# 17507

## 15116

| 3 Hours / 100 Marks | Seat No. |  |  |  |  |
|---------------------|----------|--|--|--|--|
| 3 Hours / 100 Marks | Seat No. |  |  |  |  |

Instructions:

- (1) All questions are compulsory.
- (2) Illustrate your answers with neat sketches wherever necessary.
- (3) Figures to the **right** indicate **full** marks.
- (4) Assume suitable data, if necessary.
- (5) Mobile Phone, Pager and any other Electronic Communication devices are **not** permissible in Examination Hall.
- (6) Preferably, write the answers in sequential order.

Marks

## 1. A) Attempt any three:

 $(3 \times 4 = 12)$ 

- a) Compare a group drive and an individual drive.
- b) State various applications of dielectric heating.
- c) Define the following terms:
  - i) Luminous Intensity
- ii) Lumen

iii) Candle power

- iv) Waste light factor.
- d) Explain any three disadvantages of low power factor and state three methods to improve it.
- B) Attempt any one:

 $(1 \times 6 = 6)$ 

- a) What is electrical braking? Explain regenerative braking for D.C. series motor.
- b) Describe any two methods of current flow control in welding transformers.

#### 2. Attempt any four:

 $(4 \times 4 = 16)$ 

- a) What is load equalization? Explain with neat diagram and graphs, the process of the load equalization.
- b) State the principle and application of eddy current heating.
- c) Compare AC and DC system of traction.
- d) Write any eight desirable characteristics of traction motors.
- e) State the difference between actual speed and schedule speed of train. State the factors affecting schedule speed of a train.

#### 3. Attempt any two:

 $(2 \times 8 = 16)$ 

- a) A motor has to perform the following duty cycle:
  - 1) Load rising from 200 kW to 500 kW in 4 minutes.
  - 2) Uniform load of 350 kW for 2 minutes.
  - 3) Regenerative braking power returned to supply from 150 kW to zero in 2 minutes.
  - 4) Remains ideal for 1 minute. Determine power rating of motor.
- b) A 50 kW, three phase, 440 V resistance oven is to provide nickel-chrome strip 0.3 mm thick, for the three-star connected heating elements. If the temperature of the wire is to be 1500° C and that of the charge is to be 1000° C, calculate a suitable width of the strip. Take emissivity as 0.91 and radiation efficiency as 0.6. The specific resistance of nichrome alloy is  $1.016 \times 10^6$ . What would be the temperature of the element, when charge is cold at  $20^\circ$  C?
- c) What are the different safety and protective devices used in elevators? Also state functions of each device.



Marks

## 4. A) Attempt any three:

 $(3 \times 4 = 12)$ 

- a) Write classification of electric welding and its advantages.
- b) Explain the operating principle and working of a fluorescent lamp. Mention the function of following components:
  - i) Electrodes

ii) Choke

iii) Capacitor in glow type starter.

- iv) Capacitor connected across input terminals.
- c) Write short notes on the following:
  - i) Two part tariff.

- ii) Power factor tariff.
- d) Derive an expression for the most economical value of power factor.

### B) Attempt any one:

 $(1 \times 6 = 6)$ 

- a) With the help of neat sketch explain construction and working of spot welding machine.
- b) The monthly reading of a Consumer's meter are as follow:

Maximum demand = 50 kW

Energy consumed = 36,000 kWh

Reactive energy = 23,400 KVAR.

If the tariff is Rs. 80 per kW of maximum demand plus 8 paise per unit plus 0.5 paise per unit for each 1% of power factor below 86%, calculate the monthly bill of the consumer.

## 5. Attempt any four:

 $(4 \times 4 = 16)$ 

- a) Draw the following types of lamp fittings and lighting systems with the help of light distribution graphs and its applications.
  - i) Direct lighting

- ii) Indirect lighting
- iii) Semi-direct lighting
- iv) Semi-indirect lighting.
- b) Describe carbon arc welding with neat sketch.
- c) What are the requirements of ideal traction system? What are the different traction systems?
- d) Draw a neat diagram of A.C. electric locomotive and explain function of each part in it.
- e) With a suitable diagram explain series-parallel control of D.C. series motor.

## 6. Attempt any two:

 $(2 \times 8 = 16)$ 

- a) Describe the core type (Ajay Wyatt) induction furnace with a neat sketch and state its application and advantages.
- b) The speed-time curve of a train consists of:
  - i) Uniform acceleration of 5 km phps for 30 Sec.
  - ii) Free running for 10 min.
  - iii) Uniform retardation of 6 km phps to stop the train.
  - iv) A stop time of 5 min.

Find the distance between the stations, the average and schedule speed.

c) A 3-phase, 50 Hz, 400 V motor develops 100 HP, the power factor being 0.75 lagging and efficiency 93%. A bank of capacitors is connected in delta across the supply terminals and power factor raised to 0.95 lagging. Each of the capacitance unit is built of four similar 100 V capacitors. Determine the capacitance of each capacitor.