

17470

	DUFS / 100 IVI	агк	5	Seat No.								
	Instructions :	(1) A	All qu	estions are com	pulso	ry.						
		(2) A	Answe	r each next mai	in que	estion	on a 1	iew p	age.			
		(3) F	'igure	es to the right in	idicat	te full	mark.	S.				
		(4) A	Assum Aohil	e suitable aata, e Phone Pager	ij nec and a	ressar	y. her Fl	octron	ic			
		(3) 1	Comm	unication devic	es are	e not p	oermis	sible	in Exa	imina	tion	
		Ŀ	Hall.			1						
											Ι	Marks
A	nswer any ten of the f	ollowi	ng:									20
a)	Define "Sensible he	eat" and	d heat	capacity.								
b)	State Newton's law	of coo	ling.									
c)	Enlist types of pipe f	fittings.	•									
d)	Define 'skin friction	and 'c	drug fi	riction'.								
e)	State Fourier's law	of heat	cond	uction.								
f)	State principle of ce	ntrifuga	al pun	np.								
g)	Define density and w	viscosit	y of li	quids.								
h)	Define 'Adsorption	' and 'A	Absor	ption'.								
i)	Define 'Dew point'	and 'W	Vet bu	lb temperature'.								
j)	Define 'Extraction'	and 'E	vapor	ation'.								
k)	Define heat transfer	coeffic	cient. S	State its significat	nce.							
1)	Write the classificat	ion of f	low m	easuring devices								
m) Define latent heat of	f vapor	izatio	n. Write its value	for w	ater.						
A	nswer any four of the	follow	ing:									16
a)	Distinguish between	n molec	ular d	iffusion and eddy	diffu	sion.						
b)	Explain the importa	nceoff	fluid f	low to textile.								
c)	Explain the Rheolog	gy of No	ewton	ian fluids.								
d)	Describe Reynold's	experi	ment	for fluid flow thre	oughp	oipes.						
e)	Name two filter med	dia. Exp	plain t	heir use in textile	es.							
f)	Explain the concept	t of ene	rgy lo	sses and friction	factor	ſ.						

~		Ma	arks					
3.	An	iswer any four of the following :	16					
	a)	With a neat and labelled diagram, explain the construction and working of a centrifugal pump.						
	b)	Compare free and forced convection.						
	c)	Give the Bernoullis equation of continuity and explain its significance.						
	d)	Explain various filter aids and filter media with appropriate examples.						
	e)	Explain the mechanism of heat flow through thick slab and thick cylindrical pipe.						
	f)	Explain the construction and working of orifice meter.						
4.	An	nswer any four of the following:						
	a)) Describe the concept of Black Body Radiation.						
	b)	Describe the diffusion theory of drying.						
	c)	Explain principle of reverse osmosis. State applications of reverse osmosis intextile industry.						
	d)	Define crystallization. State two commercial applications of crystallization.						
	e)	Explain the applications of convection heat transfer in textile industry,						
	f)	Explain the concept of energy conservation in textile.						
5.	An	nswer any four of the following :						
	a)) Describe humidity and humidification. Explain its importance in textile industry.						
	b)) Explain two applications of membrane separation technique to textile industry.						
	c)	Graphically represent flow behaviour of						
		i) Pseudoplastic ii) Dilatant.						
	d)	Explain capillary theory of drying.						
	e)	Explain two basic laws of radiation.						
	f)	Define:						
		i) Real fluid ii) Ideal fluid.						
6.	An	swer any four of the following :	16					
	a)	Define:						
		i) Compressible fluid						
		ii) Incompressible fluid. Give one example of each.						
	b)	Draw a neat sketch any four types of pipe fittings.						
	c)	Explain construction and working of venturi meter.						
	d)	d) Define modes of heat transfer with example.						
	e)	Classify mass transfer operation with examples.						
	f)	Describe working of stenter with respect to heat transfer.						