moles = 2.5+1.89 = 4.39 Mol % of NaOH = (moles of NaOH / Total moles)*100 = (2.5/ 4.39)*100 = 56.95%1		3. Radiation: It is the transfer of heat through space by electromagnetic	
Eg. Transport of energy from the sun to earth.163Any 4163-a(i) Molality: Molality = gmmole of solute/ weight of solvent in kilogram (ii) Normality: N = gmequivalent of solute/ volume of solution in liter23-bWeight of NaOH = 100 kg Weight of Na ₂ CO ₃ = 200 kg Total weight = 300 kg Weight % of NaOH = (100/ 300) * 100 = 33.33% Weight % of NaOH = (200/ 300) * 100 = 66.67% Molecular weight of Na ₂ CO ₃ = 200/106 = 1.89 Total moles of Na ₂ CO ₃ = 200/106 = 1.89 Total moles = 2.5+1.89 = 4.39 Mol % of NaOH = (moles of NaOH / Total moles)*100 = (2.5/ 4.39)*100 = 56.95% 16		waves. When radiation passes through matter, it is transmitted, reflected	1
3Any 4163-a(i) Molality:2Molality = gmmole of solute/ weight of solvent in kilogram2(ii) Normality:2N = gmequivalent of solute/ volume of solution in liter23-bWeight of NaOH = 100 kgWeight of Na ₂ CO ₃ = 200 kg1Total weight = 300 kg1Weight % of NaOH = (100/ 300) * 100 =33.33%1Weight % of Na ₂ CO ₃ = (200/ 300) * 100 =66.67%1Molecular weight of NaOH = 40Gram moles of NaOH = 100/40 = 2.5Molecular weight of Na ₂ CO ₃ = 200/106 = 1.891Total moles = 2.5+1.89 = 4.3910Mol % of NaOH = (moles of NaOH / Total moles)*100= (2.5/ 4.39)*100 = 56.95%		or absorbed.	
3-a(i)Molality:2 $3-a$ (i)Molality = gmmole of solute/ weight of solvent in kilogram2Molality = gmmole of solute/ volume of solution in liter2N = gmequivalent of solute/ volume of solution in liter23-bWeight of NaOH = 100 kg1Weight of Na2CO3 = 200 kg1Total weight = 300 kg1Weight % of NaOH = (100/ 300) * 100 = 33.33%1Weight % of Na2CO3 = (200/ 300) * 100 = 66.67%1Molecular weight of NaOH = 100/40 = 2.51Molecular weight of Na2CO3 = 1061Gram moles of Na2CO3 = 200/106 = 1.891Total moles = 2.5+1.89 = 4.3910Mol % of NaOH = (moles of NaOH / Total moles)*100= (2.5/ 4.39)*100 = 56.95%		Eg. Transport of energy from the sun to earth.	
Molality = gnmole of solute/ weight of solvent in kilogram2(ii) Normality:2N = gmequivalent of solute/ volume of solution in liter23-bWeight of NaOH = 100 kgWeight of Na2CO3 = 200 kg1Total weight = 300 kg1Weight % of NaOH = $(100/300) * 100 = 33.33\%$ 1Weight % of Na2CO3 = $(200/300) * 100 = 66.67\%$ 1Molecular weight of NaOH = 40 6ram moles of NaOH = $100/40 = 2.5$ Molecular weight of Na2CO3 = $200/106 = 1.89$ 1Total moles = $2.5+1.89 = 4.39$ 10Mol % of NaOH = (moles of NaOH / Total moles)*100 $= (2.5/4.39)*100 = 56.95\%$	3	Any 4	16
(ii) Normality: 2 N = gmequivalent of solute/ volume of solution in liter 2 3-b Weight of NaOH = 100 kg Weight of Na ₂ CO ₃ = 200 kg 1 Total weight = 300 kg 1 Weight % of NaOH = (100/ 300) * 100 = 33.33% 1 Weight % of Na ₂ CO ₃ = (200/ 300) * 100 = 66.67% 1 Molecular weight of NaOH = 40 6 Gram moles of NaOH = 100/40 = 2.5 1 Molecular weight of Na ₂ CO ₃ = 106 1 Gram moles of Na ₂ CO ₃ = 200/106 = 1.89 1 Total moles = 2.5+1.89 = 4.39 Mol % of NaOH = (moles of NaOH / Total moles)*100 = (2.5/ 4.39)*100 = 56.95% 100	3-а	(i) Molality:	2
N = gmequivalent of solute/ volume of solution in liter3-bWeight of NaOH = 100 kgWeight of Na2CO3 = 200 kg1Total weight = 300 kg1Weight % of NaOH = $(100/300) * 100 = 33.33\%$ 1Weight % of NaOH = $(200/300) * 100 = 66.67\%$ 1Molecular weight of NaOH = 40Gram moles of NaOH = $100/40 = 2.5$ Molecular weight of Na ₂ CO ₃ = $200/106 = 1.89$ 1Total moles of Na ₂ CO ₃ = $200/106 = 1.89$ 1Mol % of NaOH = (moles of NaOH / Total moles)*100 $= (2.5/4.39)*100 = 56.95\%$		Molality = gmmole of solute/ weight of solvent in kilogram	
3-b Weight of NaOH = 100 kg Weight of Na ₂ CO ₃ = 200 kg 1 Total weight = 300 kg 1 Weight % of NaOH = $(100/300) * 100 = 33.33\%$ 1 Weight % of NaOH = $(100/300) * 100 = 66.67\%$ 1 Weight % of NaOH = $(100/40) = 2.5$ Molecular weight of NaOH = $100/40 = 2.5$ Molecular weight of Na ₂ CO ₃ = 106 1 Gram moles of Na ₂ CO ₃ = $200/106 = 1.89$ 1 Total moles = $2.5+1.89 = 4.39$ Mol % of NaOH = (moles of NaOH / Total moles)*100 = $(2.5/4.39)*100 = 56.95\%$ 10		(ii) Normality:	2
Weight of Na ₂ CO ₃ = 200 kg 1 Total weight = 300 kg 1 Weight % of NaOH = $(100/300) * 100 =$ 33.33% 1 Weight % of NaOH = $(100/300) * 100 =$ 66.67% 1 Molecular weight of NaOH = 40 6ram moles of NaOH = $100/40 = 2.5$ Molecular weight of Na ₂ CO ₃ = 106 1 Gram moles of NaOH = $200/106 = 1.89$ 1 Total moles = $2.5+1.89 = 4.39$ 1 Mol % of NaOH = (moles of NaOH / Total moles)*100 = $(2.5/4.39)*100 =$ 56.95%		N = gmequivalent of solute/ volume of solution in liter	
Weight of Na ₂ CO ₃ = 200 kg 1 Total weight = 300 kg 1 Weight % of NaOH = $(100/300) * 100 =$ 33.33% 1 Weight % of NaOH = $(100/300) * 100 =$ 66.67% 1 Molecular weight of NaOH = 40 6ram moles of NaOH = $100/40 = 2.5$ Molecular weight of Na ₂ CO ₃ = 106 1 Gram moles of NaOH = $200/106 = 1.89$ 1 Total moles = $2.5+1.89 = 4.39$ 1 Mol % of NaOH = (moles of NaOH / Total moles)*100 = $(2.5/4.39)*100 =$ 56.95%			
Total weight = 300 kg 1 Weight % of NaOH = $(100/300) * 100 = 33.33\%$ 1 Weight % of Na ₂ CO ₃ = $(200/300) * 100 = 66.67\%$ 1 Molecular weight of NaOH = 40 6 Gram moles of NaOH = $100/40 = 2.5$ 1 Molecular weight of Na ₂ CO ₃ = 106 1 Gram moles of Na ₂ CO ₃ = $200/106 = 1.89$ 1 Total moles = $2.5+1.89 = 4.39$ 1 Mol % of NaOH = (moles of NaOH / Total moles)*100 = $(2.5/4.39)*100 = 56.95\%$	3-b	Weight of NaOH = 100 kg	
Weight % of NaOH = $(100/300) * 100 = 33.33\%$ 1Weight % of Na ₂ CO ₃ = $(200/300) * 100 = 66.67\%$ 1Molecular weight of NaOH = 406Gram moles of NaOH = $100/40 = 2.5$ 1Molecular weight of Na ₂ CO ₃ = 106 1Gram moles of Na ₂ CO ₃ = $200/106 = 1.89$ 1Total moles = $2.5+1.89 = 4.39$ 100Mol % of NaOH = (moles of NaOH / Total moles)*100= $(2.5/4.39)*100 = 56.95\%$		Weight of $Na_2CO_3 = 200 \text{ kg}$	1
Weight % of Na ₂ CO ₃ = (200/ 300) * 100 = 66.67% Molecular weight of NaOH = 40 Gram moles of NaOH = 100/40 = 2.5 Molecular weight of Na ₂ CO ₃ = 106 Gram moles of Na ₂ CO ₃ = 200/106 = 1.89 Total moles = $2.5+1.89 = 4.39$ Mol % of NaOH = (moles of NaOH / Total moles)*100 = (2.5/ 4.39)*100 = 56.95%		Total weight = 300 kg	
Molecular weight of NaOH = 40 Gram moles of NaOH = 100/40 = 2.5 Molecular weight of Na ₂ CO ₃ = 106 Gram moles of Na ₂ CO ₃ = 200/106 = 1.89 Total moles = $2.5+1.89 = 4.39$ Mol % of NaOH = (moles of NaOH / Total moles)*100 = ($2.5/4.39$)*100 = 56.95%		Weight % of NaOH = (100/ 300) * 100 = 33.33%	1
Gram moles of NaOH = $100/40 = 2.5$ 1Molecular weight of Na ₂ CO ₃ = 106 1Gram moles of Na ₂ CO ₃ = $200/106 = 1.89$ 1Total moles = $2.5+1.89 = 4.39$ 1Mol % of NaOH = (moles of NaOH / Total moles)*100= $(2.5/4.39)*100 = 56.95\%$		Weight % of Na ₂ CO ₃ = $(200/300) * 100 = 66.67\%$	
Molecular weight of $Na_2CO_3 = 106$ 1 Gram moles of $Na_2CO_3 = 200/106 = 1.89$ 1 Total moles = $2.5+1.89 = 4.39$ 1 Mol % of NaOH = (moles of NaOH / Total moles)*100 = $(2.5/4.39)*100 = 56.95\%$		Molecular weight of NaOH = 40	
Gram moles of $Na_2CO_3 = 200/106 = 1.89$ Total moles = 2.5+1.89 = 4.39 Mol % of NaOH = (moles of NaOH / Total moles)*100 = (2.5/ 4.39)*100 = 56.95%		Gram moles of NaOH = $100/40 = 2.5$	
Total moles = $2.5+1.89 = 4.39$ Mol % of NaOH = (moles of NaOH / Total moles)*100 = $(2.5/4.39)*100 = 56.95\%$		Molecular weight of $Na_2CO_3 = 106$	1
Mol % of NaOH = (moles of NaOH / Total moles)*100 = (2.5/ 4.39)*100 = 56.95%		Gram moles of $Na_2CO_3 = 200/106 = 1.89$	
= (2.5/ 4.39)*100 = 56.95%		Total moles = $2.5 + 1.89 = 4.39$	
		Mol % of NaOH = (moles of NaOH / Total moles)*100	
Mol % of $Na_2CO_3 = (moles of Na_2CO_3 / Total moles)*100$ 1		= (2.5/ 4.39)*100 = 56.95%	
		Mol % of $Na_2CO_3 = (moles of Na_2CO_3 / Total moles)*100$	1
= (1.89/ 4.39)*100 = 43.05%		= (1.89/ 4.39)*100 = 43.05%	

Subject Tit	e: Fundamentals of Chemical Engineering Subject code : 17206	Page 8 of 18
3	c Weight of NaOH = 80 gms.	
	Gram equivalent of $NaOH = 80/40 = 2$	1
	Volume of solution = 3000 ml= 3 lit	1
	N = gmequivalent of solute/ volume of solution in liter	1
	= 2/3 = 0.667	1
	Normality of the solution $= 0.667 $ N	
3	d Distillation: -Distillation is an operation in which the components of a liquid	4
	mixture are separated using thermal energy. It depends upon the difference in	
	boiling points of the individual components. The difference in vapour pressure	
	of the components of a liquid mixture at the same temperature is responsible for	
	separation by distillation.	
	In this operation, liquid and vapour phases are involved. The vapour phase is	
	created by supplying heat to the liquid phase. The concentration of more	
	volatile component of the liquid mixture is higher in vapour phase than in the	
	feed solution, while that of the less volatile component is higher in the liquid	
	phase.	
	When a liquid mixture containing more volatile and less volatile components	
	are heated, more volatile component will vaporize first and the vapours are	
	collected and condensed to get it in pure form.	
3	e (i)Chlorination: It refers to the process in which one or more chlorine atoms	
	are introduced into an organic compound.	1
	Chlorination of methane: Chlorination of methane in presences of ultraviolet	
	light or at a temperature of 300 – 400 C results in the formation of polyhalogen	1
	derivatives.	
	U.V.light	
	$CH_4 + Cl_2 > CH_3Cl + CH_2Cl_2 + CHCl_3 + CCl_4 + HCl_3$	
	300-400 C	

	OR	
	Manufacturing of Chlorobenzene:	
	Benzene reacts with chlorine gas in the presence of catalyst at about 30-60 °C to	
	form chlorobenzene	
	FeCl ₃	
	C_6H_6 + Cl_2 > C_6H_5Cl + HCl	
	Benzene 30-60°C Chlorobenzene	
	Note : Any other suitable example	
	(ii) Nitration reactions :	
	It is the reaction with nitrating mixture to introduce $nitro(NO_2)$ group into an	1
	organic compound.	
	$C_2H_6 + HNO_3 > C_2H_5NO_2 + H_2O$	1
3-f	Esterification reaction:-The reaction of an alcohol with a carboxylic acid to	2
	produce an ester is termed as esterification.	
	Esterification of an acid such as acetic acid by an alcohol such as ethyl alcohol	
	results in the production of ethyl acetate. Sulphuric acid and hydrochloric acids	
	are the catalysts used for esterification.	
	Chemical Reaction for esterification:	2
	$CH_3COOH + C_2H_5OH \rightarrow CH_3COOC_2H_5 + H_2O$	
	Esterification is the reaction where ester is produced whereas saponification is a	
	reaction where sodium salt of ester is produced.	
4	Any 4	16
4-a	Advantages of size reduction :	
	1. Easy handling	1 mark
	2. Easy transportation	each for
	3. Increase in reaction rate	any 4

Subject Title: F	undamentals of Chemical Engineering Subject code : 17206	Page 10 of 18
	4. For having intimate mixing of solid	
	5. To separate various ingredients.	
4-b	(i)Partial Pressure:	2
	Partial pressure of a component gas is the pressure that would be exerted by	
	that component gas if it alone was present in the same volume and at the same	
	temperature as the gas mixture.	
	(ii)Vapor pressure :	2
	It is the pressure exerted by vapor on the surface of liquid at equilibrium	
	conditions.	
	OR	
	It is the absolute pressure at which the liquid and its vapour are in equilibrium	
	at a given temperature.	
4-c	N = gmequivalent of solute/ volume of solution in liter	1
	0.5= gmequivalent of solute/ 0.25 lit	1
	Gram equivalent of $H_2SO_4 = 0.125$	1
	weight of $H_2SO_4 = 0.125*49 = 6.125$ gram	1
	To prepare 0.5N, 250 ml H_2SO_4 solution, dissolve 6.125 grams H_2SO_4 in water	
	to get 250ml solution.	
4-d	Drying: Drying is an operation in which the moisture of a substance is removed	4
	by means of thermal energy. In this operation, moisture is removed by	
	circulating hot air or gas over the material in order to carry away the water	
	vapour. In this operation, heat and mass transfer occur simultaneously. Heat is	
	transferred from the gas phase to the solid phase and mass is transferred from	
	the solid phase to the gas phase. Usually a solid or nearly solid materials are	
	processed in dryer.	
	Drying operations may be carried out for i)reducing the transportation cost,	
	ii)making materials more suitable for handling and storage, iii)preventing	
L		

	indamentals of Chemical Engineering	Subject code : 17206	Page 1 :
		e of moisture and iv)providing definite	
	properties to materials.		
	Eg: Drying of pharmaceuticals, dyes	, paper, cloth	
4-е	Different types of pumps and their	applications:	2 marks
	Pump	Application	each for
	Centrifugal pump	For handling thin liquids and	any 2
		suspension of solids in liquids	
	Gear pump	For handling high viscosity liquids	
	Diaphragm pump	For handling corrosive liquids	
	Screw pump	Handling slurries containing higher	
		proportions of solids	
4-f	Sulfonation reactions :		2
	It is the reaction with sulfuric acid	to introduce sulfonic (SO ₃ H) group into a	
	compound.		
	$C_6H_6 + H_2SO_4 \rightarrow C_6H_5SO_3H + H_2$	0	
	Benzene benzene		2
	sulfonic acid		
5	Any 4		16
5-a	Hydrogenation: It refers to the cher	nical reaction of an organic compound with	1
	molecular hydrogen in the presence	of a catalyst.	
	Chemical Reaction for hydrogenat	tion:	
	$CH_2 = CH_2 + H_2 \rightarrow CH_3 - CH_3$		1
	$C_6H_6 + 3H_2 \rightarrow C_6H_{12}$		
	Hydration: It refers to a unit proces	s of adding a water molecule to an Organic	1
	Compound.		

	Hydration of Ehtylene :			
	Ethanol can be produced by hydration	of ethylene in presenc	e of a phosphor	ric 1
	acid at about 300°C			
	H ₃ PO ₄			
	$C_2H_4 + H_20 - C_2$	H ₅ OH		
	Hydration of propylene :			
	$CH_{3}CH = CH_{2} + H_{2}O \rightarrow C$	H ₃ CH(OH)CH ₃		
	Or any other example student can write	2		
5-b	Differentiate between filtration and se	edimentation		2 marks
	Sedimentation	Filtration		each for
	Gravitational force is acting	Pressure force is acti	ng	any 2
	Sedimentation tanks or settling tanks	Filters are used		
	are used.			
	No filter medium is used	Filter medium is used	d	
5-с	Flow sheet for manufacturing of Nitri	c acid:		
				4

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

	Construction:	
6-a	Mercury thermometer:	2
6	Any 4	16
	suspended impurities from water.	
	Application: Removal of solids from liquid sewage waste, removal of	
	equipment used for sedimentation.	
	relatively clear liquid is drawn off the top. Dorr thickener is the common	
	through the basin until the suspended impurities settle to the bottom and	
	treatment of water, water is allowed to stand undisturbed or move very slowly	
	the suspended impurities from a liquid is by plain sedimentation. In the	
	clear liquid and slurry of high solid contents. The simplest method of removing	
	is gravitational force. In this operation, a dilute slurry is separated into the	
	gravity settling is called sedimentation. The force responsible for sedimentation	2
5-f	Sedimentation: The separation of solids from a suspension in a liquid by	
	the absorber for absorption of SO ₃ .	
	tower for drying air. The acid of strength 97% from the drying tower is fed to	
	of 98% strength from the intermediate storage tank is fed fed to the air drying	
	storage tank from which product sulfuric acid is send to bulk storage. The acid	
	then cooled in a double pipe type chiller and finally goes to an intermediate	
	absorbed in 97% sulfuric acid. The acid leaving the absorber of 98% strength is	
	exchanger followed by a cooler and then fed to an absorber where SO_3 is	
	product gas containing SO_3 from the converter is then cooled in a heat	
	course of reaction may be removed by using water to generate steam. The	
	SO_3 at about $450^{\circ}C$. The oxidation is exothermic and heat evolved during the	
	employing vanadium pentoxide catalyst. In the converter SO ₂ gets oxidized to	
	from 1000°C to 450°C and are then introduced into a catalytic converter	
	burner outlet gas containing 8-10% SO ₂ are then cooled in a waste heat boiler	
	Indamentals of Chemical Engineering Subject code : 17206	Page 1

Subject Titl	Subject Title: Fundamentals of Chemical Engineering Subject code : 17206						Page 16 c	of 18
6-c	i-c	Personal protective equipments used in Chemical industries (any 4)						
		The pu	rpose of PPE is to provide a safety	barrier a hazard and	d the body of a	a		
		person	working in a hazardous environm	ent.			1 mark	
		1) Ha	rd hat : It is used for protection of	head			each	
		2) Saf	Cety goggles : It is used for protection	ion of eye				
		3)Safe	ety shoes: It is used for protection	of legs and foot				
		4)worl	k clothes: It is used for protection	of whole body				
		5)Ear	muff: It is used for protection of e	ar				
		6)Ear	plug : It is used for protection of	ear				
		7)Gua	ard cuff's : It is used for protection	n of body				
		8)Face	e Shield: It is used for protection o	f face				
6	-d	Deterr	nination Density of a liquid using	g Specific gravity b	ottle:		4	
		1)	In order to determine the density	by specific gravity	v bottle, first w	veigh		
			the clean, dry, empty and stopper	ed bottle.				
		2)	Then fill the bottle completely	with the liquid ,sto	opper it ,clear	n the		
			bottle from the outside with blot	tting paper to remov	ve the excess li	iquid		
			that spills on it outside					
		3)	Weigh it again.					
			Mass/Weight of empty bottle = W	V ₁ g				
			Mass/Weight of bottle filled wit	h liquid = \mathbf{W}_1 g				
			Mass/Weight of the liquid = W_2	$-\mathbf{W}_1$				
			Volume of the specific gravity bo	ttle = V ml				

Subject Title: Fu	ndamentals of Chemical Engineering Subject code : 17206	Page 17 of 18
	$Mass \qquad W_2 - W_1$ Density of the liquid in g/ml = =	
	Volume V	
	To avoid error due to the volume ,a certificate regarding the exact, accurate	
	volume of the bottle should be taken from the supplier	
6-е	U tube manometer:	1
	Pressure Difference in height of mercury columns	
	Construction:	
	It consists of a small diameter U shaped glass tube. The tube is clamped on a	
	wooden board and between two arms or legs of the manometer, a scale is fixed	
	on the same board. On the scale, the zero is marked at the center. The	
	manometric fluid is poured into the tube until the level in both the arms reaches	
	the zero mark. The manometric fluid should be immiscible with the process	
	fluid and heavier than process fluid.	1.5
	Working :	1.0
	1)The pressure in the inlet line can be measured by connecting it by plastic	
	tubing to one of the arms of the U-tube.	
	2) By measuring the difference in the height of the fluid in two arms of the U-	
	tube pressure can be measured by the equation.	
	$\Delta P = P_1 - P_2 = h(\rho_m - \rho) g$	1.5

	Where , ΔP = Pressure difference, h= difference in levels of two arms				
	$\rho_{\rm m}$ = density of manometric fluid				
6-f	Float and tape method:				
	It consists of a float which is a hollow metal ball. It is connected to a light				
	weight cable , the other end of the cable is connected to a counter weight. The				
	cable is wound around a pulley, to which an indicating pointer is attached. The				
	movement of the float is thus transferred to the pointer, which indicates the				
	level of liquid. Because of the buoyancy, the float will follow the changing				
	level of the liquid. As the level rises or falls, the movement of the float is				
	transferred to the pointer that indicates the level. It is a continuous direct level				
	measurement used in open vessels/ containers.				
	Scale Scale				
	Pulley				
	Cable Weight				
	Float Liquid level				
	Container				
	Liquid				