17323

16172													
3	Ho	ours /	100	Marks	Seat	No.							
	Instru	ections –	(1) <i>A</i>	All Questions	are Comp	oulsory.							
			(2) I r	llustrate your ecessary.	answers	with no	eat s	ketc	hes	wł	nere	ever	
			(3) H	figures to the	right ind	icate fi	ull n	nark	s.				
			(4) <i>A</i>	Assume suitab	le data, it	f neces	sary.						
			(5) U (Jse of Non-pr Calculator is p	rogrammal permissible	ble Ele e.	ectror	nic 1	Pocl	ket			
]	Ma	rks
1.		Attempt	any [<u>TEN</u> of the f	following:								20
	a)	Define f	requen	equency and amplitude.									
	b)	Define c waveforr	erest fa n.	est factor and form factor for sinusoidal A.C.									
	c) Draw imped power facto			ance triangle for R-C series circuit. Write nature of of this circuit.									
	d)	Convert	Z = 6	+ j8 Ω in po	olar form.								
	e)	Define (Q facto	r and write i	ts express	ion.							
	f)	Define a	dmitta	nce and state	its unit.								
	g)	Define b	alance	d 3 phase loa	ıd.								
	h)	State the	e relati	on between li	ne and pl	hase va	alues	of	vol	tage	9		

- and current in 3 phase star connected system.
- i) State Superposition Theorem.
- j) State Thevenin's Theorem.
- k) How to convert voltage source into equivalent current source?
- 1) State the behaviour of pure L at the time of switching.

16

16

2. Attempt any <u>FOUR</u> of the following:

- a) Derive the expression for current in pure capacitive circuit when connected to AC supply. Draw phasor diagram.
- b) Define :-
 - (i) Active Power
 - (ii) Reactive Power
 - (iii) Apparent Power
 - (iv) Power factor.
- c) Three identical impedances are connected in delta to a 3 phase, 400v. The line current is 35 Amp. and total power taken from supply is 15 KW. Calculate resistance and reactance of each phase.
- d) Compare the series and parallel resonant circuit.
- e) Define r.m.s. value and average value. An alternating voltage is $e = 200 \sin 314t$ Calculate its r.m.s. and average value.
- f) State any four advantages of polyphase circuits over single phase circuit.

3. Attempt any <u>TWO</u> of the following:

- a) A resistance of 20Ω , an inductance of 0.2 H and a capacitance of 100 µf are connected in series across 220 V, 50 Hz supply. Determine
 - (i) impedance
 - (ii) current
 - (iii) active power
 - (iv) apperant power
- b) Two impedances (12 + j16) and $(10-j20)\Omega$ are connected in parallel across a supply of $200 \frac{60^{\circ}}{000}$ using admittance method calculate branch currents, total current and power factor of whole circuit.

- Marks
- c) Using Nodal Analysis, find current in the 3Ω resistor for circuit A. Refer Fig. No. 1.

Fig. No. 1

4. Attempt any FOUR of the following:

16

- a) What is phase sequence? Draw waveforms of 3 phase emf.
- b) Derive the formulae for Delta to star transformation.
- c) A voltage $V = 100 \sin 314t$ is applied across a circuit containing 25Ω resistor and $80 \ \mu\text{F}$ capacitor in series. Determine
 - (i) The expression for instantaneous current
 - (ii) Power consumed
- d) Three coils each with a resistance of 10Ω and inductance of 0.35 mH are connected in star to a 3 phase, 400V, 50 Hz supply. Calculate line current and total power consumed.
- e) Explain lagging quantity and leading quantity explain this concept with voltage and current waveforms.
- f) Find current through 6Ω resistor using Mesh Analysis, for Circuit B. Refer Fig. No. 2.

Fig. No. 2

5. Attempt any FOUR of the following:

- a) Derive the expression for resonant frequency in RLC series circuit.
- b) Draw the phasor diagram and waveforms of voltage and current in pure inductive circuit with single phase A-C supply.
- c) Using Norton's Theorem, find current throught R_L in Fig. No. 3.

- d) A series RLC circuit consisting of $R = 10\Omega$, L = 0.1 H and $C = 10 \ \mu F$ is connected to 230V variable frequency supply Calculate
 - (i) The frequency at which circuit behaves as purely resistive circuit.
 - (ii) Quality Factor.
- e) Derive the relation between line and phase current in 3 phase delta connected balanced load. Draw phasor diagram.
- f) Express
 - (i) $Z = 10 60^{\circ}$ in rectangular form
 - (ii) Z = 16 + j8 in polar form.

6. Attempt any <u>FOUR</u> of the following:

- 16
- a) Calculate current through 5Ω resistor by using superposition theorem (Fig. No. 4)

Fig. No. 4

16

b) Develop Thevenins equivalent circuit between points A and B in Fig No. 5 and find current in $R_L = 10\Omega$.

c) Find value of R_L in Fig. No. 6 for maximum power transfer.

- d) Explain the concept of Initial and final condition in switching circuit for L and C.
- e) Find voltages at nodes A and B in Figure No. 7.

Fig. No. 7

f) Explain how sinusoidal AC voltage is generated by using simple one loop generator.