# 17323

# 13141 3 Hours / 100 Marks Seat No.

Instructions - (1) All Questions are Compulsory.

- (2) Illustrate your answers with neat sketches wherever necessary.
- (3) Figures to the right indicate full marks.
- (4) Assume suitable data, if necessary.
- (5) Preferably, write the answers in sequential order.

Marks

20

#### 1. Attempt any <u>TEN</u> of the following:

- a) Define time period and amplitude related to sinusoidal ac waveform.
- b) Find frequency and RMS value of the voltage waveform shown in Fig. No. 1.



<u>Fig. No. 1</u>

- c) Define active and reactive power in case of series ac circuit.
- d) Define power factor and quality factor of a coil in series ac circuit.
- e) Define conductance and susceptance related to parallel circuits. Also write the mathematical equation.

- f) Draw graphical representation of impedence and power factor with respect to frequency in series resonant circuit.
- g) Define balanced and unbalanced load in case of polyphase circuits.
- h) Draw the sinusoidal waveform of 3-phase emf with respect to time.
- i) Write the procedure of converting a given practical voltage source into current source.
- j) State Norton's theorem applied to DC circuits.
- k) State maximum power transfer theorem applied to DC circuits.
- 1) State the behaviour of following elements at the time of switching i.e. transient period
  - i) Pure L
  - ii) Pure C

#### 2. Attempt any <u>FOUR</u> of the following:

- a) An alternating current is represented by  $i = 70.7 \sin 520 t$ . Determine:
  - i) the frequency
  - ii) the current 0.0015 second after passing through zero, increasing positively.
- b) For the given impedance triangle shown in Fig. No. 2.
  - i) Identify the type of circuit.
  - ii) Mark parameters of all sides of the triangle.
  - iii) State the nature of power factor.
  - iv) Draw sinusoidal waveform for voltage and currents.



Fig. No. 2

- c) Two circuits the impedances of which are given by  $z_1 = 6 + j8$  ohm and  $z_2 = 8 j6$  ohm are connected in parallel. If the applied voltage to the combination is 100 V, find
  - i) Current and power factor of each branch
  - ii) Overall current and power factor of the combination
  - iii) Power consumed by each impedance.

Draw a neat phasor diagram.

- d) State any four advantages of polyphase circuits over single phase circuit.
- e) Using mesh analysis, find loop currents  $I_1$  and  $I_2$  in the Fig. No. 3.



Fig. No. 3

f) Explain the concept of initial and final conditions in switching circuits for the elements R, L and C.

### 3. Attempt any <u>FOUR</u> of the following:

16

- a) Derive the expression for current in pure inductive circuit when connected to sinusoidal ac voltage. Draw the phasor diagram.
- b) In a series circuit containing pure resistance and pure inductance the current and voltage is expressed as

$$i(t) = 5\sin\left(314t + 2\frac{\pi}{3}\right)$$
 and  $v(t) = 15\sin\left(314t + 5\frac{\pi}{6}\right)$ 

- i) What is the impedance of the circuit.
- ii) What is the value of resistance
- iii) What is the inductance in henries.
- iv) What is the average power drawn by the circuit.

- c) A series combination of a resistance of 100 ohm and capacitance of 50  $\mu f$  is connected in series to a 230 V, 50 Hz supply. Calculate
  - i) Capacitive reactance
  - ii) Current
  - iii) Power factor of the circuit
  - iv) Power consumed.
- d) Explain the phenomenon of resonance in parallel circuit by drawing a parallel electric circuit.
- e) Derive the formulae for star to delta transformation.
- f) Three coils each having a resistance of 20 ohm and a reactance of 15 ohm are connected in star to a 400 V, 3-phase, 50 Hz supply. Calculate
  - i) Line current
  - ii) Power supplied
  - iii) Power factor.

#### 4. Attempt any <u>FOUR</u> of the following:

- a) A 50  $\mu f$  capacitor is connected across a 230 V, 50 Hz supply. Calculate
  - i) the reactance offered by the capacitance
  - ii) maximum current
  - iii) the rms value of current drawn by the capacitance.
- b) A series circuit has the following characteristics

R = 10 Ω, L=
$$\frac{100}{\pi}$$
 mH, C =  $\frac{500}{\pi}$  µf. Find

- i) the current flowing when the applied voltage is 100 V, 50 Hz.
- ii) The power factor of the circuit.
- iii) What value of supply frequency would produce series resonance.

16

- c) Compare series and parallel resonating circuits on the basis of
  - i) Resonating frequency
  - ii) Impedance
  - iii) Current
  - iv) Magnification.
- d) Three similar inductors each of resistance 10 ohm and inductance 0.019 H are connected in delta to a 3-phase, 415 V, 50 Hz supply. Calculate
  - i) Line current
  - ii) The power factor
  - iii) Power input to the circuit.
- e) By using Nodal analysis calculate the current in 132  $\Omega$  resistor and p.d. across 20  $\Omega$  resistor as shown in Fig. No. 4.



<u>Fig. No. 4</u>

f) State Thevenin's theorem and write its procedural steps to find current in a branch (assume a simple circuit).

#### 17323

## Marks

### 5. Attempt any <u>TWO</u> of the following:

- a) A coil has resistance of 10 ohm and inductance of 0.12733 H. This coil is connected in series with a capacitor of 230  $\mu$ f across the source of supply of 230 V, 50 Hz. Find
  - i) X<sub>L</sub>
  - ii) X<sub>C</sub>
  - iii) Voltage across coil and capacitor
  - iv) Power factor
  - v) Z
  - vi) Current
  - vii) Angle of phase displacement between voltage and current.
- b) With the help of necessary phasor diagram, derive the relationship between line and phase voltage in balanced star connected load, connected to a 3-phase AC supply.
- c) Calculate the value of R which will absorb maximum power from the circuit of Fig. No. 5, Also compute the value of maximum power.



<u>Fig. No. 5</u>

16

# 6. Attempt any <u>FOUR</u> of the following:

- a) A 50 Hz voltage of 230 V effective value is impressed on an inductance of 0.265 H.
  - i) Write the time equation for the voltage and the resulting current. Let the zero axis of the voltage wave be at t = 0.
  - ii) Show the voltage and current on a phasor diagram.
  - iii) Find the maximum energy stored in the inductance.
- b) A coil of resistance 20 ohm and inductance of 200  $\mu$ H is in parallel with a variable capacitor. This combination is in series with a resistance of 8000 ohm. The voltage of the supply is 200 V and at a frequency of  $10^6$  Hz. Calculate
  - i) The value of C to give resonance
  - ii) The Q of the coil and
  - iii) Dynamic resistance of the circuit.
- c) Using Nodal analysis, calculate the current distribution for the circuit shown in Fig. No. 6.



Fig. No. 6

d) Apply super position theorem to Fig. No. 7 for determining the current in 100  $\Omega$  resistance.



Fig. No. 7

e) Find the current in 10  $\Omega$  resistance of the circuit shown in Fig. No. 8 using Thevenin's theorem.



Fig. No. 8

f) Using Norton's theorem, find the constant currents equivalent of the circuit shown in Fig. No. 9.





# 

3 Hours / 100 Marks