17415

15116 3 Hours / 100 Marks Seat No.

- Instructions (1) All Questions are Compulsory.
 - (2) Illustrate your answers with neat sketches wherever necessary.
 - (3) Figures to the right indicate full marks.
 - (4) Assume suitable data, if necessary.
 - (5) Use of Non-programmable Electronic Pocket Calculator is permissible.
 - (6) Mobile Phone, Pager and any other Electronic Communication devices are not permissible in Examination Hall.

Marks

1. Attempt any <u>TEN</u> of the following:

- a) State Fleming's right hand rule.
- b) Draw connection circuit diagram of:
 - (i) DC shunt generator
 - (ii) DC series generator
- c) Write voltage equation and power equation of DC motor.
- d) Draw power stages block diagram of DC motor.

16

- e) A four pole d.c. generator having wave wound armature winding has total 1020 conductors. Determine the emf generated when driven at 1500 rpm assuming flux per pole to be 7.0 mWb.
- f) A d.c. series motor takes 40 A at 220 V and runs at 800 rpm. If the armature and field resistance are 0.2 Ω and 0.1 Ω respectively, find the torque developed by the armature.
- g) Define voltage transformation ratio and turns ratio for 1ϕ transformer.
- h) State principle of operation of a transformer.
- i) A 3 kVA, 220/110 V transformer has 500 turns on its primary. Find its transformation ratio and secondary turns.
- j) List characteristics of an ideal transformer.
- k) State any two advantages of three phase transformer over bank of single phase transformers.
- 1) State conditions for parallel operation of 3-phase transformer.

2. Attempt any <u>FOUR</u> of the following:

a) Study the following figure show in Fig. No. 1

Fig. No. 1

- (i) Identify the part of d.c. machine
- (ii) Name the material used for it.
- (iii) State the use of the above part in case of d.c. motor and generator.

- b) Derive emf equation of d.c. generator.
- c) A d.c. series motor operates at 800 rpm with a line current of $100 \, A$ from $230 \, V$ mains. Its armature circuit resistance is $0.15 \, \Omega$ and its field resistance is $0.1 \, \Omega$. Find the speed at which the motor runs at a line current of $25 \, A$, assuming that the flux at this current is 45% of the flux at $100 \, A$.
- d) A d.c. series motor takes 40 A at 220 V and runs at 800 rpm. If the armature and field resistances are $0.2~\Omega$ and $0.1~\Omega$ respectively and the iron and friction losses are 0.5~kW. Find armature torque and efficiency of the motor.
- e) Describe the flux control speed control method of d.c. series motor with neat diagram.
- f) Describe the reason of using d.c. series motor for electric trains.

3. Attempt any FOUR of the following:

- a) Draw phase diagram for:
 - (i) Ideal transformer
 - (ii) Practical transformer on no load and on load.
- b) "Performance of a transformer is analysed on all day efficiency" Justify the statement.
- c) State the types of cooling used in distribution transformers.
- d) Derive an emf equation of a transformer.

17415 [4]

Marks

16

e) From following Figure No. 2 of transformer:

Fig. No. 2

- (i) Name the part 'a'.
- (ii) State application of part 'b'.
- (iii) State material used for part 'c'.
- (iv) Name the type of transformer from connections.
- f) The max. flux density in the core of a 250/3000V 50Hz 1-phase transformer is 1.2 Wb/m². If emf/turn is 8V, determine area of core and primary and secondary turns.

4. Attempt any <u>FOUR</u> of the following:

a) A 30 kVA, 2400/120 V, 50 Hz transformer has a high voltage winding resistance of 0.1 Ω and a leakage reactance of 0.22 Ω . The low voltage winding resistance is 0.035 Ω and the leakage reactance is 0.012 Ω . Find the equivalent winding resistance, reactance and impedance referred to LV side.

- b) "Transformers are rated in kVA instead of kW". Justify.
- c) Derive the equivalent circuit of transformer referred to primary.

17415 [5]

Marks

- d) A 20 kVA, 2200/220 V, 50 Hz transformer is carried out with O.C. and S.C. test. The results are
 - O.C. test: 220 V, 4.2 A, 148 W
 - S.C. test: 86 V, 10.5 A, 360 W

Determine regulation at 0.8 p.f. lagging and at full load. Also calculate p.f. at S.C.

- e) Describe the working of transformer on load with the help of phasor diagram considering lagging (inductive) load.
- f) State advantages of parallel operation of transformer.

5. Attempt any FOUR of the following:

- a) Describe polarity test on transformer with neat diagram.
- b) A 100-kVA lighting transformer has a full load loss of 3 kW, the losses being equally divided between iron and copper loss. During a day, the transformer operates on full load for 3 hrs, one half load for 4 hrs, the output being negligible for the remainder of the day. Calculate all day efficiency.
- c) Two single transformers of 250 kVA each are operated on parallel. Their percentage drops are $(1 + j6) \Omega$ and $(1.2 + j4.8) \Omega$. The load connected across the bus bar is 500 kVA at 0.8 p.f. lag. Calculate the load shared by each transformer.
- d) List any four parts of 3 phase transformer and state function of each part.
- e) State the criteria for selection of distribution transformer as per IS 10028 (part 1): 1985
- f) Distinguish between distribution transformer and power transformer on the basis of connection, rating, cost and maintenance.

17415 [6]

7	. /			1		
	V	9	1	r١	Z	C

6. Attempt any FOUR of the following:

- a) Why phasing out test and polarity test are carried out on 3-phase transformer?
- b) Draw a neat circuit diagram of connection of C.T. and P.T. in the power circuit.
- c) Describe the features of isolation transformer.
- d) List the advantages of instrument transformers.
- e) Describe working of welding transformer.
- f) Compare 1-phase auto transformer and two winding transformer on basis of construction, copper loss, cost and weight.