

14115

17320

3 Hours/100 Marks

Seat No.				

Instructions: (1) **All** questions are **compulsory**.

- (2) Illustrate your answers with neat sketches wherever necessary.
- (3) Figures to the **right** indicate **full** marks.
- (4) Assume suitable data, if necessary.

MARKS

1. A) Attempt any six.

12

- a) Convert the following binary number to gray code
 - i) 1101001
- ii) 11111.
- b) Write any two advantages of MUX.
- c) What is meant by modulus of a counter?
- d) Define bi-directional shift register.
- e) Write any two applications of analog to digital converter.
- f) Write the types of RAM memory with its definitions.
- g) Draw symbol of IC 7400 and also write the truth table and boolean expression.
- h) Draw the given boolean expression use one AND gate and one OR gate.

$$y = AB + BC$$
.

B) Attempt any two:

8

- a) Add the binary number
 - i) 1011.11 and 1100.01
 - ii) 0101.1 and 1111.01
- b) Convert the following expression into their standard SOP form

$$y = A + BC + ABC$$

c) Draw the general block diagram of MUX and write its operation.

P.T.O.

MARKS

2. Attempt any four		ır	l	0	f	,	V	'n	а	t	D	m	е	١tt	Α	2.
---------------------	--	----	---	---	---	---	---	----	---	---	---	---	---	-----	---	----

16

- a) Convert following numbers into binary and add them $(173)_8 + (741)_8$.
- b) Why NAND gate is called universal gate? Implement basic gates using NAND gate only.
- c) Draw the block diagram of ALU IC 74181 and also write its operation.
- d) Write the difference between combinational and sequential logic circuit. (any four points).
- e) Design 4 bit asynchronous up-counter also write the truth table and draw the waveform.
- f) Compare between R-2R ladder DAC and weighted resistor DAC (4 points).

3. Attempt any four:

16

- a) Convert the following decimal number into excess-3 code,
 - i) (6)₁₀
- ii) $(35)_{10}$
- iii) (46)₁₀
- iv) (142.2)₁₀.
- b) Compare totem pole and open collector outputs. (any four points)
- c) Implement the following using 16:1 multiplexer,

$$y = \sum m (1, 2, 5, 6, 8, 12).$$

- d) Write the use of preset and clear terminal in a flip-flop.
- e) Draw the block diagram of successive approximation type ADC and write the function of each block.
- f) Compare EPROM and EEPROM with any four points.

4. Attempt any four:

16

- a) What is priority encoder? Draw the block diagram of priority encoder.
- b) Realize the following function using De-multiplexer.

i)
$$F_1 = \sum m (0, 1, 3, 7, 11, 13, 15)$$

ii)
$$F_2 = \sum m (2, 4, 8, 10, 11).$$

MARKS

- c) What is the Race-around condition? How it will be eliminated in J-K flip-flop?
- d) Draw the diagram of 3-bit twisted ring counter using J-K F/F. Also write its truth table.
- e) Write any three advantages and one disadvantage of dual slope Analog to Digital Converter (ADC).
- f) Compare SRAM and DRAM with any four points.

5. Attempt any four:

16

- a) Write the four specifications of TTL logic family.
- b) Draw the logic diagram of bi-directional buffer IC 74245.
- c) With neat diagram write the working of serial in serial out shift register.
- d) Write any four features of IC PCF 8591.
- e) Compare between EPROM and Flash Memory.
- f) Study the given circuit as shown in figure initial output condition is $Q_AQ_BQ_C = o/o$. Write truth table of output $Q_AQ_BQ_C$.

MARKS

6. Attempt any four:

16

- a) Convert the number into its decimal equivalent
 (1011.01)₂
- b) Draw the logical diagram of
 - i) OR gate
 - ii) NAND gateusing only NOR gate.
- c) Write the De-Morgan's theorem and prove it.
- d) Design 16: 1 MUX using 8: 1 MUX.
- e) Draw S-R latch using NAND gates only, also write about the received output for each condition using truth table of S-R flip-flop.
- f) Draw the circuit diagram of 3-bit binary weighted Digital to Analog Converter (DAC) also write its mathematical derivation.
