16172 3 Hours / 100 Marks

Instructions:

- (1) All Questions are *compulsory*.
- (2) Illustrate your answers with neat sketches wherever necessary.
- (3) Figures to the right indicate full marks.
- (4) Assume suitable data, if necessary.

Marks

1. (A) Attempt any THREE

12

- (a) Differentiate between order and molecularity of a reaction.(any 4 points)
- (b) Show that the decomposition of N₂O₅ at 67 °C is a first order reaction. Calculate the value of rate constant.

Data :-

- (c) Derive the relationship between ΔG° and kp.
- (d) List types of reactors used in industry and write one application for each type.

(B) Attempt any ONE:

6

- (a) Derive temperature dependency of rate constant from Arrhenius law.
- (b) State the general procedure for analysis of the complete rate equation by integral method.

[1 of 4] P.T.O.

17562 [2 of 4]

2. Attempt any TWO:

- (a) Explain in brief chain reactions on doubling the concentration of reactant, the rate of reaction triples. Find the reaction order.
- (b) The laboratory measurements of rate V/S conversion for reactant A are given below. Compare the volumes of a mixed flow reactor (CSTR) and a plug flow reactor required to achieve 60% conversion. The feed conditions are the same in both the cases and molar flow rate of A entering the reactor is 10 mol/s.

(c) Explain in brief fluidised bed reactor with a neat sketch. Give merits and demerits of fluidised bed reactor. (two each)

3. Attempt any FOUR:

16

16

- (a) Find the equilibrium concentration of H₂,I₂ and HI if 5 millimoles of H₂ and 2 millimoles of I₂ are introduced in a one litre flask thermostated at 27 °C. K_C for the reaction at 27 °C is 16.34.
- (b) Define half-life period. The half-life period for a certain first order reaction is 2500 sec. How long it will take for (1/4) of reactant to be left behind?
- (c) Derive the expression of entropy change in constant volume process of an ideal gas.
- (d) Define rate of reaction and rate constant. Name the factors affecting the rate of reaction.
- (e) Describe catalyst ingredients (Promotors, Inhibitors, Accelerators) with example.

[3	3 of 4]	
----	------------------------	--

4. (A) Attempt any THREE:

- 12
- (a) Derive the relation of concentration and conversion for constant volume batch system.
- (b) Describe the method of catalyst preparations.
- (c) Decomposition of a gas is second order. When the initial concentration of gas is 5×10^{-4} mol/l, it is 40% decomposed in 50 min. Calculate the value of rate constant.
- (d) Give the feasibility criterion for a chemical reaction in terms of Gibb's free energy change.

(B) Attempt any ONE:

6

- (a) At 500 °k the rate of a bimolecular reaction is ten times the rate at 400 °k Find the activation energy for this reaction.
 - (i) From Arrhenius law
 - (ii) From collision theory
- (b) Derive the Van't Hoff equation $\frac{d\ln k}{dT} = \frac{\Delta H^{\circ}}{RT^2}$

5. Attempt any TWO:

16

- (a) (i) Define zero order reaction. Derive its mathematical expression. State its important characteristics.
 - (ii) At certain temperature the half life periods and initial concentration for a reaction are $t_{1/2} = 420$ sec, CAO = 0.405 mol/l and $t_{1/2} = 275$ sec, CAO = 0.64 mol/l. Find the rate constant for a reaction.
- (b) Derive a performance equation for plug flow reactor. State advantages and disadvantages of batch reactor.

17562 [4 of 4]

- (c) (i) Explain the procedure to determine best system for achieving desired conversion for different size MFR in series.
 - (ii) Consider a gaseous feed $C_A = 100$, $C_{BO} = 200$ to a steady flow reactor operated at constant T and P. The isothermal gas phase reaction taking place is $A + B \rightarrow R + S$ for $X_A = 0.8$, find C_A , $C_B \& X_B$.

6. Attempt any FOUR:

16

- (a) Why plug flow reactors are not put in series?
- (b) Define entropy. Derive the expression of entropy change in isothermal expansion of an ideal gas.
- (c) Define order of a chemical reaction and give classification of reaction based on it.
- (d) Differentiate between integral method and differential method of analysing kinetic data. (Any 4 points)
- (e) In an isothermal batch reactor, the conversion of a liquid reactant A achieved in 13 min. is 70%. Find the space time and space velocity necessary to effect this conversion in a plug flow reactor. Consider first order kinetics.