17408

15116 3 Hours	/ 100 Marks Seat No.
Instructions	- (1) All Questions are Compulsory.
	(2) Answer each next main Question on a new page.
	(3) Illustrate your answers with neat sketches wherever necessary.
	(4) Figures to the right indicate full marks.
	(5) Assume suitable data, if necessary.
	(6) Use of Non-programmable Electronic Pocket Calculator is permissible.
	(7) Mobile Phone, Pager and any other Electronic Communication devices are not permissible in Examination Hall.
	Marks
1. a) Attempt any <u>SIX</u> of the following : 12	
(i)	Define scavenging.
(ii)	State any two merits of vertical I.C. Engine.
(iii)	State any two applications of I.C. Engine.
(iv)	List four moving parts of an I.C. Engine.
(v)	State the types of cooling system.

- (vi) Define the term, mechanical efficiency.
- (vii) State the function of cylinder liner.
- (viii) State the function of fuel injector.

8

- b) Attempt any <u>TWO</u> of the following :
 (i) Compare two stroke and four stroke engine. (minimum four points)
 - (ii) Classify I.C. engine on the basis of :
 - (1) Cycle of operation
 - (2) Fuel
 - (3) Cooling methods
 - (4) Ignition
 - (iii) Explain working of four stroke petrol engine with neat sketch

2. Attempt any FOUR of the following :

16

- a) Explain the working of two stroke engine with neat sketch.
- b) Enlist the engine components.
- c) Draw the neat sketch of over-head valve mechanism, and its applications.
- d) State the material by which following engine components manufactured.
 - (i) Piston
 - (ii) Connecting rod
 - (iii) Camshaft
 - (iv) Piston pin
- e) Compare theoretical and actual valve timing diagram for four stroke petrol engine.
- f) List the types of camshaft drives. Draw the neat sketch of any one.

17408

16

3. Attempt any FOUR of the following :

- a) Draw the neat sketch of piston and label all parts.
- b) Explain with neat sketch, the working of electric fuel pump.
- c) Explain the construction working of simple carburetor.
- d) Explain the working principle of mechanical governer of FIP.
- e) Explain the diesel fuel injector with neat sketch.
- f) State different types of air-cleaners and explain any one of them.

4. Attempt any FOUR of the following :

16

16

- a) Explain the working of battery ignition system with neat sketch.
- b) State the importance of firing order in multicylinder engine and write the firing order of 4 and 6 cylinder engine.
- c) State the types of silencers and explain any one with neat sketch.
- d) State the limitation of cooling system.
- e) State the need of cooling system and compare various cooling systems.
- f) Describe construction of radiator and the types of radiator cores.

5. Attempt any FOUR of the following :

- a) State the need, and describe the working of crank case ventilation (P.V.C.).
- b) Draw the neat sketch of wet sump (pressure) lubrication system.
- c) State the properties of lubricating oil.
- d) List various components of lubricating system and state their function.
- e) Describe construction and working of rope brake dynamometer.
- f) Define the terms :
 - (i) Indicated power
 - (ii) Brake power
 - (iii) Mechanical efficiency
 - (iv) Indicated thermal efficiency

P.T.O.

Marks

16

6. Attempt any <u>TWO</u> of the following :

- a) Explain Morse test and William's line method for frictional power.
- b) During a test on a two stroke petrol engine, following readings were noted.
 - (i) The engine is motered by an electric motor and frictional power loss recorded on wattmeter is 1.5 kW.
 - (ii) Net brake load = 210 N
 - (iii) Dia. of brake wheel = 210 cm
 - (iv) Engine speed = 595 rpm
 - (v) Fuel consumption = 2.01 kg/hr.
 - (vi) Calorific value of fuel = 44000 KJ/kg

Find mechanical efficiency and brake thermal efficiency.

c) An I.C. engine uses 6 kg of fuel having calorific value 44000 kJ/Kg, in one hour. The brake power developed is 18 kW. The temperature of 11.5 kg of cooling water found to rise through 25°C per minute. The temperature of 4.2 kg of exhaust gas with specific heat 1 kJ/kg K was found to rise through 220°C. Draw heat balance sheet for the engine.