16172 3 Hours / 100 Marks

Instructions:

- (1) All Questions are *compulsory*.
- (2) Answer each next main Question on a new page.
- (3) Illustrate your answers with neat sketches wherever necessary.
- (4) Figures to the right indicate full marks.
- (5) Assume suitable data, if necessary.
- (6) Use of Non-programmable Electronic Pocket Calculator is permissible.
- (7) Mobile Phone, Pager and any other Electronic Communication devices are not permissible in Examination Hall.

Marks

1. (A) Attempt any SIX:

12

- (a) Define absolute viscosity and kinematic viscosity.
- (b) Calculate friction factor when Reynold's number is 15000.
- (c) Draw the diagram of four types of pipe fittings.
- (d) State the significance of Reynold's number.
- (e) Give the classifications of pumps.
- (f) Distinguish between laminar flow and turbulent flow.
- (g) Define vacuum.

[1 of 4] P.T.O.

17426 [2 of 4]

(B) Attempt any TWO:

		(a)	Derive the equation of continuity.	
		(b)	Draw the diagram of Gate valve.	
		(c)	Distinguish between positive displacement pump and centrifugal pump. (4 points)	
2.	Atte	empt any FOUR :		16
	(a)	Draw the diagram of well type and inclined tube manometer.		
	(b)	Explain briefly the characteristics curves of centrifugal pump with diagram.		
	(c)	Distinguish between Diaphragm valve and Ball valve.		
	(d)	Derive Hagen Poiseuille's equation.		
	(e)	Expl	ain the construction of a centrifugal pump.	
	(f)	Expl	ain the significance of terms used in Bernoulli's equation.	
3.	Atte	empt any FOUR:		16
	(a)	State	e and explain Newton's law of viscosity.	
	(b)	Give	industrial applications of blower and compressor.	
	(c)	Drav	v the diagram of rupture disc and explain its working.	
	(d)	Disti	nguish between variable head meter and variable area meter.	
	(e)	Deri	ve the equation for calculating NPSH.	
	(f)	Disti	inguish between Newtonians and non-Newtonians fluids.	

8

17426 [3 of 4]

4. Attempt any FOUR:

16

- (a) A simple U tube manometer is installed across a pipeline. The manometer fluid is mercury (Sp. gravity 13.6) and flowing fluid is CCl_4 (sp. gravity 1.6). Manometer reads 175 mm. What is the pressure difference over the manometer in N/m^2 ?
- (b) Draw the diagram of rotameter. Write construction and working of rotameter.
- (c) Write the formula to calculate frictional loss due to sudden contraction and explain the terms involved in it.
- (d) Give the specific applications of tee, elbow, cross and plug.
- (e) Explain:
 - (i) air binding
 - (ii) priming
- (f) Draw the diagram of gear pump and screw pump.

5. Attempt any TWO:

16

- (a) Derive the equation to calculate volumetric flow rate using venturimeter.
- (b) Fluid is to be pumped at a rate of 1.5 m³/min through a 50 mm id, 100 m long pipe. Density of the fluid is 1050 kg/m^3 and kinematic viscosity of the fluid is $2.35 \times 10^{-6} \text{ m}^2/\text{s}$. What is the pressure drop in the pipe?
- (c) With the help of a diagram, explain working of double acting reciprocating pump.

17426 [4 of 4]

6. Attempt any TWO:

16

- (a) Derive the Bernoulli's equation.
- (b) Draw the diagram of steam jet ejector. Give its applications.
- (c) Toluene is flowing at a rate of 12 lit/sec through a 3 cm diameter pipe. Density of toluene is 870 kg/m³. Calculate
 - (i) 'Q' in m³/sec
 - (ii) 'M' in kg/sec
 - (iii) 'U' in m/sec
 - (iv) 'G' in kg/m² sec