

17318

3 Hours/100 Marks

Seat No.				

Instructions: (1) **All** questions are **compulsory**.

- (2) Answer **each** next main question on a **new** page.
- (3) Illustrate your answers with neat sketches wherever necessary.
- (4) Figures to the **right** indicate **full** marks.
- (5) Assume suitable data, if necessary.
- (6) Use of Non-programmable Electronic Pocket Calculator is **permissible**.
- (7) Mobile Phone, Pager and any other Electronic Communication devices are **not permissible** in Examination Hall.

MARKS

1. Attempt any ten:

- a) Write definition and formula of power factor.
- b) State any two disadvantages of low power factor in supply system.
- c) Write the formula of 3-phase power and relation between line voltage and phase voltage in 3φ star connected system.
- d) Define resonance in series R-L-C circuit and write the formula of resonance frequency.
- e) Define and write formula of
 - I) Slip
 - II) Synchronous speed
- f) State the E.M.F. equation of transformer and write meaning of each term in the formula.
- g) State the Faraday's laws of electromegnetic induction.
- h) List any two applications of
 - I) Stepper motor
 - II) Servo motor

17318		-2-	
i)	Define: I) Minimum fusing current II) Fusing factor.		
j)	Write the full form of following		
-	I) ELCB	II) MCB	
	III) MCCB	IV) HRC (Fuse)	
k)	Define: I) % regulation		
	II) % efficiency of transformer ar		
I)	What will happen if transformer is	connected to DC supply?	
m)	How the direction of 3 phase indu	ction motor can be reversed?	
n)	Draw only a circuit diagram and p	phasor diagram of an ac R-L serie	es circuit.
2. At	tempt any four :		16
a)	What are effects of change in frequ Also write the formula for \mathbf{X}_{L} and	-	eactance?
b)	Why single phase motors are not	self starting? How it is made self	starting?
c)	What is earthing? Draw only scho	ematic diagram of pipe earthing.	
d)	Define:		
	I) Cycle		
	II) Frequency		
	III) Time period		
	IV) Amplitude of AC voltage		
e)	Three impedances each of 3-ohm are connected in star across 50 H		e in series
	I) Impedance	II) Phase current	
	III) Power factor	IV) Total power	
f)	Compare 3 slip ring motor and s I) Construction and cost	quirrel cage motor based on follo	wing point
	II) Starting torque		
	III) Power factor and efficiency IV) Methods of starting		
	IV) Methods of starting.		

MARKS

3.	Attem	pt anv	four
----	-------	--------	------

16

- a) Why the core of a transformer is laminated? Write only the names of losses in transformer and method to reduce the losses.
- b) Write any two applications of
 - I) Pulse transformer
 - II) Auto transformer
 - III) Audio tranformer
 - IV) Intermediate frequency transformer.
- c) List out the speed control methods for 3 phase induction motor. Explain any one with neat sketches.
- d) Draw neat sketch and write working principle of shaded pole single phase motor.
- e) Compare single phase and three phase system on the basis of following point
 - I) Output

II) Efficiency

III) Cost

- IV) Power factor
- f) For a given equation of voltage and current in a circuit $v = Vm \sin \omega t$, $i = Im \sin (\omega t + 90^{\circ})$.

State what type of circuit is it. Draw wave form of voltage, current and power in the circuit.

4. Attempt any four:

- a) What is the principle of 3 phase E.M.F. generation? Draw its wave form.
- b) An alternating voltage is given as e = 250 sin 314.16 t than find
 - I) R.M.S. value
 - II) Maximum value
 - III) Frequency
 - IV) Value of voltage at t = 05 ms.
- c) Define dynamically induced EMF and explain principle of mutually induced EMF.
- d) Define alternating current and write any three advantages of AC over DC voltage.
- e) What is auto transformer? Write any three applications of auto transformer.
- f) Draw only circuit diagram of a single phase capacitor start induction run motor. What is the use of centrifugal switch? And write any one application of it.

5. Attempt any tour	5.	Attempt any four
---------------------	----	------------------

- a) What is meant by a 3 phase balanced and unbalanced load?
- b) Define the following term as related to AC supplies
 - I) Form factor

II) Peak factor

III) Q-factor

- IV) Impedance
- c) Write any four factors upon which an inductance of a coil depends.
- d) Write the property of ideal transformer and also write the formula for transformation ratio.
- e) Explain with neat sketch working principle of universal motor.
- f) Compare series and parallel resonance circuits (any four points).

6. Attempt any four:

- a) Explain in brief the construction and working principle of 3-phase induction motor.
- b) Write the symbol and unit of following:
 - I) Magnetic flux density
 - II) Magnetic field strength
 - III) Reluctance
 - IV) Co-efficient of self inductance
- c) Draw neat sketch and write working principle of direct online starter for small squirrel cage induction motor.
- d) Write any four applications of
 - 1) 3-phase slipring induction motor
 - II) Squirrel cage induction motor
- e) Define active, reactive and apparent power in AC circuit. Write the unit of each power and draw power triangle for an inductive load.
- f) Write any two general precautions while using electrical energy. Define lagging power factor and leading power factor.